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3-dimensional singularities with resolutions whose

exceptional sets are toric divisors

Hiroyasu TSUCHIHASHI

+ /% BA

Introduction. It is known by Mumford et al [1] that cusp
singularities which appear in compactifications of quotient spaces
of tube domains have resolutions whose exceptional sets are toric
divisors ( see Definition 1.1 ). In this paper, we consider whether

~ the converse is true in the 3-dimensiona1 case. Namely, if an
isolated singularity (V,p) has a resolution whose exceptional
set is a toric divisor, then is (V,p) a cusp singularity in the
sense of [4]? If a 2-dimensional singularity has a resolution whose
exceptional set is a cycle of rational curves, then it is
well-known to be a cusp singularity. Hence the answer to the above
problem is affirmative in the 2-dimensional case. Moreover,
2-dimensional cusp singularities are taut, i.e., a 2-dimensional
isolated singularity is uniquely determined from its weighted dual
graph, if the exceptional set is a cycle of rational curves. We
also consider whether 3-dimensional cusp singularities have the
same property. We only give a partial answer to these problems.

In Section 1, we introduce the weighting of the dual graph of
a toric divisor. We show next that it must satisfy some condition
( Lemma 1.4 ). From this fact, we see that the weighted dual graph

of a toric divisor which is the exceptional set of a 3-dimensional



isolated singﬁlarity agrees with that of a cusp singularity.

In Section 2, we show that the isomorphism classes I(p)
of 2-dimensional toric divisors which are exceptional sets and which
have a fixed weighted dual graph A are parametrized by a subset
of the cohomology group H{(r,T) of a group agtion; ( Proposition
2.4. ) 1In Particular, if the fundamental‘group of A is abelian,
then there is a one to one correspondence between I(pA) and a finite
group Hl(r,T) and each element of I(p) has a representative
isomorphic to the exceptional set of a resolution of a Hilbert modular
cuép singularity.

In Section 3, we show that under some assumptions, some
neighborhoods U and U' of two isomorphic toric divisors X
and X' are formally equivalent ( Theorem 3.1 ). Then by the
theorem of Hironaka and Rossi [2], U and U' are actually
equivalent. Hence any isolated singularity with a resolution
whose exceptional set is isomorphic to a toric divisor X is
isomorphic to the isolated singularity (V,p) we obtain by
contracting X in U, if (U,X) satisfies the condition of Theorem

3.1.

1. The weighted dual graph of a toric divisor. We first
recall that a torus embedding Z iskan algebraic variety containing
an algebraic torus T = (C*)r as a Zariski open set such that
T aéts on Z extending the natural action on itself defined by
multiplications. We call a 2-dimensional torus embedding, a toric
surface. The union of the 1-dimensional orbits of a compact toric

surface by the action of the algebraic torus is a cycle of rational
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curves.

Definition 1.1. A reduced effe;tive divisor X =
X #ot ..o #X of a 3-dimensional complex manifold is éaid to be
toric if X has only normal croosings as singularitié_s,. each
irreducible component Xj of X is isomorphic to a compact toric
surface Z and the union Uk#J X.N Xk of the double curves

Xj n¥, on Xj coincides with the union of the 1-dimensional orbits.

Let X be a 2-dimensional toric divisor and let A be its
dual graph. Namely, to each irreducible component VXj of X
corresponds to a vertex vJ of A so that XJ and Xy

( resp. X., Xy and X ) intersect along a curve ( resp. at a

3’
point ) if and only 1f v and v, are joined by an edge of

A ( resp. Vj’ Vi and VR, form a triangle in , ). Then’

A is a triangulation of a compact topological surface.

Definition 1.2. A weighting of the dual graph of a toric
divisor is a pair of integers on both sides of each edge of ,

attached in the following way: Let Xj and Xk be irreducible

components of X intersecting along a double curve E. Let
Vj’ Vi and e be the vertices and the edge of , corresponding

to Xj’ Xk and E, respectively. Then we attach the

(EIXj)2 - (%X ) and (E|X )2 =

(X?-Xk) of E on Xj and Xi to the‘51des of the vertlcés

self-intersection numbers

vj and Vi of the edges e, respectlvely

- We call , with we1ght1ng as above a welghted dual graph.
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Clearly we have

Lemma 13 Let X be a toric divisor of a 3-dimensional
complex manifold M and let XJ. -and Xk vbe two irreducible

components of X intérsecting along a double curve E. Then
2 _ 2 )
(E|Xj) = deg(0[%,]|) and (Elxk) - deg(O[X,] )

Definition 1.4. We say a’ weighted dual graph ) satisfies
the monodromy condition at a vertex v of j, if the following.
conditions are satisfied: Let Vis Vo eee y Vg be the vertices
of the link of v going around v in this order. We first attach
three elements n, ny and n2‘ of a basis of Z3 tq the vertices
Ve vy and Vs respectively. Then lwe can attach the elements
N3y vee N, N g and LI of Z3 to the verticés V3y ees

Vgr V¢ and Vo) respet:tively, by the équalities
(*) n;_ 1 tam +n +bn=0 i=3,‘... , stl,

Where a; ( resp. by ) is the weight on the side of vy ( resp.

vV ) of the edge joinning v gnd V5 and a4 = a; ( resp. b4



= b; ). Then ve require that n_, =n;, n_, =n, and p(nl),
p(nz), cee p(ns) go around p(n) once in this order, where

2
p:R\[0} + S
(R3\{0})/R>0'

~is the natural projection onto sphere S2 =

Lemma 1.5. Let X be a toric divisor of a 3-dimensional
complex manifold. Then the weighting of the dual graph of X

satisfies the monodromy condition at all the vertices of .

Proof. Let V be an irreducible component of X and let
D=D1+D2+ Y s be the double curves on V. Here, we may assume
that D. and D, intersect at a point for each i in 2Z/sZ.
Since V 1is a toric surface and D is the union of the
1-dimensional orbits of V, we have O[V]IV = d;Dy +dD, + ...+
dD_, for some integers d;, dy, ... , dg [3, Proposition 6.1].

+ d.

Then we have b, = deg(O[V]iDi) = O[V]W'Di =d;a; +d;_ i+l

1

| | o 2 2
by Lemma 1.3, where bi = (Dilxi) and a; = (Di|V) . Here X,

is the irreducible component of X intersecting V along D,.
On the other hand, associated to a toric surface V, we have
s elements Ny, Doy oo and ng of 22, going around the origin

exactly once in this order, each adjacent pair {nsom544}) of

which form a basis of 22 with the relations n_q + a,n, + n.

ii i+l
= 0. Let ﬁi = (ni’di) and n = (0,0,-1) be the elements of

3 + n,

Z i+l

- g2 = = = -
=2"@Z. Then n,_ +amn. +bn=0 and

1
{By»fi,of] form a basis of 2> for each i in Z/sZ. This

is nothing but a monodromy condition at the vertex corresponding



Let X=X1+X2+ oo X s be a toric divisor of a 3-dimensional
complex manifold U with its dual graph A. Let S be the compact
topological surface of which A is a triangulation. Let 3 be
the triangulation of the universal covering space ¥ of S induced
from A. Choose a basis {nj,n,,n3} of 23 and a triangle of

2. Let o(vi) = ny, o(vz) =n, and o(v3)'= ny, vwhere v, v,

and vy are the vertices of the triangle. Then by the above lemma,
we obtain a map ¢ : { all vertices of 2 } » Z3 by the equality
(*). Moreover, we have a homomorphism p : nl(S) + GL(3,2)

by p(y)*o(v) = g(y.v) for each element v of nl(S) and for the
vertices of 3. Now assume that X in U is contractible to a
point and let ¢ : (U,X) » (V,p) be the contraction. Let [n*f]
be the zero divisor of the pull-back holomorphic function T E

on U for a holomorphic function f on V vanishing at p. Then
we can write [n*f] =y mi(f)Xi + Y so that the support of each
irreducible component of Y is not contained in X. Lét m be
the smallest number among mi(f)'s with f rumning through all
elements of the maximal ideal ¥ of O, at p, and let X' =

) miXi. Then we have a canonical linear map
b /m? — HOX,0.(XT)),

sending f + )‘;(2 to (n*f/g)lwnx, if g 1is a defining equation

for X on an open set W.



Lemma 1.6. After blowing up U along double curves and
triple points on X and then replacing X by its total transform,
we may assume that each double curve of X is not contained in

the fixed locus of the image of h.

Proof. Let I : (V,p)» (B,0) be an embedding of (V,p)
into an open set B of N with I(p) =0 and let F =
Hom(CN ,C) >be the vector space consisting of the linear functions
of CN ‘We show that thére exist a composition 1 : W4 U of
blowing ups along double curves and triple points of the total

transforms of X and an open set C of F satisfying the following

property:
a a a

k8 3 8 .
(P) (HIW(p)‘“) £=y, Toyy Teyq -fp with fp(O) £ 0,
a;, ay, a3 € Z>O’ for any function f in C on some neighborhood
W(p) of each triple point p of X' = n-l(X) with a local coordinate
(yl,yz,y3) sqch that W(p)n X' is defined by y1°¥p'y3 = 0.
Then we have an effective divisor X! of W supported by X' and
. 2 O/t ! ’
a homomorphism h : M/ K" 4 H (X ,OX.(-X )) such that the zero
divisors of h(f+'?(2) contain no double curve of X' for vall} fi
in C and thus wé have the assertion of the theorem.

We denote by r+(f), the Newton's polyhedra r+(K) of K=

3 . 3
{ne ZZO | a, 20}, i.e., the convex hull of U .y (n-l-RZO)

for a germ f = Tnez 3 anxn of a holomorphic function of
c3 at 0. We use the following lemma of Varchenko [5, Lemma 2.13]
by replacing Rk by CB.



&
Lemma. There exists a finite nonsingular r.p.p. decomposition
3 3 . : 3
(Z7,r) of Z° with |g] := erEO =RZO such that we can

write *£ = 1, %2 a3f with f‘(O) 0, for an
Ty Yy -¥2 Y3 o g # Yy y

3-dimensional cone 45 = RZO ng + RZO n, + RZO ng of g

and for any holomorphic function f with r (f) =r (K). Here

T +(K) is a Newton's polyhedra and T, is the restriction of

¢ ¢ Temb(s) & Temb({ faces of Rzg }) = ¢ toan open

neighborhood U of orb(;) and (yl,yz,y3) is a coordinate of
g .

U0 such that Ucr N (Temb(z N\T) is defined by y1'¥9+Y3 = 0.

Here we note that this lemma also holds, although we replace

y by any nonsingular subdivision of 3. Let £y tyy oen st be

L
the triple points of X and let U be an open neighborhood of
t; with a local coordinate (zl,z ,z3) such that XU, is defined
by zi zi 3 0. We choose an open set C of F so that the

Newton's polyhedra +(ﬂ £) associated with the coordinate
(zl,zl,z ) coincide for all f in C, on each open set U
Assume that we have a composition Mi-p vj-l + U of blowing ups
along double curves and triple points of the total transforms '
of X satisfying the property (P) at each triple point of

X(J -1 _ = j-1 1(X) contained in HJ 1 (U ) with k¢ j-1. Then
we have an r.p.p. decomposition (z3 ) with |p| = Rzg

satisfying the following commutative diagram:



1
L, - U,
Myq Oy R

!

Temb(p ) _ Temb({ faces’of Rzg }) = C3.

Let I, be an r.p.p. decomposition of R3 as in the‘above lemma
for F+(“|U.*f) with f in C. We have a subdivision 3 of

Lo obtained by a succession of divisions of A corresponding to
blowing ups along double:curves and triple points of the tétal
transform of the union of the 2-dimensional orbits of Temb(p)

( see [3, Corollarly 7.6 and §8] ). Then as associated to the
above subdivision y of A, we have a composition n3 : Wj +
Wj-l of blqwing ups of Wj—l sgtisfying the following commutative

diagram:

' -1 | '
(IIJ-°IIJ-_1) (UJ) . Hj_l(Uj)

/ !

Temb(y) ~+ Temb(p).

K '
Then the composition Hj = Hj°nj-1 of n3~ and nj-l satisfies

(P) at each triple points of X(j) =‘n.-1(X) contained in n.-l(U

79

j j W

with  k g j. Thus we have a desirablemap =71 : W= Wl + U,

L
since each triple point of X' = H_I(X) is contained in one of

H_l(Uj)'s g.e.d.

Remark. Let U' 4+ U be a blowing up along a double curve

or at a triple point of X and let X' be the total transform

of X. Then X' is also a toric divisor and the dual graph A'



84

of X' is a subdivision of the dual graph A of X. Moreover,

the weighting of A’ induces a Z3—weight'mg o' ¢ { all vertices
Cof R } -+ z3 such that the restriction of o' to the vertices
of % agrees with , where A' is the triangulation of 3

induced from ,'.

Lemma 1.7. Under the above notations and the assumption

of Lemma 1.6, we have
mia+@jb+mk+m1 <0

for each double curve D = X.l° Xj’ where D intersects irreducible
components Xy and XIL of X, a= (D‘X )2 and b= (D|X )2.

i i
The equality holds if and only if deg OD%-X+) = 0.

Proof. Under the assumption of Lemma 1.6 we see that
XD = deg Oy(-X") ; 0. On the other hand, we have
XD = ~(m.X, + mX, +mX + m X )+D
= -(mia + mjb +m + ml),

by Lemma 1.3. q.e.d.

Let (V) = (ﬁv-loo(v) for each vertex v of 7}, where
m, = m if the irreducible component X. of X correspondé to
the vertex [v] of , which is the image of v by the projection
Y — - Let u, v, w and x be the vertices of % such that

two triples (u,v,w) and (u,v,x) form two adjacent triangles.

Then we have

10
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[T

a-muoc;(u) + b'mveo-(v) + mwrg_(W) +'mx-c-(x) =0,

since ag(u) + bg(v) + g(w) + g(x) = 0. Hence the point
o (x) 1is on or above the plane of R containing the points
g(u), g(v) and o'-(W) according as a.m + bem + m +m is
zero or negative. We call the edge joining u and iv, a proper
edge, if the inequality a- m, + b-mv tm, +m < 0 holds. Let
£:5, 82 be an extension of peg such that the image of
each triangle of 3 1is a spherical triangle, where

p: RB\{O} + 52 = (R3\{O} )/R>0k is the natural projection.

Proposition 1.8. Under the above notations and the
assumption of Lemma 1.6, f 1is injective and the closure of the

image f(g) of S 1is contained in an open hemisphere of Sz.

Proof. Noting the above facts and that the image of ¢
is contained in m %2> with m= mm, ... m,, we have the first
assertion and the fact that f(g) is contaiﬁed in a hemisphere
of SZ, in the same mammer as in the‘proof of Theorem 4.5 in [4].
Hence we only show that the closure of f ('§) is strictly contained
in an open hemisphere of 82. We can classify the vertices of 'K
into three types i), ii) and iii), according as there is no,
exactly two and more than two proper edges meetvin‘g at a vertex.

If thefe exists at least one vertex of type iii) among the vertices |
of 7%, then the closure of f(3) 1is contained in an open |

hemisphere. If all vertices of % are of type i), then by

Lemma 1.7, OD(-X+) is trivial for each double curve D of X

11



and hence OX.(fX+) is trivial for each irreducible component

Xj' This contradicts the assumption that X 1is contractible.

Hence we may only consider the case where there are no vertex

of type iii) and at least one vertex of type ii). In this case,
all proper edges of X form a disjoint union U Lj of lines which
are mapped to great semicircles of Sz. These great semicircles
have common boundrary points s and n, since £(3) must be
contained in a hemispheré. The ihage of p : "1(5) + GL(3,2)

must act on f(§3 properly discontinuously and without fixed points
and must fix s and n. Moreover, the quotient f(g)/b(nl(S))

is compact. But by an easy calculation, we see that such a subgroup

of GL(3,Z) cannot exist. q.e.d.

Theorem 1.9. Assume that (U,X) » (V,p) is a resolution
of a 3-dimensional isolated singularity (V,p) whose exceptional
set X 1is a toric divisor. Then there exist a cusp singularity
(Vo,po) = Cusp(C,r) belonging to % [4]-and a resolution g :
(UO,XO) - (Vo,po) of ‘(Vo’po> such that the weighted dual graph
of the exceptional set XO coincides with that of X.

Proof. We have a map f : S, S2

and a homomorphism , :
"1(8) + GL(3,Z) in the above way from the weighted dual graph
of X.Llet C=p H(£(S)) = Ry £(S) and let 1 = o(n1(S)).
Then by the above proposition and [4, Proposition 4.3}, we have
a cusp singularity (Vo,po) = Cusp(C,r) and a resolution o

(UO,XO) - (Vo,po) of (Vo,po) such that the weighted dual graph

of the exceptional set Xo coincides with that of X. Here U0

12



o
2

and XO are the quotient spaces by I' of an open set %; =
ord_l(C)\Jig and the union of the 2-dimensional orbits io of the
torus embedding Temb(z)‘= T&l%o, respectively, where L=

{ RzOff(A) | A are triangles, edges and vertices of % } U {{0}}
and ord = -log| | : (C*)3 + R3. q.e.d.

2. A classification of the toric divisors with the same
weighted dual graph. We write U, X, V and p for Uy X V
and P, in Theorem 1.9, dropping the subscript o. Let A be the
weighted dual graph of X and let A be the triangulation induced
from A of the universél covering space of the compact topological
surface of which A is a triangulatibn. Then X is the dual graph
of‘ysz.' Let Hl(r,T) be the first cohomology gréup for the group
I with coefficients in the r-module T = (C*)3. Take a 1-cocycle
o representing an element [g] of Hl(r,T). Namely, ¢ : T + T
is amap fron T to T satisfying the 1-cocycle condition c(y&)
= o(y)o(s)Y. Since both T and T act on Temb(r) and X, the
set r_ = {o(y)ey | yer} isa subgroup’of Aut(Temb(z)) isomorphic
to r by the cocycle condition. The quotient X.0 = §7ro of li
by T, is a compact analytic space with the weighted dual graph
which coincideé with A, since each element o of T maps each
irreducible component of ?? onto itself. Let 1 be anothéf
representative of [g]. Then there éxists an element o of T
with 1(y) = o(y)aY-l for each element vy of T. Then we Have
the equality ao(y)cy = 1(y)syea for any element y of T. Hence
a induces an isomorphism from X0 to XT =1§/FT. Assume that

we can take a 1-cocycle ¢ so that {o(y) | y e T} is

13
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contained in the compact real torus CT ={ z € c” | |z] =1 }3
of T. Then T, also acts on ﬁ"properly discontinuously and
without fixed points, since the map Ord]ﬁ\\i : ﬁ\i-» C is also
FO-equivariant. Hence we obtain a pair U%,Xs) of a
3-dimensional complex manifold q} = ﬁ’TO " and a toric divisor
XE ='§7T0. VWé see that X& is contractible to a point and thus

we obtain a 3-dimensional isolated singularity V&, by the same

reason as in the proof of [4, Proposition 1.7].

Proposition 2.1. If o 1is an abelian group, then
Hl(r,T) is a finite group and for each element [g] of Hl(r,T),
we can take a l1-cocycle g representing [¢] so that { o(y) |

y € T} is contained in the compact real torus CT of T.

Proof. Since r 1is a fundamental group of a compact

topological surface, r 1is a free abelian group of rank 2. Let

y and § be generators of T. Then det(y-1) # 0, since vy has
three real eigenvalues which are‘not equal to 1 as we see in the
proof of [4, Theorem 3.1]. Hence for any element g of T, there
exists an element o of T with aY_l = g. Then we can take a
l-cocycle ¢ representing [g] with o(y) =1 for any element
(6] of Hl(r,T). Since T 1is abelian, we have c(e)Y_l = O(Y)E-l
= 1, by the cocycle condition for any element ¢ of T. Hence
o(e) 1is contained in the kernel ker(y-1) of themap T 3 o —+
oa¥™! € T. Clearly ker(y-1) is contained in CI and is a finite
set. Hence {g(y) | y e I} CCT and HX,T) is a finite

group, since a representative ¢ is uniquely determined from g(y)

14
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and ¢(§). q.e.d.

Remark. When T is an abelian group, Cusp(C,I') is a Hilbert
modular cusp singularity [4, Proposition 3.1 and Corollary 3.2].
Let ¢ be a 1-cocycle representing an element of Hl(I‘ ,T) such
that { 0(y) | y € T} < CT. We easily see that the set T' =
{yer|ol)=1} is a subgroup of T of finite index. Then
I and T are comensurable, i.e., Ir' is also a subgroup of T,
of finite index. Hence Vo is also a Hilbert modular cusp

singularity.

In the 4foll‘owing, we show conversely that any toric divisor
X' of a 3-dimensional complex manifold with the weighted dual graph
which coincides with A is isomorphic to" X for some element
[o] of Hl(I‘ ,T). Let X' + X' be the unramified covering space

of X' induced from the covering map A + A of the dual graph.

Proposition 2.2. Under the above notations, we have an

isomorphism: X =X

Proof. For each vertex v of %, let (XV,DV) ( resp.
(X\'r’D\'r) ) be the pair of the irreducible component of X ( resp.
X') cdrresponding to v and the union of the double curves on
it. Since each irreducible component and the double curves on it
are uniquely determined up to isomorphisms from the weigﬁted dual
graph, we have an isofhbrphism (X",,D",) % (XV,DV) of pairs. Take

a vertex v  and fix one such isomorphism.

15
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I, : (X!,D!) (X,D,).

Let w be a vertex which is connected to v by an edge e ofd.
Let D=X-X and D' =X'-X' be the double curves of X and
v “w v oW v

X",, respectively, ‘corresponding to e. Then we can take an

isomorphism
. ' pt &
I : (X!,D!) = (X,D)

in such a way that the restriction Iw|D' of Iw to D' is equal
to that of IV, i.e., leD' = IV|D" Next let u be a vertex of
A such that u, v and w are vertices of a triangle. Then the
restrictions of Iv and Iw to the double curves Xl'; X\'r and

Xt'fxv'v’ respectively can be extended to a nuique isomorphism

. 'n! =
L,: (Xu,Du) (XU,DU)
of pairs. Hence the following lemma complete the proof, since A

is simply connected.

Lemma 2.3. Let v be a vertex of & and Wiy Woy eee s

LA be the vertices adjacent to v going around v in this order.

Fix isomorphisms I : X", = X, and le : X‘:’1 = le with
IVIDi = lelDi , where Di = Xi-X;Jl. We have isomorphisms

Iw2 : X‘:IZ — sz, IW3 : X'w3 '——9- Xw3’ ... and st : Xv'vs — st,
successively, with IVIDj = ij|03 and IWj-l’EE = ij‘E_'j ,» by

16
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the above way, where D3 = X&-X& and E! =X' -X& . Then

] I & B
_ . * 1] ]
Iw |E! = Iw E!" Namely, we have an isomorphism from Xv + Xw +
s’ 11 1
X' to X +X o+ ...+ X
W v W W
s 1 s
/
E2
x. /
w u X!
1 222 W,
T2 Y2
"1
X!
v
Figure 2.1

Proof. Take global coordinates (xi,yi), (zi,yi) and (xi,ui)

for open sets of X;, X& and X& , respectively, for each i
i i-1

of Z/sZ so that E{ is defined by y, =0 and also by x;

= 0, that D; is defined by z; =0 and also by um =0 on

X&i, that Di is defined by Yie1 = 0 and also by X; = 0 on

' : S S Bet
XV and that_ghe relations Yi T X410 X5 T Yier X4l and

2, = U4 Xi+11 hold. (See Figure 2.1.) We may assume that

(=
n

z; on each double curve Ei for i=2,3, ... , s. Then

u, = tz; on Ei fof a nonzero complex number t. It is sufficient
to show that t = 1. Take an open covering {Ui}i=1,2,..,s of X&
so that each Ui is a Stein neighborhood of the triple point

X'-X' ‘X&i. Let f. be a defininig equation for X' NU; on

U.. Let 85 = (fi/fj)lX;' Then the collection {gij} of the

17



85

transition functionsjg.lj defines the normal bundle [X;]IX; of
x;., On the other hand, the line bundle [X;]IXQ is liéearly
equivalent to dl-D1 + dZ'D2 + .00+ dsst for some integers dl’
dy, ... and d_. Hence we have a collection {hi} of nowhere

vanishing holomorphic functions hi on X.\'},(\Ui with

d, d. d. d.
= e ha.e w1 i-1 i j-1 jy-1
gij : hi gij hj (yi X5 ) (YJ xj ) . In

-b.
particular, 8ii41 = xi+11, since bi = di-l + ai-di + di+1' Now

let f, = f;+h, for a holomorphic function h; which is an

-b.
. = 1
extension of h, to U,. Then (fi/fi+1)|X& X4

{(fi/zi) (Ei+1/ui+1)'1}|Di =1. So (Ei/zi) and (f.+1/ui+1) define

and hence

1

a nonzero holomorphic function Fi on Di. Since u; =z, on

] - . . ", .
Ei’ Fi-l = Fi on the triple point Di-l Di' Since the double curves
Di are compact, the collection {Fi} is a nonzero constant

. ] 1 o ! ¢ = =
function on D1 + D2 + .0+ Ds' Hence 't ul/z1

(fl/zl)‘(i':l/ul)-1 =1. gq.e.d.

Let Auto(ﬁ) be the subgroup of Aut(i) consisting of the
automorphisms of X which map each irreducible component of X
to itself, i.e., the induced action of ‘Auto(%) on A is trivial.
Clearly T acts on X effectively and hence is a subgroup of

Auto(X).

Proposition 2.4. Aut (X) = T.

18
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Proof. Let u, v and w be the vertices of a triangle of
X. Let (xu,yu), (xv,yv) and (xw,yw) be coordinates of toric
surfaces X , Xv and X , respectively, such that Xﬁ'xv
( resp. XV-Xw‘, resp. X ‘X, ) is defined by Yy =0 ( resp. Yo =
0, resp.byw =0 ) and also by x, =0 ( resp. X, = 0, resp. X, '
=0 ) and that xli = Yy, ( resp. X, = ¥, Tesp. X =y, ) on
Xy X‘} ( resp. X, X, resp. XX, ). ( See Figure 2.2. ) Then the
restriction of any element g of Auto(')\é) to X, for t=u, v
and w can be written as (xt,yt) - (at-xt,st-yt) for some nonzero
complex numbers oy and By Clearly a, =By a, =By, and aw’
=By On the other hand, the action of any element g8 of T on
a neighborhood in T of the triple point Xu'Xv'Xw can be written
as (x,y,z) + (le’ 32y, 332) for a coordinate (x,y,z) of U
which is (y\},x‘;,O), (O,yw,xw) and (xﬁ,O,yu) on X, Xw' and
Xuv, respectively. Hence there exists a unique element o of
T, the restriction of which to Xu+ XV+ Xw agrees with that of

g. Then as in the proof of Proposition 2.2, we have g =gq on

X. q.e.d.

Figure 2.2
By Propositions 2.2 and 2.4, there exist a subgroup r' of

L

Aut(X) with X' = X/r' and an isomorphism h : T = r' with

19



Y-loh(y) € T for any element y of I'. Let o) = h{y )y -1,
Then by an easy calculation we see that the map o : T + T satisfies
the 1-cocycle condition o&8) =a§ W @) for any element y and

8§ of I'. Hence themap o : T » T defines an element [0] of

Hl(I‘ ,T). Here assume that XA '= XA '' with '’ ={ 1G4 )y |

Y € FI‘ }  for some’ tT.:I~>T satisfying the 1-cocycle condition.
Then there exists an element B8 of T satisfying Bel@ly)ey) =
(t&)y)»B for any element y of I'. Hence we have o(y)A (1)

=gY -1. Therefore, y and 1 defines the same element of |

Hl(I‘ ,T) and such element is uniquely determined from an isomorphism

classes of toric divisors. Thus we obtain:

Proposition 2.5. There exists an injective map from the set
of isomorphism classes of toric divisors whose weighted duall graph
coincides with A and which are exceptional sets of 3-dimeﬁsional
isolated singularities to Hl(f‘ ,T), which sends each toric divisor

X' to the element [0] of Hl(l‘ ,T) with X'= X, -

When T 1is abelian, the map in Proposition 2.5 is bijective,

by Proposition 2.1.

3. The pseudo-tautness of cusp singularities. Let (U,X)
and (U',X') be pairs of 3-dimensional complex manifolds and their
toric divisors such that X and X' are isomorphic. We denote
by 9 the analytic space whose reduced space is X and

whose structure sheaf is OU/OU(-(rH-l)X).

20



Theorem 3.1. Under the above notations, if
Hl(X,G)U@OX(-pX)) = 0 for all positive integers p, then we have
an isomorphism nX = nX' for each positive integer n, where Oy

is the holomorphic tangent sheaf of U.

Take an open Stein covering {U,} ( resp. {Up} ) of X ( resp.
X' ) with local coordinates (xA,yA,zA) ( resp. (xA,yA,z'A) )
such that X ( resp. X' ) is defined by x,.y,-z, =0 ( resp.
XA'YA'Z'A =0 ) on each open set Uy ( resp. UA ). Here for an
isomorphism i : X' = X fixed once for all we may assume that
i(UnX') = U 0X, that x,(p) = x,(i(p)), that y,(p) = y,(i(p))
and that zA(p) = zA(i(p)) for any point p of UA(\ X'. Let

(xp1¥p024) = (ng(xB’YB’ZB)’ggB<xB’yB’ZB)’th(xB’yB’ZB))\
and

(egova2’n) = (Eap(xgs¥p,28) 8ap (g:Y5028) iap (xg Y8 28))
for each pair‘ (A,B) with U,AUg # ¢. Then

(fAB(xB’yB’ZB)’gAB(xB’yB’Z"B)’hAB(xB’yB’ZB))
0 0 0
= (fAB(xB’yB’ZB>’gAB<XB’yB’ZB)’hAB(XB’yB’ZB))
( mod. (xB- yg* ZB—) ).

Now let

21



(XB’YB'ZB)'(fl ’ iB’hiB)
- (£ (Yo 2) 84 (Yo%) P T Vo)) = AB,gQB, hy),

and let

1 1
SAB fAB +

[F1s B

XA

Then by an easy calculation, we have

(x-¥gr2e)” %ac = (XB'yB‘Z'B)"(};{B + (xye20) e
( mod. (XC yC-zC) )9

. . 1 . o3
if U,nUgnU, # g. Hence the collection {SABIX} of the restrictions

of SiB to X defines an element of Z (X,@Us (-X)). By the

assumption of the theorem, we have a collection {si} of vector

fields

1_3 1 2 1 ] 1
= + gyt -h
A IXp fA aYA

. 1
on U, with (xz-yg-zp)- sAB (XyYpe28) sA (xg:yge 2g) 95 ( mod.

2 1 1 1
(g ypezg)” ). Let x, = "A t (X vy ZA)‘f  Ya = YAt (Xyvarzy)-gy
and zi =z, + (x /N A) h Then by an easy calculation, we have
1.1 .1 1 1 1 1 1.1 .1
(XA’YA’ ) = (£, (XB’YB’ )’gAB(XB’yB’ ),hy <XB’YB’ )

( mod. (xgrygrzg)® ).
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Thus by the assumption of the theorem, we can define‘inductively

new coordinates (xz,yg,zn) for any positive integer n such that

XX’YR7ZR) = (fAB(xgnyB;’zg) ’gAB(xrBI,YS:Zg) ’hAB(xrBl’yrBla ZrBl)) ’

(mod. (xgeypezx)™ ).

Thus we complete the prdof of Theorem 3.1.
We have the following theorem immédiately from Theorem 3.1 and

[2, Theorem].

Theorem 3.2. Let X and X' be toric divisors of
3-dimensional complex manifolds U and U', respectively. Assume
that X ~ X', that X is contractible to a poiﬁﬁ and that
Hl(@UgOX(QpX)) =0 for all positive integers ‘p. Then some
neighborhoods of X and X' are isomorphié. ‘

The exsamples in [4, 5. Exsamples (I) and (II)] satisfy the
condition of Theorem 3.1. Let (U,X) » (V,p) be a resolution of
a 3-dimensional isolated singularity (V,p) such that the exceptional
set X 1is a toric divisor. If (U,X) satisfies the condition of
Theorem 3.1 and Hl(r,T) is trivial, then (V,p) is taut and is
a cusp singularity in the sense of [4], by Theorem 1.9, Proposition
2.5‘and Theorem 3.2, where 1 1is the fundamental group of the dual
graph of X and acts on T = (C*)3 through the map o : T »

GL(3,Z) we obtain by the way as in Section 1.
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