A Note on The Invariant Holonomic System

Ьу

Jiro SEKIGUCHI

Tokyo Metropolitan University

<u>INTRODUCTION</u>. In this report, I shall prove a theorem which is an interpretation of the main result of [S]. I have studied in [S] the holonomic system which governs an invariant spherical hyperfunction (= ISH) on the tangent space of a symmetric space. In particular, if the tangent space in question satisfies a condition introduced there, I have shown that there exists no non-zero singular ISH on it (cf. Theorem 5.2 in [S]). This result is interpreted in terms of $\underline{\mathbb{D}}$ -modules. This will be shown in Theorem 1 of this report.

§1. Let g be a complex semisimple Lie algebra and let σ be its complex linear involution. Then we obtain a direct sum decomposition $g = \underline{h} + \underline{q}$, where $\underline{h} = \{X \in \underline{g}; \sigma X = X\}$ and $\underline{q} = \{X \in \underline{g}; \sigma X = -X\}$. Let $S(\underline{q})$ be the symmetric algebra over \underline{q} . If \underline{q}^* is the dual of \underline{q} , then $S(\underline{q})$ is regarded as the polynomial algebra on \underline{q}^* . On the other hand, a constant coefficient differential operator $\partial(P)$ on \underline{q} is associated with every element $P \in S(\underline{q})$. For example, if $A \in \underline{q}$, then $\partial(A)$ is the vector field on \underline{q} defined by $(\partial(A)f)(X) = \frac{d}{dt} f(X + tA)|_{t=0}$. Let H be a connected Lie group with Lie algebra \underline{h} . We may assume that H acts on \underline{q} as \underline{h}

does. Let I(g) be the subalgebra of S(g) consisting of H-invariant elements. Then $\underline{\mathbb{N}}(g)=\{X\in g\colon P(X)=P(0) \text{ for all }P\in I(g)\}$ is called the nilpotent subvariety of g. An element X of g is contained in $\underline{\mathbb{N}}(g)$ if and only if $\mathrm{ad}_g(X)$ is a nilpotent matrix. Take a Cartan subspace g of g. Then, by definition, almost all elements of g are H-conjugate to those of g. Let g be the totality of g-regular semisimple elements of g and put $g_g = g - g$. There is an H-invariant homogeneous polynomial D(X) on g called the discriminant such that $g_g = \{X \in g; D(X) = 0\}$.

Since the notations introduced above are not familiar to non-exparts in this area, it seems worthwhile to give an example. Take $g = \underline{sl}(n, \mathbb{C})$ and let σ be the involution of g defined by $\sigma X = {}^{-t}X$. In this case, $\underline{h} = \underline{sg}(n, \mathbb{C})$ (= the totality of skew-symmetric matrices with trace zero) and $\underline{g} = \{X \in \underline{g}; {}^{t}X = X\}$. We may take $H = SO(n, \mathbb{C})$. In this case, the totality of diagonal matrices with trace zero is one of Cartan subspaces of \underline{g} . So we take this as \underline{g} . As to the algebra $\underline{I}(\underline{g})$, it is a polynomial algebra with (n-1) generators P_2, \ldots, P_n which are defined as follows:

$$\det(t + X) = t^n + P_2(X)t^{n-2} + \dots + P_n(X).$$

Here we have identified g^* with g by the Killing form B(X,Y) = tr(XY) $(X, Y \in g)$. Let D(X) be the discriminant of $\det(t+X)$. Then $g_s = \{X \in g; D(X) = 0\}$. By definition, an element X of g is contained in g_s if and only if at least two eigenvalues of X coincide. Last the nilpotent subvariety N(g) consists of symmetric nilpotent matrices.

<u>§2</u>. Return to the general situation.

As usual, let $\underline{\mathbb{Q}}_{\underline{q}}$ and $\underline{\mathbb{D}}_{\underline{q}}$ be the sheaf of holomorphic functions on \underline{q} and that of differential operators with coefficients in $\underline{\mathbb{Q}}_{\underline{q}}$, respectively.

For any $A \in \underline{h}$, define a vector field $\tau(A)$ on \underline{q} by $(\tau(A)f)(X) = \frac{d}{dt} f(X + t[X,A])|_{t=0}. \quad A \text{ function } f(X) \quad \text{on } \underline{q} \text{ is invariant if } f(h \cdot X) = f(X) \quad \text{for any } h \in H. \quad \text{In this case, it follows that } (\tau(A)f)(X) = 0 \quad \text{for any } A \in \underline{h}. \quad \text{Noting this, we define that a function } f(X) \quad \text{on an open subset } U \quad \text{of } \underline{q} \text{ is locally invariant if } \tau(A)f = 0 \quad \text{for any } A \in \underline{h}.$

For any $\lambda \in \underline{q}^*$, we define the sheaf $\underline{\underline{J}}_{\lambda}$ of left ideals of $\underline{\underline{D}}_{q}$ as follows:

$$\underline{\underline{J}}_{\lambda} = \sum_{P \in I(q)} \underline{\underline{\underline{D}}}_{\underline{q}} (\partial(P) - P(\lambda)) + \sum_{A \in \underline{\underline{h}}} \underline{\underline{\underline{D}}}_{\underline{q}} \tau(A)$$

Let $\underline{\underline{u}}_{\lambda} = \underline{\underline{u}}_{\underline{q}} / \underline{\underline{\underline{J}}}_{\lambda}$ be the sheaf of left $\underline{\underline{\underline{U}}}_{\underline{q}}$ -modules associated to $\underline{\underline{\underline{J}}}_{\lambda}$. It is known that $\underline{\underline{\underline{M}}}_{\lambda}$ is coherent as the sheaf of left $\underline{\underline{\underline{U}}}_{\underline{q}}$ -modules. Let $\underline{\underline{\underline{U}}}_{\underline{q}}$ be the canonical generator of $\underline{\underline{\underline{M}}}_{\lambda}$. Then $\underline{\underline{\underline{U}}}_{\underline{q}} = \underline{\underline{\underline{U}}}_{\underline{q}}$ and $\underline{\underline{\underline{U}}}_{\underline{q}}$ satisfies the system of differential equations

(1)
$$\begin{cases} (\partial(P) - P(\lambda))u = 0 & \text{for all } P \in I(q) \\ \tau(A)u = 0 & \text{for all } A \in \underline{h}. \end{cases}$$

By definition, u is regarded as a locally invariant function on \underline{q} which is a joint eigenfunction of the differential operators $\partial(P)$ ($\forall P \in I(\underline{q})$).

Since \underline{q} is an affine space, the cotangent bundle $T^*\underline{q}$ is identified with $\underline{q}\times\underline{q}^*\simeq\underline{q}\times\underline{q}$ (by the Killing form). Then it

follows from the definition that $\operatorname{Ch}(\underline{\underline{\mathbb{M}}}_{\lambda})$ is contained in the analytic subset

$$\Lambda = \{ (X,\Xi) \in \underline{q} \times \underline{q} ; [X,\Xi] = 0, \Xi \in \underline{N}(\underline{q}) \}$$

of $T^*\underline{q}$. Since dim Λ = dim \underline{q} , we find that $\underline{\underline{M}}_{\lambda}$ is holonomic in the sense of Sato-Kashiwara.

The purpose of this report is to prove the next theorem.

Theorem 1. Assume the following. There is a real semisimple Lie algebra \underline{g}_0 and it maximal compact subalgebra \underline{k}_0 such that \underline{g}_0 is a normal real form of \underline{g} and that \underline{h} is a complexification of \underline{k}_0 . Then, for any $\lambda \in \underline{q}^*$, $\underline{\underline{m}}_{\lambda}$ has no non-trivial coherent quotient $\underline{\underline{L}}$ such that $\underline{Supp} \, \underline{\underline{L}} \subseteq \underline{g}_{\underline{s}}$.

The assumption in Theorem 1 holds for the case where $g = \underline{sl}(n, \mathbb{C})$ and $\underline{h} = \underline{so}(n, \mathbb{C})$.

This connects with Theorem 6.7.2 in [HK]. Hotta and Kashiwara mentioned that Theorem 6.7.2 in [HK] is shown by an argument similar to a result of Harish-Chandra in [H]. I will give in §4 a proof of Theorem 1 which is an analogue of Theorem 6.7.2 in [HK].

§3. Let X be a complex manifold of dim = n and let Y be a closed submanifold of X with dim Y n-k. As usual, let $\underline{\mathbb{D}}_X$ denote the sheaf of differential operators on X.

Let us consider the algebraic local cohomology $\underline{H}^k_{[Y]}(\underline{\mathbb{Q}}_X)$ which is a sheaf of $\underline{\mathbb{Q}}_X$ -modules. This sheaf is usually denoted

by $\underline{\mathbb{B}}_{Y|X}$. If k=0, this is nothing but the structure sheaf $\underline{\mathbb{Q}}_X$. But if $k\neq 0$, this is not coherent over $\underline{\mathbb{Q}}_X$. In spite of this, it is known that $\underline{\mathbb{B}}_{Y|X}$ has the structure of left $\underline{\mathbb{Q}}_Y$ -modules.

It is easy to describe $\underline{\mathbb{B}}_{Y|X}$ by using local coordinate systems. Let $\mathbf{x}=(\mathbf{x}_1,\dots,\mathbf{x}_n)$ be a local coordinate system on an open subset U of X. Assume that $\mathbf{y}\cap\mathbf{U}=\{\mathbf{x}\in\mathbf{U};\;\mathbf{x}_1=\dots=\mathbf{x}_k=0\}$. Then, by definition, $\underline{\mathbf{B}}_{Y|X}$ coincides with

$$\underline{\underline{D}}_{X} / \sum_{i=1}^{k} \underline{\underline{D}}_{X} \times_{i} + \sum_{i=k+1}^{n} \underline{\underline{D}}_{X} \frac{\partial}{\partial \times_{i}}.$$

Note that $\underline{\mathbb{B}}_{Y\mid X}$ is an example of holonomic systems and that $\mathrm{Ch}(\underline{\mathbb{B}}_{Y\mid X})$ coincides with T_Y^*X which is the conormal bundle of Y. The next lemma concerns the converse of this property.

Lemma 2 ([K]). Let $\underline{\underline{M}}$ be a holonomic system on X. Assume that $Ch(\underline{\underline{M}})$ coincides with T_Y^*X . Then $\underline{\underline{M}}$ is isomorphic to the direct sum of a finite number of copies of $\underline{\underline{B}}_{Y|X}$.

Let $\underline{\underline{M}}$ be a regular holonomic system on X-Y. Assume that $\underline{\underline{M}}$ is extendable to X, namely that there exists a holonomic system $\underline{\underline{\widetilde{M}}}$ on X such that $\underline{\underline{\widetilde{M}}}|(X-Y)\simeq \underline{\underline{M}}$ as sheaves of left $\underline{\underline{D}}_{X-Y}$ -modules.

<u>Definition 3 ([HK])</u>. A holonomic system $\underline{\underline{M}}$ on X is a minimal extension of $\underline{\underline{M}}$ if the following conditions hold:

(i) $\underline{\underline{M}}$ ' | (X-Y) $\simeq \underline{\underline{M}}$ as $\underline{\underline{D}}_{X-Y}$ -modules.

(ii) Let $\underline{\underline{}}$ be a holonomic system on X. Assume that $\underline{\underline{}}$ is a subquotient of $\underline{\underline{M}}$ ' and that $\operatorname{Supp}(\underline{\underline{}}) \subset Y$. Then $\underline{\underline{}} = O$.

Note that minimal extensions of $\underline{\underline{M}}$ are unique up to isomorphism. So we denote by $\underline{\pi}\underline{\underline{M}}$ the minimal extension of $\underline{\underline{M}}$.

§4. Proof of Theorem 1. Let $\underline{\underline{}}$ be a coherent sheaf of $\underline{\underline{D}}_X$ -modules. Assume that $\underline{\underline{}}$ is a quotient of $\underline{\underline{M}}_{\lambda}$ and that Supp($\underline{\underline{L}}$) is contained in $\underline{\underline{q}}_{s}$.

Let $\subseteq_1,\dots,\subseteq_r$ be the totality of mutually distinct H-orbits of N(q). For each i, let Λ_i be the closure of the set $\{(X,Y)\in\Lambda:Y\in\subseteq_i\}$ and put $Y_i=\{X\in q;\ (X,Y)\in\subseteq_i\}$ for some $Y\in N(q)$. Then each Y_i is a closed analytic subset of q. Since $Ch(\underline{\mathbb{M}}_{\lambda})\subset\Lambda$, it follows from the definition that Supp($\underline{\mathbb{L}}$) coincides with the union $Z=\bigcup_{i\in\Lambda}Y_i$ for some subset Λ of $\{1,\dots,r\}$. The assumption of $\underline{\mathbb{L}}$ implies that each Y_i (i $\in \Lambda$) is contained in q_s . Since Z is a locally closed, there exists an $i\in\Lambda$ such that Y_i contains an open subset of Z. Take an open subset U of q such that $U\cap Y_i$ is a closed submanifold of U. We may assume from the first that $\underline{\mathbb{L}}|U\neq0$. For the sake of simplicity, put $\underline{\mathbb{L}}'=\underline{\mathbb{L}}|U$ and $Y=U\cap Y_i$. Then it follows that $Ch(\underline{\mathbb{L}}')=T_V^*U$. Hence, by means of Lemma 2, we find that $\underline{\mathbb{L}}'\cong \underline{\oplus} \underline{\mathbb{R}}_{Y|U}$ for some integer d. Then

$$(2) \qquad \qquad \underline{\text{Hom}}_{\underline{D}_{U}}(\underline{\text{M}}_{\lambda}|U,\underline{\textbf{L}}') \simeq \oplus \underline{\text{Hom}}_{\underline{D}_{U}}(\underline{\text{M}}_{\lambda}|U,\underline{\textbf{B}}_{Y|U}).$$

Now we recall the proof of Theorem 5.2 in [S]. By an

argument similar to that, we obtain the next lemma.

Lemma 4. Retain the above notation and the assumption in Theorem 1. Then $\underline{\underline{Hom}}_{[I]}(\underline{\underline{M}}_{\lambda}|U,\underline{\underline{B}}_{Y|U})=0.$

This lemma combined with (2) implies that $\underline{\underline{L}}$ is not a quotient of $\underline{\underline{M}}_{\lambda}$. This contradicts the assumption and the theorem is proved.

§5. I proposed in [S] the next conjecture.

Conjecture I. Retain the notation and the assumption in Theorem 1. Then $\underline{\mathbb{M}}_{\lambda}$ is a minimal extension of $\underline{\mathbb{M}}_{\lambda}$ | 9'.

In virtue of Theorem 1, Conjecture I is reduced to the next one.

<u>Conjecture I'</u>. Retain the same situation in Conjecture I. Let $\underline{\sqsubseteq}$ be a holonomic system on \underline{q} . Assume that $\underline{\sqsubseteq}$ is a subsheaf of $\underline{\underline{m}}_{\underline{\lambda}}$ and that $\underline{Supp}(\underline{\sqsubseteq}) \subseteq \underline{q}_{\underline{s}}$. Then $\underline{\sqsubseteq} = 0$.

I have no idea to prove this conjecture at present. But I have some examples which agree Cojecture I'. For example, Conjecture I' is true for the cases $(\underline{g}, \underline{h}) = (\underline{s}\underline{l}(n, \mathbb{C}), \underline{s}\underline{o}(n, \mathbb{C})), \ n = 2, 3. \ \text{The case } n = 2 \ \text{is}$ easy to prove but the case n = 3 is slightly complicated to prove.

REFERENCES

- [H] Harish-Chandra: Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math., 86(1964), 534-564.
- [HK] R. Hotta and M. Kashiwara: Invariant holonomic systems on semi-simple Lie algebras, to appear in Invent. math.
- [K] M. Kashiwara: On the maximally overdetermined system of linear differential equations, I, Publ. of RIMS, Kyoto Univ., 10(1975), 563-579.
- [S] J. Sekiguchi: Invariant spherical hyperfunctions on the tangent space of a symmetric space, to appear in Advanced Studies in Pure Math.