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— On Integers Defined by a Linear Recurrence Relation of Order Two —

WTER e N W = g8 (Saburd UCHIYAMA)

In the course of studying various Diophantine problems the
writer had several occasions to encounter the sequence of so-
called Pell numbers, that is, a sequence of integers Pn (n = 0,

1, 2, ...) defined by

Pp =0, Pl = 1, and Pn+l = ZPn + Pn—l for n > 1.

It will be convenient to consider, together with the Pell numbers

Pn, the associated numbers Qn (n =0, 1, 2, ...) defined by

Q. =1, Q

1t

=1, and Q ., 20 +Q for n > 1.

1 n-1

Explicit formulae for the Pn and Qn are

P = —— (1 + /D" - (1 -2,
. 2/2
1 .
Q = — (L+ /D" + 1-vD",
2

and, to collect some simple identities involving Pn and Q

we note

(., P ) = P(m,r” v Poyn TP, FPQ

- 2 = _ n-1
Qm+n - Qan + 2PmPn ' Pn Pn-an~{~l (=1 !



— p2 2 —
P2n—l - Pn + Pn—l ! P2n - 2Pn(Pn + Pn—l)'
2 _ 2 (. n
Qn 2Pn (- 1) .

Here we discuss some arithmetical properties of the

(sequences of) Pell numbers Pn.

1) The sequence (P ) is uniformly distributed

n‘n=1, 2, ...
modulo an integer m > 1 (in the sense of I. Niven) for m = 2
and for no other values of m.

The discriminant of the characteristic polynomial of the
defining relation for the Pn is 8 = 2%, The sequence (Pn)
is uniformly distributed modulo 2 since

Pn = n (mod 2),
and is not uniformly distributed modulo 2 for any h > 1,
since

p =0, 1, 2, or 1 (mod 4)

according as

1

n 0, 1, 2, or 3 (mod 4) .

2) The sequence (log Pn)n= isuniformly distrib-

1, 2, ...
uted modulo 1.

This follows from the fact that we have for n =+ oo

log P ., — log P_ > log (1+ /2) £ Q.

+1

3) The sequence ([log Pn]) is uniformly

n=1, 2, ...
distributed modulo m for every integral m > 2.
These results can be obtained just as in L. Kuipers, J.-Sh.

Shiue, and H. Niederreiter, who proved the corresponding results

for the sequence of Fibonacci numbers Fn.
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4) By a general result of K. Nagasaka, 'Benford's Law of
Anomalous Numbers' is obeyed by the sequence (Pn)n= 1,2,...°
Thus, in particular, the frequency of appearance of a (1 < a
< 9) as the left-most digit in the P equals log;o(l-k(l/a)),
the Pn being expressed in the ordinary decimal system.

Here 1is a small numerical observation.

expected number

digit number of count number of count
a (1 < n < 100) (101 < n < 200) 100 log 10(1+i)
a
1 30 31 30.1
2 19 17 17.6
3 11 13 12.5
4 9 9 9.7
5 9 8 7.9
6 6 7 6.7
7 6 6 5.8
8 5 4 5.1
9 5 5 4.6
5) It is known that P1 = 1 and P7 = 169 are the only

square Pell numbers (apart from P0 = 0). One can hardly prove

this fact without appealing to W. Ljunggren's theorem which
states that the only solutions in positive integers x, y of
the Diophantine equation

x?2 —2y*= -1

are x =y =1 and x = 239, y = 13.
By the way, Ljunggren's proof for his above mentioned
result being highly complicated and difficult, there are some

authors who express their wish to have a simple and/or elemen-
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tary proof of the result. We find that the problem is even-
tually to prove that X = 3, Y = 2 is the only solution in

positive integers X, Y of the equation

XY + 4X%Y — 6X?%X? — 4xY? + ¥t =1
and that the equation
X* — 4x%Y¢ — 6X%y?% + 4xy® + ¥y* =1

has no solutions in positive integers X, Y.

It will be of some interest to note that an application of
A. Baker's argument of effectiveness yields the following upper
bound for |X|, |Y|, where X, Y are any possible integer

solutions of these Diophantine equations:

6.02548
1010
max (|X], |Y]|) < exp (32. 23522617y =19
It is not hard to prove that PO = 0 1is the only square
value of P that is, the equation
x? —2y*=1
admits only trivial solutions with y = 0. In fact, we have
P s = Pn {(mod 8); also Pn+20 = Pn (mod 29), since
n+20 ~ P20 T Qo®n
and
29 = P5|P20 , Q. = 22619537 = 1 (mod 29) .

We have, therefore,

Pn = 2 {(mod 29) if n= 2, 8, 22, or 28 (mod 40),
Pn = 12 (mod 29) if n =4, 6, 24, or 26 (mod 40),
P = 27 (mod 29) if n = 12, 18, 32, or 38 (mod 40),
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Pn = 17 (mod 29) if n = 14, 16, 34, or 36 (mod 40),
Pn = 2 (mod 8) if n = 10 (mod 40), and
P =6 (mod 8) if n = 30 (mod 40).

(No;e that 2, 12, 27, 17 are gquadratic non-residues (mod 29).)
It remains, therefore, only to consider the values of Pn for
n =0, or 20 (mod 40).
We have
Pn+lO
where

QlO = 3363

11

1 (mod 41) , P = 2378 = 0 (mod 41) .

Now, let m be the least positive integer such that PlOm

is either a square or twice a square. If m is odd then
Piom = 29%nPsp
where
P5m = P5 = 29 (mod 41) ,
29 being a quadratic non-residue (mod 41). Soc m must be
even, and P5m = PlO(m/2) must be a square or twice a square,
and we have a contradiction. It follows that m= 0, P_ = 0.

0
6) It follows from the result of 4) above that there are
no Pell numbers Pn which are twice a square, other than P2

= 2 (and PO = 0).
7) Finally, we should like to give a proof for the fact
that QO = Ql = 1 are the only numbers Qn which are a square.

Note that Qn 1 (mod 2) for all n. We distinguish

two cases according as n 1is even or odd.



Case of n even: Consider the Diophantine equation

x* —2y%?=1,

which can be rewritten as (x? — 1)(x%? + 1) = 2y?. Since
(x> =1, x> +1) =2 and 2|/ x* + 1, we must have x* + 1 =
2z?2 and x? — 1 = w? for some integral z, w. Therefore,

the only possibility is w=0, x =1, z =1, vy = 0 (here,
and in what follows also, we have only to consider non-negative

values of the unknowns involVed), thus giving Q, = 1.

Case of n odd: Consider the equation

x* —2y*= -1,

which we rewrite as

2 2

x2 — 1 \? x2 + 1 \?
— R
Since (x? —1)/2 and (x? + 1)/2 are coprime and (x? + 1)/2

is odd, we have for some integers a, b with (a, b) =1,

a+b =1 (mod 2)

this implies
x?2 = a? — b? + 2ab , 1 = a? — b? - 2ab
and so

x? = (a? — b?%)2%2 — (2ab)?.

Hence we must have for some integral c, d 2ab = 2cd, x =

c? — 3%, a%? —b%? =c? +d?, whichgivesus 1l =c¢ -4, x =

c + d, where a c 1 (mod 2), b=d =0 (mod 2). How-
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ever, it is known and in fact is not quite difficult to prove

that the only integer solutions of the equation
x? = a* — 6a%b? + b*, (a, b) =1,

are given by a =0 or b = 0. Thus we have b =d = 0,

giving x = c =1 and so Q, = 1.

This completes the proof of our assertion.
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