MANIFOLDS WHICH DO NOT ADMIT EXPANSIVE HOMEOMORPHISMS
WITH PSEUDO ORBIT TRACING PROPERTY

Koichi Hiraide 平出 利一

Abstract

In this paper we study some necessary conditions for a homeomorphism of compact manifold to be an expansive homeomorphism with pseudo orbit tracing property and give theorems which are extensions of K.Shiraia's result [3]. As their applications, we give some examples of compact manifolds which do not admit expansive homeomorphisms with pseudo orbit tracing property.

The proofs will be treated in the future paper.

Let M be a compact connected topological manifold without boundary with a metric d and f a homeomorphism from M onto itself. We say that f is expansive if there exists ε > 0 such that d(f^n(x), f^n(y)) ≥ ε for all n ∈ Z implies x = y. We say that f has the pseudo orbit tracing property (abbrev. P.O.T.P.) if for any ε > 0 there exists δ > 0 such that for every sequence \{x_i\}, i ∈ Z of M with d(f(x_i), x_{i+1}) < δ for all i ∈ Z there exists x ∈ M such that d(f^i(x), x_i) < ε for all i ∈ Z. The author [1] defined the notion of orientability of local unstable sets of an expansive homeomorphism f with P.O.T.P..

Theorem 1. Let M be a compact connected topological manifold
without boundary. If \(f: M \to M \) is an expansive homeomorphism with P.O.T.P. and if local unstable sets of \(f \) are orientable, then for any \(n > 0 \) the induced homomorphism \(f^*_n: H_*(M, \mathbb{R}) \to H_*(M, \mathbb{R}) \) is not the identity map where \(H_*(M, \mathbb{R}) = \bigoplus_{q \geq 0} H_q(M, \mathbb{R}) \) and \(H_q(M, \mathbb{R}) \) denotes the \(q \)-dimensional homology group of \(M \) with coefficients in the field \(\mathbb{R} \) of real numbers.

Corollary 2. Any simply connected rational homology sphere does not admit expansive homeomorphisms with P.O.T.P.. Therefore any manifold whose universal covering space is a rational homology sphere does not admit expansive homeomorphisms with P.O.T.P..

We say that a manifold \(M \) satisfies condition (T) if the cohomology algebra \(H^*(M, \mathbb{R}) \) of \(M \) is a graded exterior algebra on generators of odd degree. An element of \(H^*(M, \mathbb{R}) \) is called decomposable if it is a sum of products of two elements of positive degree. The set \(D \) of all decomposable elements of \(H^*(M, \mathbb{R}) \) is an ideal in the algebra \(H^*(M, \mathbb{R}) \). Put \(P = \bigoplus_{q \geq 1} H^q(M, \mathbb{R}) / D \). Then \(P \) has naturally a graded \(\mathbb{R} \)-module structure. Let \(f: M \to M \) be a continuous map. Then \(f \) induces homomorphisms on \(H^*(M, \mathbb{R}) \) and on \(D \). Therefore it naturally induces a homomorphism \(f_P: P \to P \).

Theorem 3. Let \(M \) be as in Theorem 1 and satisfy condition (T). If \(f: M \to M \) be an expansive homeomorphism with P.O.T.P. and if local unstable sets of \(f \) are orientable, then \(f_P: P \to P \) is hyperbolic.

Corollary 4. Let \(G \) be a compact connected Lie group. If \(f:
G → G is an expansive homeomorphism with P.O.T.P., then $f_p : P → P$ is hyperbolic.

Corollary 5. SO(n), Spin(n), SU(n), SP(n) and the exceptional Lie groups G_2, F_4, E_6, E_7, E_8 do not admit expansive homeomorphisms with P.O.T.P..

Remark. It was proved in [2] that compact surfaces except a torus do not admit expansive homeomorphisms with P.O.T.P..

References

Department of Mathematics
Tokyo Metropolitan University
Tokyo, Japan