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Convergence rates in the empirical Bayes estimation under the uniform 0(0,6)

and a location parameter family of gamma distributions.
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by Yoshiko Nogami

University of Tsukuba

1. Introductions.

The empirical Bayes (EB) problem as treated here is called generalized
empirical Bayes by H. Robbins(1983). This with the squared-error loss in
the non-regular families of distributions is so far dealt with by R. Fox
(1970, 1978) and by Y. Nogami(1983a, 1983b) with convergence rates. In
2/3

Nogami(1983a), the EB estimators are exhibited with exact n rate ofvrisk

convergence in retracted distributions over [0, 0+1).

In this paper the author exhibits (in Sections 2 and 3) modified

2/3

Fox's(1978) EB estimator for © with exact n” “/“rate of risk convergence
under the uniform distribution U(0,0) where 6e Q=(0,m) (0<m <x),

The author also shows that under the uniform U(0,0) where 6 € (0, )
Fox's(1978) EB estimate for 6 has near exact n°2/3 rate of convergence

that
(Section 4) ;;EYE;der a location parameter family of gamma distributions

-2/3

Fox's(1978) EB estimator has a lower bound, a constant times n of

risk convergence (Section 5).

As notational conventions we use the followings. A distribution function
will also be used to denote the associated measure. The argument of a func-
tion will not be displayed sometimes and Sg(t) du(t) might be abbreviated
as u(g(t)) or u(g). [A] denotes the indicator function fo the event A.
= means a defining property. Let V and A denote the supremum and the infi-

mum, respectively. Let g]:_é g(b)-g(a).
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Let X be a random variable distributed according to cdf Fe and the 8's
are i.i.d. random variables distributed according to the unknown prior distri-
bution G. Let Xl’ cee ,Xrl be n i.i.d. past observations with each Xi distri-
buted according to the marginal cdf K(x)= fFe(x) dG(0). Let X denote the

(n+l)st observation Xn+ distributed according to Fy . The EB estimation

1
problem is to estimate 8= 6n+1 by using all n+l obsgziations Xé(XI. N
Xn’ X). Let T be the product measure on the space of (Xl’ ces ,Xn,(X,@)),
resulting from K" and the joint distribution of (X,0). With X=x, let ¢G(x)
denote the Bayes estimator vs G given by
(1.1) @G(x) = /0 fg(x) dG(8)/ ffe(x) dG(6)
where fe(x) is the pdf of X, conditionally on 6. The risk of an EB estimator
t, for O is R(tn,G)=§((tn(§) - 9)2) and the Bayes envelope is RéR(¢G,G)=
inf¢R(¢,G). When R(tn,G) and R are both finite
(1.2) (0<) R(t,,6)R = E(4(0) - £ ()7
We call an EB estimator asymptotically optimal (a. o.) when R(tn,G)—R* 0
as n *w, We shall find convergence rates of (1.2).

Hereafter, let Ex and E be the conditional product measure on the space

of (Xl, e ,Xn,(C>|x)) given X=x, and the marginal probability measure of

X, respectively.

2. An Upper Bound for R(¢H,G)—R in U(0,08) for 6e0=(0,m).

Let m be a positive_finite number. Let fe(x)=6_1[0<x<6] for 6¢(0,m).
We shall introduce modified Fox's a.o. estimators and show that those have
exact n—2/3 rate of convergence for (1.2). To get an upperbound for (1.2)

we use R. Singh's bound (1974, Lemma A.2). A lower bound for (1.2) will

be obtained by using lim-inf procedure as appeared in Nogami(1983a).

Let k(x) be the marginal pdf of X of the following form: for x>0,

(2.1) k(x) = [ £5(x) dG(B) = J3 671 da(e).
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Let G be the prior on 6 . having the following assumptions:
(i) Assume that the first derivative k' exists and for any

given h>0 and some positive number M, sup k' ()] 2™ (<)
ye(x~h,x+h)

(ii) E(k—z(x)) X N (<=) where E denotes the expectation wrt
the marginal distribution of X and N is some finite positive number.
Since Fe(x)=6_lx[0<x<e]+[x29], K(x)=xk(x)+G(x). Thus,from (1.1)

we have the following Bayes response: when k(x)>0;

(2.2) do(x) = (1-G(x))/k(x) = x + b(x)
where
(2.3) U(x) = (1-K(x))/k(x).

We note that
(2.4) 0 < Y(x) £ m-x (<m).
Let h be a positive number depending on n such that 0<h<l and h*0
_-l¢n =1, qy+h_ -1y n
as n*°, We also let Kn(y)-n Zj=1[XJ§y] and kn(y)—h Kn]y =(nh) Zj=l[y<
Xj§y+h]. We first estimate W(x) by
(2.5) b (x) ==K (x))/k_ () (n-x),
and furthermore estimate ¢G(x) by
(2.6) ¢n(x) =x + wn(x).

Since we use Lemma A.2 of R. S. Singh(1974) to obtain a rate O(n-2/3)

1/3

for R(¢n,G) - R with a choice of h=n_ , we state it below without a proof.
Lemma 2.1. (Lemma A.2 of Singh(1974)) Let y, z and L be in (~w, ®)
with z » O and L > 0. If Y and Z are two real random variables, then for

every y > 0
y _ X Y
< (=YY Y, on Y. ~(-Dy Y
< 2 l2ITHEly-Y [T+ (1) '+ 2 L)Elz-z|Y ¥
where E means the expectation wrt the joint distribution of (Y,Z) and

at = aifa>0; =0 if a < 0.
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In (2.3) and (2.5), let V(x)= v/w and wn(x) = (V/WA(m-x). In view of
(1.2) with t_ replaced by ¢n' and from above Lemma 2.1 and weakening the bound
n
by ¥U(x) < m

(2.7) (0 <) R(®_,6) - R<EP (WG - v (0l Am)?

_ 2
< E[m?h {8720x) (B (KGO-K_ () %+ (3n°/2)P (k(x) =k (x)}].
But, EX(Kn(x))=K(x). Thus,
(2.8) PG ()7 = 0 KEOIKE) £ a7
On the other hand, by cr—inequality (Lodve (1963, p. 155)),
2 -1 2
(2.9) P (k(x)-k (x))" = 2 {Varx(kn(X))+ P (k (x))-k(x)}" }
where VarX(Y) implies the variance of Y wrt the probability measure Ex’
To get a bound of rhs(2.9 ) we shall show following two lemmas:
Lemma 2.2. For each x and for M in the assumption (i)
Var_(k_(x)) < (nh) " {(2mt1)M + k(x+h)} .

Proof.) Let Y. = h_l[x<Xij+h]. Since kn(x)=n‘123=1Y., Yj's are indep-

J
endent and P (Y )=h" K]X+h, we have
(2.10) Var_(k_(x)) < n‘lp Y? < (an)THaTRE).
Since K(x)=x k(x) +G(x), we have h~ K]x+h x(h™ k]x+h) + k(x+h)+h G]X+h

Since by Taylor's theorem k(x+h)-k(x)=hk'(x+Ah) for some Ah such that O0<

x+h1 x+h

Ah<h, assumption (i) gives us that h~ k] &M. Using h™ G] <(x+h)(h™ k]x+h

Z(x+h)M, x<m and hgl leads to

(2.10) h-lK]z+h

< (2m+1)Mtk(x+h).

Applying the rhs(2.11) to the extreme rhs of (2.10) leads to the
asserted bound of Lemma 2.2,

Lemma 2.3. For each x and for M in the assumption (i)

(, (k, (0)-k(0)}? < 47 0w
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Proof.) By a change of variable from t to z=h-1(t-x) and applying
a triangle inequality to the rhs of the inequality below we get

(212 Bk () - kGO = W7 PR(e) de - k(0|

N

félk(x+hz) - k(x)| dz.
Applying Taylor's theorem and assumption (i) and making square on both sides

of (2.12) leads to the asserted bound.

In view of (2.7) through (2.9 ), applying the bounds in Lemmas 2.2 and
2.3, using the assumption (ii) twice and applying (k(x+h)/k(x))$1 gives
following theorem:
Theorem 1. With M and N appeared in assumptions (i) and (ii),
(0 HR(B,6) - R < [6m2{ 2MN(m+1)+1}+8N1(ah) ™ + (3/2)m2M2Nh2.

1/3

From above Theorem 1 we can see that with h=n_ ,

(2.13) (09) R(6_,6) - RS o(n~2/3y.

3. A Lower Bound for RL@H,G)—R in U(0,8) with 6=1.

Throughout this sé:tion, we assume that G is the degenerate distribution
at 0=1. In this case, m=1. Then, ¢G(x)=[0<x<l]. Letting Bé[(l—Kn(x))/kn(x)sl]
and En(x)=1—x—{(l—Kn(x))/kn(x)} we obtain by (1.2)

(3.1) R(6_,6)-R 2 E(B, (¢ 2(x)B)[0<x<L-h]).
Let u=Z? [XjSX] and v=Z§=1[x<Xij+h]. Then, fxu=nx, Varx(u)=nx(1—x), EXV=

nh and Varx(v)=nh(1—h). Letting

(3.2) Y =(u-nx)/Vnx(l-x) and Z=(v—nh)//EE?T:E_,

we obtain



(3.3) Vahg_(x) = Ail‘x)f;352+-hi/§(T:§)Y .
(nh) */I-hZ+ 1

Let 2 denote convergence in distribution. Also, N(c,d) denotes the
normal distribution with mean c and variance d. To get a lower bound for
R(¢n,G)—R (Theorem 2 ) we use (3.1) and the fact that for fixed x /HHQH(X)B
R’N(O,(l—x)z). We then apply a convergence theorem (cf. Loéve(1963) 11.4,
A(i)):

D 2

(3.4) 1f U 3 U, then lim EU. > E 2.

We shall first prepare Lemma 3.1 to prove above convergence in distribution
(Lemma 3.2) for the proof of forthcoming Theorem 2.
Lemma 3.1. + If h is a function of n such that h+0 as nswx, then letting

€ be the complement of s set A we obtain that for O<x<1,

A
(3.5) fx B> 0 as n »o.
Proof.) Let Wj=1—[Xj5x]—h—l[x<ngx+h]. Then,
(3.6) P BS =P [1-K (x) > k (x)] = EX[Z?=1 W, >0l
Since PX Wj=-x[0<x<1—h]—(h_1—1)(l—x)[1—hgx<1} and -1¢ Wj < 1 for all j, it
follows by Hoeffding's bound(1963, p.16, Theorem 2) applied to the lhs of

the second inequality below that

n
(3.6) = fx[Zj___l(WJ- Ifij) > -n lzij]

IA

EX[Zj(Wj- waj) > nx[0<x<1-h]]

exp {-3nx[O<x<1-h]}

IN

which goes to zero as n +» .

1
Lemma 3.2. When h is a function of n such that h+0 and (nh)2Zs® as n+w,

for 0<x<1

(3.7) /AR ¢_(x) B 2 o, (1-x)%).

6



1
Proof.) Let 2 denote convergence in probability. Since h?Y 20 as n
-1 1
and (nh) " 2/T=F Z § 0 as (nh)?50 and nse and since by Lemma 3.1 Ex B~>1
as n*°, we will obtain the asserted lemma by applying Slutsky's theorem

(R. J. Serfling (1980),p.19).

Theorem 2.- For any €>0 and h>0 such that nh*>® as n>®,
(3.8) R(6_,6) - R 2 (37(1-0%) - e} (an) ™",

Proof.) Applying a convergence theorem (3.4) to (3.7)>gives
lim EX((nh) Ci(x) B) 2 (l—x)z. Thus, by Fatou's lemma

lim E{EX((nh)Ci(x) B)[0<x<1-h]} zEK;;g_PX((nh)ci(x)B)[o<x<1-h]}

(1-x)2%dx = 371 (1-n3).
Finally, (3.1) and the definition of lim-inf gives us (3.8).

-1/3

Therefore, from Theorems 1 and 2 we obtain that with h=n (<3) and for

some constants CO and C1

n—2/3 n—2/3.

(3.9) 1

CO S R(¢n’ G) -R ﬁ C

In the next section we will mension about upper and lower bounds of

(1.2) for Fox's(1978) EB estimates under U(0,8) with 6€Q=(0,«).

4, Fox's(1978) EB estimates under U(0,6) with 6e(0,»).

In this section we assume 6£(0,»). In (2.2), R. Fox(1978) estimates
U(x) by
3%
wn(x) ={{(1-Kn(x))/kn(x)]—A an(x) }[x>h]
where for each n an(x) is a bounded function in x and for each x an(x)->oo
as n*°, (Note that kn(x) in Fox(1978) is defined by h_l{Kn(x)—Kn(x—h)}.)

Hence, Fox(1978) estimates ¢G(x) by
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% %
0,(X) = x +y_(x).
Instead of the boundedness of the range of g, if we add extra assumption
G(ez)<m on G, then in the similar fashions to those in Sections 2 and 3
we will get following upper bound:

1/3 and ai = log n,

/3

Lemma 4.1. With h=n"

R(¢i,G) - R _g_O(n_2 log n).

For a lower bound if we define B=[an(x) 2 (l—Kn(x))/kn(x)] and notice
that R(¢_,6) - R 2 E(PX(Ci(x)B)[h§x<1]), then according to the similar methods
to prove Lemma 3.1 we can easily show that for each x PXBC * 0 and therefore

get the similar bound to that in Theorem 2 with ¢n there replaced by ¢;.

3
5. A Lower Bound for R(¢n,G) —-R in a Location Parameter Family of Gamma

Distributions.

For 8eQ =(-=,»), let fg(x) = (T(a))_l(x—e)u—le_(x-e)[xze] where a2 1
and I' represents the gamma function. For this family, the marginal pdf of
X is given by _

(5.1) k(x)= (F(a))_lffw (x-6)2"1e"(x9) 4009,

By (1.1) and Lemma 4.1 of R. Fox(1978), for k(x)>0

(5.2) 0g(x) = x - A(x)
where
(5.3) U(x) = fiw e ) 4R (e)/k(x).

. 2
R. Fox has shown in Theorem 4.1(1978) that under the assumption G(67)
<4o there exist a. o. estimators for 6¢ (-—»,»), In this section we shall

show that risk difference (1.2) for his estimates has a lower bound of

8



order (nh)_l.
Let kn(x)=(nh)_lZ§=1[x—h<Xj$x]. Let an(x) be a bounded function of
x such that for each x an(x)->oo as n+>® ., From the form (5.3) ¥(x) in (5.2)
is estimated by
(5.4) wi(x) = min(a_(x), {x, e (x-t) dK_(x)}/k_(x))
and Hence ¢G(x) by
(5.5) o (x) = x - Wi(x).
To get a lower bound we assume that G is the degenerate distribution
at zero. Then, ¢G(x)§O for all x. Hence, letting B=[an(x) > ffm e-(x—t)dKn(x)/
kn(x)] we have

* *2
(5.6) R(6,G) - R 2 EP (6 “(x)B).

where ¢:(x) in (5.5) is expressed as

xz?=1[x—h<Xj§x] - ahffm;?=1[t<ngx]e_(X't) dt

(5.7) 0" (x) =
n n
2j=1[x—h<ngx]

Letting v=2?=1[x—h<ngx] and ut=22=1[t<Xj§x] we have by simple calculations

P,(v) = nK)} ., Var,v = n K, (1- K)}_,), P.(u) = n K]} and Var_(u )=
n K1%(1- K1*). Letting
St t x KX
V“HK]X_h ut_n ]t
Z = = = and Yt =
y/n K]x—h(l- KJx—h) //n K]i(l‘ K]i)

we have the following equality:

/ah (B, (x) ~ b (x)

(5.8) - "ﬁ_lKﬁ_h“- k1% z - o/, EQTD ve T g

(nh)‘%/fh‘lx]z_h(l- KI* ) Z + hTKIE

where



)

fonne
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(5.9) b (x) = T
B (nh)'QVE:lKli_h(l— K]i_h) Z + h—lK]z_h

sk

v

To get a lower bound for R(¢_,G)-R(Theorem 3) we use (5.6) and the

s

facts that for fixed x (nh)%(k(x))%(¢i(x) - $n(x))B B N(O,xz) (Lemma 5.2)
and with nh3=0(1) y?ﬁi%‘x)B 2 {—2_1xg'(x;a) + 0(h)}/g(x;a) where
~(5.10) g(x30) = 2 1e™¥/T(a)  for - w <x < o
(Lemma 5.3).
We then apply Slutsky's theorem and a derivation of the convergence
theorem(3.4) : (cf. Nogémi(1981, Theorem A))
(5.11) I£ U 2 U, then lim Var U_2 Var U.
We shall first prepare Lemma 5.1 to prove above two convergences in
distribution (Lemmas 5.2 and 5.3) for the proof of forthcoming Theorem 3.
Lemma 5.1. For each x and h>0 such that nh2+ © as n-oo,

(5.12) PXBC + 0 as n - w.

~

j < t]e—(x_t) dt - an(x)h_l[x-h <

. _ X —(X—t) -17 X . -
Xj < x]}. Since Pij =J__e dK(t) - an(x)h k]x~h’ and since

Proof.) Let Y= {[ngx] - [x

,because ¢G(X)EO for all x, for each fixed x there always exists sufficient-
ly large n such that y(x) (=a—1x) < 4_1an(x), these applied to the rhs of

the inequality below leads to

It

o
(5.13) PBS =P [ )Y, >0]
I

PL TS (Y - PY) > na (7RI, - 4T kGO)].

In

11
Since h—lK]z_h > (1-h)k(x), we have for h < 3
n -1
(5.14) extreme rhs(5.13) < P [ Zj:l(Yj_ ngj) >4 "na (x) k(x)].

Since —1—an(x)h—1,5 Yjsnl.for all j, by Hoeffding's inequality (1963,

10
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p.16, Theorem 2) we obtain

rhs(5.14)

A

exp { —{2n2(4-lan(x)k(x))2}/{n(2+an(x)h_1)2}}
1

nh?(k(x))? )

IA

exp {-2
. _ 2
which goes to zero when nh™ » ©® as n +x .,

Lemma 5.2. For fixed x and h > 0 such that h*0 and nh2 + ® a5 n-o,
Yo 6k (x)-6 D 2
(5.15) (nh) *(k(x))*(o_(x)=¢_(x))B > N(O,x7).
Proof.) Since Z D N(0,1) and h_lK];(_h > k(x) as n+o , for h such

1
that (nh)? » © as n>®

(5.16) (nh)—%v/h_lK]i_h(l—K] z % o.

vt
Similarly, h%V’K]z(l— K]i) Y 2 0 and hence,

(5.17) X h%/K]i(l—K]t) Yte‘(x't) e ¥ o.
Thus, applying Slutsky's theorem (R.J. Serfling(1980, p.19)) by using.

Lemma 5.1, (5.16) and (5.17) and by the facts that Z E N(0,1) and h_lK]:_h
+ k(x) as n» », we get (5.15).

Lemma 5.3. With h>0 such that nh3=0(1) and nhz-*m as n>® ,

(5.18) /AR G (0B B 1-27Nxg" (x30) + 0(0)}/(x;00) (=d; ().

Proof.) Since G is degenerate at zero, ¢G(x) = 0 for all x and hence
—(x-t
affm e (x-t) dK(t) = x k(x). But, in view of (5.10), k(x) = g(x;a) for

x > 0; =0 otherwise. Hence,

) /AR x (hTRIE, - e(xsa))
(5.19) VAl o, (%) = 3 = 1.
(nh) i/ bR (1= KT ) 2+ hOKDL

By a change of variable h—l(x—u)=v applied to the rhs of the second equality

below,

11



h K — 8(x;50) h_lIi_h g(usa) du - g(x;a)

fé (g(x-hv;a) - g(x;q)) dv.

Using the second order Taylor expansion in (-hv) of g(x-hv) about x (see e.g.
R. J. Serfling(1980, p. 45, Theorem C)) we have g(x-hv;®) = g(x;®) - hv g'(x;Q)
+ o(ﬂ}. Thus, h_lK]i_h - g(x;0) = —2_1h g'(x;0) + o(h). Applying this to

the numerator in rhs(5.19), applying (5.16), Lemma 5.1 and the fact that
h_lK“fﬁh + k(x) as n + o and using Slutsky's theorem gives us Lemma 5.3.
By Lemmas 5.2 and 5.3 and by again applying Slutsky's theorem we get
.20 miaen? Ees ¥ onweotw, .

We are now ready to prove the following theorem:

Theorem 3. In h is a function of n such that as n-® nh2+ o  h->0

and nh3=0(1), then for any € such that 0< € < a(a4l) there exists N < +w
such that for all n 2 N
(5.21) R(¢,.6) = R 2 { alatl) - g}(nh)—l;
Proof.) By the fact that k(x) < 1 and by Fatou's theorem applied
to the extreme lhs
*2 . *2
(5.22) lim E P ((nh) ¢_“(x)B) > E{lim P_((nh) k(x) ¢ “(x)B)}
*2
2 E{lim Var_((nh) k(x) ¢ " (x)B)}
2

2 EGT) = qlatD)

where the third inequality follows from (5.20) and a convergence theorem

*
(5.11). Therefore, by (5.6) and extreme rhs of (5.22), lim (nh)(R(¢n,G)

- R) > ala#l), Thus, the definition of lim-inf leads to the bound im (5.21).

12



Remark. Although Fox estimates (5.2) by (5.5) with (5.4), it may

be natural to estimate (5.2) by (5.5) with w;(x) replaced by

_rrx —(x-t) .
(5.23) b (x) ={J e kn(t)k de/k_(x)}[k (x) > 0].
However, for any of above estimates we had difficulty to get an upper
bound for the risk convergence (1.2) by using Singh's Lemma A.2 because
"we cannot use the assumtion (ii) in a location parameter family of gamma

distributions.
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