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ON THE WAVEFORMS OF VAN DER POL OSCILLATOR WITH LARGE NONLINEARITY
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ABSTRACT

It is well known that the periodic solution of van der Pol

equation x - p(1 - xz)i +x =0 (.=d/dt) varies as follows.

as p increases. When O<u<<1 x shows the almost sinusoidal

waveform with a period 2n. The distortion from a sine wave

increases, however, markedly as well as the period with

increase of u. On the other hand, the author has introduced

the new concept of "Averaged Potential', and pointed out that

an active element produces approximately rectangular waveforms

when the rational ratio frequencies are applied to it. This

paper shows that the waveform of van der Pol oscillator with

large u can be explained by the above mentioned fgnction'of

an active element. [ g
1. INTRODUCTION

The self-excited oscillation is one of the typical phenomena in
nonlinear electrical circuits. Van der Pol introduced a differential
equation with a nonlinear damping term, i.e., so-called van der pol
equation X - u(1-x2)i + x =0 (.=d/dt) which describes a negative
resistance oscillator. Since his study [1), a number of works have been
devoted to van der Pol equation [2],[3],[4]. Now it is well known
theoretically as well as numerically that there exists an unique
orbitally stable periodic solution for each value of u and that the
solution varies as follows with increase of u:

(1) For 0O<u<<t, the resulting waveform of x is nearly sinusoidal, and



the period is nearly 2m (angular frequency w=1).
(2) As y increases, the distortion from a sine wave increases as well
as the period T. For u>>1, the waveform is known as the relaxation
oscillation.
(3) In spite of the above mentioned change of the waveform, the maximum
value of x (amplitude) is nearly equal to 2 for each value of y.
Recently, the author has shown a new approach to the analysis of
almost-linear and almost-lossless oscillator with many degrees of
freedom based on new concept of fAveraged Potential" [5],[6]. Moreover,
using this concept, he has pointed out that an active element has the
function to make a rectangular waveform as well as possible [7].
This paper is an attempt to explain that the waveform of van der
Pol oscillator with large 'u is produced by the above mentioned function

of an active element.

2, AVERAGED POTENTIAL AND AVERAGED EQUATIONS

In this section we introduce a new concept of the '"averaged
potential" and summarize the fundamental of the new method to analyze
many degrees of freedom oscillators. A

Brayton and Moser showed that a system of differential equations
for complete RLC-networks, which are composed of K inductors, J

capacitors, and N resistors, can be written in the special form [8]

di .
. k _ 9P(i,v) _ _
Lk(lk) T - Bik (k = 1,...,K)
dv, 3P (i,v) W
Cj(vj) il 3Vj G =1,0v0.,0)

i= (i1,i2,...,iK), - v o= (VI’VZ”°"VJ)

where ik represent the current in the inductor Lk

across the capacitor Cj' The function P(i,v), "mixed potential

and vj the voltage

function", is constructed as follows:

P(i,v) = - F(i) + G(v) + H(i,v) ~ ' (2)
where F(i) and G(v) are the '"current potential"” and the "voltage
potential' of the network, respectively. The current (voltage)
potential of the network is given as the sum of the current (voltage)

potential of resistors in series with L (conductors in parallel with



" C). Those potentials are defined by integrals along the characteristic
of the resistor and the conductor, i.e.,
F(i) = [v(i)di, G() = [i(v)dv , o ®
where the directions of 1 and v are assigned in the conventional way.
H(i,v) is determined by connection of the inducters and the

capacitors and takes the form

K J

r .v,i (4)
k=1 j=1 < 3K

where rkj =0, +1, -1.

Let us consider van der Pol oscillators with many degrees of -
freedom. Therefore we assume that all L‘and C are linear and that all
tﬁe resistors connected in series with L and all the conductors
connected in parallel with C are small, i.e., F(i) and G(v) are small.
Under these conditions, the system is almost-linear and almost-loss-
less. Hence the averaging method can be applicable to (1) as follows.:

We write i and v, in (1) in the same form as the generating

system of (1), i.e.,

M
i (t) = Y od, r (t) cos ¢_(t)

m=1

M (5)
vj(t) = Z d;j rm(t) sin ¢m(t)

m=1

where M represents the degrees of freedom of the system, and dmk and
&j are eigen vectors of the generating system. '
If there exists a resonant relation between some pair of the
natural or mode frequencies of the generating system n_, i.ef, their
ratio is a simple rational number, a synchronization of their
frequencies will take place. However the frequencies themselves will
not be effected by the synchronization, then ¢m(t) can be assumed as
¢m(t) =nt+ em(t) (6)
If there exists no complete but an almost resonant relation between
some pair of n_ . those n_are slightly modified to mnlfor generating a
synchronism. For describing this synchronization, ¢m(t)vis assumed as
o,(t) = o t + 6 (t) (7

If there is no resonant relation among n o, ¢m(t) can be again be



assumed as (6). When F(i) and G(v) are sufficiently small, rm(t) and
8p(t) in (5) through (7) are taken to be slowly varying functions of
time t.

Upon substituing (2) through (7) into (1) and applying the

averaging method to it, we obtain [5],(6]

« _ 2. 1T =1 3
r, = lim 5 fo{ T 5. (F(r,8,t) + G(r,6,t))}dt

T-»00 2 2 (8)
2, U [ SRR I
r2(6£ *wy nz) = lim T IO{ T 3% (F(r,o,t) + G(r,Q,t))}dt
T L 2

L =1,...,M, (. =4d/dt)
Here we define the "Averaged Potential" U as follows:

U(r,8)

U(r1,...,rM,61,...,6M)

lim + [HF(r,0,t) + G(r,0,t)}dt
T Jo
T

{F+G} 9

U is the time average of the dissipation function, which is associated

with the total loss in the resistors and conductors of the system.
Interchanging the integration with respect to t and the partial

derivatives with respect to T, and 62, (8) is written as

r = - 130
L IQ rg
(10)
2 13U
r, (6, +w, - n,) = - — —
£ L L L 12 BGR
Especially, in case of the compléte resonance, owing to Wy =M, (10)
is reduced to ’
f =-_130
L I2 arl
‘ (11)
2; 1 93U
r6 = = ——
J IQ 62

Further, in case of no resonance among all n s owing to the fact that U

depends only on r, (10) is reduced to
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(12)

By observing (11) and (12), we know that these equations take the
form of the so-called gradient system. Hence the following important
result can be stated: An isolated (local) minimal point of the averaged
potential U is the asymptotically stabel equilibrium point of the
system, and vice versa. This statement implies that all the stable
nonresonant and completely resonant oscillations of the system are
obtained by finding all the minimal points of U. .

As mentioned before, the method based upon the averaged potential
yields the equivalent averaged equations to those derived by the
conventional averaging method. However the formef method has various
advantages which could be summarized as follows:

(i) It enables us to understand the behavior of the system in a nice
physical manner, i.e., the oscillatory behavior varies so as to
minimize the time average of the loss in the system, and it is finally
settled at a point of minimal loss. Hereaf;er, we call this property
the "principle of minimal loss'". This physical understanding is very
much effective for analyzing or even synthesizing complicated phenomena
in many degrees of freedom systems.

(ii) The process of mathematical calculation for constructing the
averaged potential and for finding its minimal points:is much less
tedious than that for deriving equations by the averaging method and
for obtaining the stable equilibrium points. ;

In case of the synchronism brought about by almost~resonant modes,
the equations of (10) are not in gradient form in terms of the one
function U. However they still give us a clear physical sensé as to
the oscillatory behavior: U is minimized with respect the amplitude r

L

under constraints among Wy, M and the phase angle 62.

For more details of the gﬁndamental of the averaged potential,
refer to Ref. [5] and [6]. '

This method was‘successfully applied to the analysis of
nonresonant multimode oscillationsbin a ladder and a square arfay of

van der Pol oscillators coupled by inductors [9], [5].
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3. MODE LOCKING IN AN OSCILLATOR WITH RATIONAL RATIO FREQUENCIES [7]

The mode iocking (synchronization) is one of the most interesting
aspects in oscillators with many degrees of freedom. Let us consider
the most typical and fhe simplest oscillatorbcomposed of one active
element g(v) and M resonators as shown in Fig.1.

When no resonance occurS among the mode fréquencies n = 1/¢f;6;;
the averaged potential U is merely the function of the amplitudes ro»
and its minimal point can be found easily. On the contrary, if the mode
frequencies have the simple rational ratios, a mode locking (synchroni-
zation) among them may occur, and U gets to have'many additional terms
containing the phase angles Bm. In this case, deriving thg averaging
potential U and finding its minimal points need tedious calculation.

For overcoming this difficulty some considerations are needed. As
the oscillator has only one active element, we‘can rewrite the avefaged'

potential U in the form

M
.1 (T ‘ .
U(r,8) = éi2~f IO G{mz1rms1n(wm; + em)}dt

fZ c()Wv;r,0)dt - (13)

g(v)

Fig.1. Multimode oscillator with

one active element.




where W is a sort of probability density function of v(t). That is,
wdv represents the probability that the value of v(t) lies‘between v
and v + dv during the oscillatory behavior; As mentiohed<in Sec.2, the
oscillation varies so as to decrease U with the lapse of the time t.
Noting that G(v) depends.on'the active element and that W depends on
the waveform of v(t), we can consider in the following manner. An
ideal waveform to minimize U is the rectangular one with amplitude vo(a
minimal point of G(v)) which is composed of infinite number of
frequency (harmonic) components. If only M components are available
due to M resonators as in the oscillétor of Fig.1, we can expect the

waveform keeping the value of v at v as long as possible, i.e., an

0
approximately rectangular one.
The voltage-current characteristic of the active element is
assumed to be described by
. 3
i=gW) =n-v +v/3) (14)
where U is considered to be small. Then, the voltage potential is given
by ‘
2 4 .
Gv) = fg(v)dv =p(-v/2 + v /12) (15)

The minimal points of G(v) are given by Yo = +/3,

By using the active element with the characteristic (14) with u =
0.1 and by putting the ratios of the mode frequencies in 1:3:...:(2M-1)
in Fig.l, actual waveforms in stable synchronization are obtained.
Figure 2 shows the change of the waveforms as M increases from 1 to 6.
The upper wave in each figure shows the total voltage v’across the
active element, and the lower ones show its harmonic components v It
is readily observed that, as M increases, v approaches to the ideal
rectangular wave of amplitude ¥3. Other types of synchronized
oscillations are found stably in the same oscillator, when M 2 3. The
author has found the way how all the stable synchronized ospillations
are obtained, and it is confifmed that all the waveforms of them keep
the minimal value V3 as long as possible.

When the mode frequencies are not in simple rational ratios, but
are almost near to them, a synchronization of them will also take
place. However, the waveforms of the synchronized oscillations in this

case produce a distortion from those in Fig.2. (See Fig.10.)



4, VAN DER POL OSCILLATOR

In this section the fundamental of van der Pol oscillation is
summarized. First, when the parameter y is small, the analysis of van
der Pol oscillator is shown using the averaged potential mentioned in
Sec.2. Secondly, when p is extremely large, the analysis of so-called
relaxation oscillation is shown using the discontinuous theory
introduced by van der Pol. Finally, for values of p lying between

those two limits, we analyze the oscillator using the harmonic balance
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method (Galerkin procedure). From this result, it is shown that a many
degrees of freedom oscillator with small nonlinearity can produce the
same waveform as was produced by van der Pol oscillator with large

nonlinearity.

4.1 The Almost Sinusoidal ‘Oscillation
Van der Pol oscillator is shown in Fig.3, where the voltage-current
characteristic is described by (14),i.e.,
i=gl) =u(-v+ v3/3)
Without loss of generality, we can set L=C=1, hence, w = 1/VLC = 1.

Then, we obtain the van der Pol equation
Vou-vhHvev=0 (.=dla) (16)

When u ié small, the waveform of v is almost sinuéoidai. Therefore we
can use the averaged potential U to the oscillator. 'The solution can
be written by

» v =1 cos(t + 8) (17)
The voltage potential of (14) is given by (15). Upon substituting (17)
into (15) and using (9), the averaged potential U of the circuit in
Fig.3 is calculated to be ' o

U=u-x e 84 (18

The minimal value of (18) is given by r=2, which coincides with the

well-known result.,

4.2. The Reiaiation Oscillation [1] - [4]

Upon integrating (16) with respect to t, and introducing fvdt=uz,
(16) can be reduced in the usual way to the following first order
equation '

dv _ 2F() -z
@t T v
z v

19)
where k

F(v) = [(1 - vDav =v - v/3 | (20).

If u is made extremely large, the field directioﬁ would be nearly

vertical at all points except those very near the characteristic curve
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| z=F@W) =v-v/3 (21)
Hence the solution curve of (19) approaches the shape ABA'B' in Fig.4.
It is to be noted that the maximum values of v are equal to 2 at points

A and A'. The waveform is shown in Fig.5.

4.3, Analysis of van der Pol Oscillator Using the harmonic Balance

Method ’ i |

For values of u lying between two limits mentioned in 4.1 and 4.2,
the waveforms of periodic solutions have the distortion from a sine
wave. They can be, however, apprdximated well by several harmonics.
Hence, we will apply the harmonic balance method (Galerkin procedure)
to those oscillations.

Let us consider the generalized oscillation’composed of one active
element, whose characteristic is given by i=g(v), and the linear LC

network, whose admittance is given by Y(w), as shown in Fig.6.
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Fig.6. Generalized oscillator.
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In order to clarity the physical meaning of the harmonic balance
method, we apply this method not to differential equations but to the

circuit in Fig.6. Then the following relations must by satisfied

i=g .
iy =YWv (22)
i= -iY
Now, we write v in the steady state as follows
Mo M
v = 21 Vo= 21 r sin ¢m ; (23)
where m= o »
¢ =wt +6 = mt + 6
m n m m

Upon substitutiﬁg (23) into g(v), and expanding it, following equation
is obtainﬁd in generalM

i=g( ) v, ) = y {g  (r,8)sin ¢+ g  (r,8)cos ¢ }+ other freq.
m=1 m=1
M o
= E {gsm + chm}vm/rm + other freq. , (24)
m=1
where

j= /=1
For example, if g(v) is represented by a cubic function (14), and

if we represent v by two odd harmonic components,

v = r1s1n(wt + 91) + r351n(3wt + B3X

the following relation is obtained.

2 2
ui{-1 + (r1 + 2r3 - r rscos 6)/4}1'1

e
[l

sin ¢1

- u(r1r351n 8) /4 r,cos ¢1

+

jcos 9/3r3)/4}r3sin ¢3 )

u{-1 + (2r$ + ?g - r3

+

3. o _
u(r131n 6/12r3)r3cos ¢3, (9 = 63 - 361) (25)

From (24) and (25), we can see that the current i has not only the same
angle component as the voltage v but also the component leading or

lagging v by n/2. In other words, the nonlinear conductance g(v)

’
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behaves as if it is admittance, when the voltage containing the higher
harmonics s applied to it.

On the other hand, Y(w) is admittance of linear network. Hence,
when the voltage (23) is applied to it, the current iY can be written
by

M- ,
i =z Y)v ' (26)
Y m= m m
Consequently, the.harmonic balance in i=—iY gives the following
equations
=-rReY =0
ugsm(r,e) r Re (wm) . .
ug (r,6) = -r Im Y(w ) (m=1,...,M) 27
cm - m m

where Re and Im denote‘the real and imaginary part of a complex number,
respectively. Solving (27) gives rm's and em's as well as w. It is

worth noting that Bem® Scm in (27) can be derived from one functiop as
follows. First, we define the extended averaged function U for large u

by substituting (23) into (15) and averaging it. Then we can write

G(v) _ If

or,

ov
3G(v) m _ .
ov_  or. g(v)sin ¢i

m=1 m 1

where v is denoted by (23). Therefore we obtain

o ————— . 3 T . 3U(r,s)
HE ;= Zg(r,e)sm¢i =2 S;Z-G(v) = 2 ——5;;~— (28)
Similarly
_ 2 3U(r,6)
- M8ei T ¥, T o, (29)
i i
Now we apply equation (27) to van der Pol equation with large
nonlinearity H=h by putting
_ LY S N '
Y(w) = Ys(w) = jwC + 1/juL = j(w° - n°)/u = J(° - Now (30)

We consider two cases where the solution is approximated by two and

three frequency components, respectively.

v = r1sin.wt + r3sin(3wt + 63)

/L



v = r1Sin ot + rBSin(Bwt + 93) + fssin(Swt + 65) (31)

where we put 61=0, without loss of generality.

These results are illustrated in Fig.7 and 8. The broken line in.
the figure of period T shows the exact one obtained by Urabe [4]. It
is easily seen that two and three components are fairly good
approximation when us<1.5 and ps<2.0,-respective1y. For.larger pé,
however, more higher harmonics must be considered.

Next, we apply the same method to the oscillator in Fig.1 composed

éuM and M resona-

of the active element (14) with small nonlinearity yu
tors with rational ratio frequencies 1:3:...:(2M-1). Y(w) is
represented as follows. M V
-1
Y(w) =YW = { ] 1/1_()}
m
’ m=1
. 2 2 . 2
Y@ =30’ =02 ) w=j - @n- 1%k (32)
When w=wm%nm , we can put ' ’ -
Yy (u) 5 25C (o - n ) v (33)

It is easily seen that the equation (27) has the same solution for
these two oscillators if the following relations are satisfied.

Ys(wm)/us = YM(wm)/uM (m=1,3,...,(2M-1)) (34)
In other words, we can construct a many degrees of freedom oscillator
with small u so as to produce approximately the same waveform as van
der Pol oscillator with large p. For example, by putting Mg =1.5, My
=0.1 and M=3 in (34) the resonant frequencies of resonators are
determined as follows.

' n, =0.8 , ny=2.58 , n;-= 4.29 \ (35)
Figure 9 and 10 show the waveforms of these two oscillators, which
agree approximately. B

As mentioned in Sec.2 and 3, the waveform of the many degrees of
freedom oscillator in uncomplete resonance is produced by the function
of an active element to make the rectangular one under some con-
straints. Therefore, the waveform of van der Pol oscillator with large
u can also be considered as a product of the same function of the
active element. »

Another problem that the increase of period T with increase of u

can be explained as follows. As shown in Fig.10, the higher harmonics

/3
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v in the many degrees of freedom oscillator are supplied by the
corresponding resonators, respectively. On the contrary, in van der
Pol oscillator, all harmonics have to be produced by the large current
i in one resonator with n=1. In order to make the higher harmonic com-
ponents v large enough, their frequencies have to approach to resonant
frequency n=1, i.e., the fundamental harmonic w must decrease. We can
also show that these tendency satisfies the constraints for the phase
angles Gm.

Obviously, the result that the maximum amplitude of van der Pol
oscillator is nearly equal to 2 for any value of y depends on the fact
that it is exactly equal to 2 for both limits p»0, u+e. As mentioned
in Sec.4.1 and 4.2, however, these results are due to quite different
physical meanings, respectively. It is to be noted that this agreement

is caused by the characteristic of the cubic curve (14).

4.4, One Prediction and Its Proof

In order to show the advantage of the consideration in Sec.4.3,
let us coﬂsider the oscillator in Fig.1 with rational ratio frequencies
and large u. In van der Pol equation, the period T decreases so as to
increase the higher harmonics as u increases. The oscillator in Fig.1,
however, has many resonators which produce the higher harmonics.
Therefore, we can predict that the period T does not decrease so much
in spite of increase of u, because higher harmonics’can be supplied by

corresponding resonators.

SLJE S e e m s S S Ea e S S s
3 . .
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Fig.9. Waveform of van der Pol Fig.10. Waveform of oscillator with
oscillator (u = 1.5) three degrees of freedom

(u=0.1,n1=o.89,n3=2.58,n5=4.29).
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We consider one, two, and three degrees of freedom oscillators

Figure 11 shows their waveforms for

with odd harmonics 1, 3, and 5.

In fact, the increase of the period T from 27 is reduced as the

3.0.
degree of freedom increases.

u=

Hence, our prediction is confirmed.

The whole aspects for larger u, however, are more complicated.

Another paper on the details of these phenomena will appear in near

future.
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5. CONCLUSION

In this paper we introduced a new method for the analysis of many
degrees of freedom oscillator based on a new concept of the averaged
potential.  From this concept, we also showed that an active element
makes approximately rectangular waveforms when the frequencies applied
to it are exactly or nearly in the rational ratios.

Using these considerations and the harmonic balance method
(extended averaged potential), we showed that we can construct many
degrees of freedom oscillators with small nonlinearity which produce
approximately the same waveform as van der Pol oscillator with large‘
nonlinearity produces. Therefore, we could explain that the waveform
of van der Pol oscillator is due to the function of the active element

to make a rectangular wave.

The author wishes to express his thanks to Mr. F. Takase for his
cooperation to develop the averaged potential method. The author also
would like to thank Prof. Y. Nishikawa for his helpful comments and

former students for their excellent works.
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