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On the Discrepancy and Uniform

Distribution of Sequences

Takeshi Kano (Okayama Univ.)

This article 1s a survey of recent results obtained by us
and others. For full proofs of them and related results the
reader should consult the original papers indicated in the
References.

1. We define the counting function of the interval J =
*
fa, b) in [0, 1), AN(X, J) = # {n, l<ngN : <xn>(:J} .-)

Then we call

D.(x) = sup
N J

A.(x, J)
D,

as the "Discrepancy" of the sequence (Xn). The sequence (xn)
is said to be uniformly distributed mod 1 if DN(X)—% 0 as
N— o . There is a criterion due to Weyl, i.e.

(Xn) is uniformly distributed mod 1 iff
N

(1) lim —%— ;{: exp(27rihxn)
N-

1]
o

n=1

for all fixed natural numbers h.

¥) For real numbers t, <t denotes the fractional part of t.
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The following theorem of Erdds and Turdn(cf.[12] Chap.I)

is often useful to obtain estimates for DN(X).

Theorem 1. For some numerical constants ¢y and Css and for

any natural number m, we have

N 1 27rihx
(2) ND (x) < c—— + c —lZe n
N = "1m 2hsm h n<N

Obviously,(2) shows in particular that (1) is a sufficient
condition for (xn) being u.d. mod 1.

Weyl showed that if (xn) is a monotone sequence of integers,
then the sequence ( 9xn) is u.d. mod 1 for almost all real
numbers & . Erdds and Koksma [5] and Cassels [3] proved that

5/2 + ¢
(3) NDy(x) < YN (log N)

holds for almost all ¢ , if (xn) is a monotone sequence of
integers. Erdds [4] stated the conjecture that for some positive

constant ¢ and for almost all § , we have

(4) NDN(X) < Jﬁf(loglog N)c9

which is true ifv(xn) is a lacunary sequence of integers.

We remark that (4) does not necessarily hold for the uniformly
distributed sequences of non-integral numbers. For example, let
us take

X
A (log n) , (x> 1).

(5) X

This sequence is u.d. mod 1 for all & % 0, and actually

zzz exp (27rihd(log nf‘) =< N(log N)l_a.
n<N

(6)



On the other hand it is known (cf.[12] Chap.I )that we have

for any real sequence (yn),

(7) [ EZ: ezﬂiyn] < N Dy(y).
n<N

Thus it follows from (6) and (7) that

N Dy(x) > N(log MY,

which contradicts to (4).

2.Recently R.C.Baker [1] succeeded in improving (3) to

(8) N DN(X) < Jir(log N)?’/2 te

for almost all & , provided (xn) is a strictly increasing
sequence of natural numbers. He applied a deep Lz—theorem of
L. Carleson on Fourier series. Independently of Baker, I have
found (c¢f.[8]1[9]) that Carleson's result can be adapted to

improve (3) so as to obtain the following theorem [10].

Theorem 2. Let (Xn) be a sequence of real numbers such that

(9) igf (xn+1 - xn) > 0.

Then for a.a. & , the discrepancy DN(x) of (93%0 satisfies

(10) N Dy (x) < 4N (log N)3/2(loglog Nyl/2+€

My argument which leads to (10) is different from that of Baker,

and seems more direct and simpler. In effect, I applied the
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following theorem which is proved by Carleson's theorem [2].

Theorem 3. If the sequénce (xn) of real numbers satisfies

(9) and the sequence (an) of real numbers is such that

then

converges for a.a. &
It will be worth noting that if (9) is replaced by

(11) inf | x, - xm} > 0,
n £m
then (3) still holds for a.a. @ , however, at present I cannot
prove a much better estimate like (10) in this case[8].
3. It is known (cf.[12] Chap.I) that if (xn) is u.d. mod 1,

then necessarily

(12) limsup n;Axnl = 00

)
n— oo

where zﬁxn = X X . This in fact implies that any concave

ntl = “n
or convex real sequence (xn) such that X, = O(log n) is not u.d.
mod 1. Recently Niederreiter proved among other things the

following strong result[13].

Theorem 4. If (xn) is a monotone sequence of real numbers such
that it is u.d. mod 1, then it holds that
%51

(13) lim ——— = ©0
ns0 log n



We remark that this theorem is in fact a corollary of a general

result proved w.r.t. probability measures and weighted means.

Moreover, this is sharp in the sense that in (13) we cannot

replace log n'by a function with much faster speed of tending

to infinity.

As an application of this theorem, we see that both of (log pn)

and (log}’n) are not u.d. mod 1, where P, denotes n-th prime

and )’n is the imaginary part of the zero of Riemann zeta-function.
In case (xn) is not necessarily monotone, the following result

will be sometimes useful[8].

Theorem 5. If a real sequence (xn) satisfies the condition

(14) EZZ nldx | <« N,
n<N

then (xn) has no continuous distribution function.
This theorem also shows that (log pn) and (log}’n) are not u.d.
mod 1. We can generalize this theorem to weighted means([6].

Theorem 6. If a real sequence (xn) satifies

(15) Y Anlaxg < Ay

n<N

3

then (xn) has no continuous (M,?\n) - distribution function mod 1,

where (,Kn) is a positive decreasing sequence and

_/[N=)\l A, F ot Ay
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We say that (x ) has (M,;\n) - distribution function mod 1

g(x) irf

N 1

lim YTA, flx ) = j f(x) dg(x)
W00 AN S )

holds for all continuous functions f(x) defined on [0, 1] with

period 1.

We applied for the proof the following theorem due to Karamata

[11].

Theorem 7. If the series

(16) jfz U,

is (M, A n) - summable to s and satisfies

Z An lun+1, < -/\N 2

n<N

then (16) is (M, A ) - strongly summable to s.
We say that (16) is (M, A ) - summable to s if

N
1
Nz‘/‘(:rZ?\%Sn—eS (N—o00 )

n=+1

wher
here n

Sn = = U.k .

'__l

Also (16) is said to be (M, A‘n) - strongly summable to s if

lim

N=>o00 J«b& EZZ Krl

nsN



o
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4. It is known that ((log p ) ) is u.d. mod 1 if & > 1.
We shall state here two theorems both containing this result

as a particular casel[7].

Theorem 8. Let f(t) be in Cz[l,oo ) such that

(1) f(t) 1is increasing for t z_to,

(11) t2 | (5) | >0 (toeo),
(iii) f(n)/ (log n)¢ —> 0, for some constant ¢ > 1.

Then the sequence (f(pn)) i3 u.d. mod 1.

Theorem 9. Let £(t) be in CI[1, co ) such that

(i) f(t) tends to infinity monotonically,
(1i1) n f'(n) > o ,
(iii) £f'(t)-log t is decreasing for t > t,

(iv) f(n)/ (log n)¢ — 0, for some constant ¢ > 1.

Then the sequence (f(pn)) is u.d. mod 1.
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