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Abstract

Suppose that components of a random vector X = (X,, ..., X)) (p=3) are
independently distributed, each having a probability density which is positive on
a finite interval, is symmetric about ¥; and has the same variance. In estimation
of the location vector 8 = (3, , . . ., By ) under the squared loss function explicit
estimators which dominate X are obtained by using integration by parts to
evaluate the risk function. Further, explicit dominating estimators are given
when the distributions of components are mixture of two uniform distributions.
For the loss function L(a’d) = lﬁ — 38|}* such an estimator is also given when the

distributions of components of X are uniform distributions.

1 Introduction.

Stein (1955) and Brown (1966) proved that the best invariant estimator of
the location vector of three or more dimensions are inadmissible, and there has
been considerable interest in how to improve it. Jame's and Stein (1961)
presented an explicit estimator {1 —(p —2)/||X||3} X, which is better than X
under squared error loss if X has a normal distribution with covariance matrix I,

the identity matrix. They also shawed that the estimator
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(1.1) dl(X)—{l e

is better than X, without the normality assumption, for sufficiently small b and
sufficiently large a. They did not, however, determine explicitly the values of
these constants.

When X = (X;, ..., Xp) is an observed value from a spherically symmetric
p-dimensional distribution, explicit estimators of a location vector which dom-
inate X are given. See Brandwein and Strawderman (1980) and the papers in
their references. Shinozaki (1984) obtained similar results in the case where
components of X are independent, identically and symmetrically distributed p
random variables, by applying integration by parts to three typical distribu-
tions; uniform, double exponential and t. Since Stein {1973) used integration by
parts for estimating the location parameter of the normal distribution, it has
been shown to apply to simultaneous estimation problems in general continuous

exponential family by many authors. See Hudson (1978).

In this paper, we assume that components of X = (X, ..., Xp)' are
independently distributed, each having a probability density which is positive on
a finite interval, is symmetric about 9;, the center of the interval, and has the
same variance, and we estimate the location vector 8 = (4, . .., ¥,)' by the
estimator 6, of (1.1) under the squared error loss function.

Berger (1978) showed some results for losses which are polynomial in the
coordinates of (8 — ) for the normal case, and Brandwein and Strawderman
(1980) for the spherically symmetric distribution when the loss is a nondecreas-
ing concave function of quadratic loss. Here we also study a special form of
Berger’s loss function for the uniform distribution.

In Section 2, some sufficient conditions on the constants a and b for the

estimator J; to dominate X are given. Further the constants in another



estimator

(1.2) dg(X)“—‘{l—- . ff{,(; f%)x}x.

where B is p X p projection matrix and 1 is the identity matrix, are determined.
In Section 3, the results in Section 2 are applied to three distributions. The dis-
tributions are the truncated normal, the parabola and the cusp shaped distribu-
tions which are defined by (3. 1),(3.3) and (3.5), respectively. The cusp shaped
distribution is the distribution of the best invariant estimator of the location
parameter of the uniform distribution.

In Section 4, the values of a and b for the estimator §, to dominate X are
given when the distributions of components are mixture of two uniform distribu-
tions with a common center.

In Section 5, we give sufficient conditions on the constants a and b for the

estimator 6, to dominate X under the loss L(6,,%) = ||§, — 8||* when the distribu-

tions of components of X are uniform distributions.

2 Estimation of location parameters of the distributions with finite support
Let X; (i=1,...,p), components of X = (X,, ..., X;), be p independent ran-

domn variables from a probability density of the form

fillzg =9;1) >0, if |z, = %] <g¢,
@1 fifz —9)= 0, otheruwise,
which are assumed to have the same variance V. Set Z; = X; — ¥;, and FZ; = 0.
In estimating the location vector Y= (8, ....8) by

S{X) = (5 (X). ..., 815 (X)) under the squared loss function
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16,00 =8 = 3 62 (X) = %)%,
some sufficient conditions on the constants a and b of (1.1) are given such as the
risk R(6,,8) = Ey||6, — 9|® is uniformly smaller than R(X,8). Ey denotes the
expectation with respect to X.

Theorem 2.1. Let X; have a probability density of the form (2.1). Assume the fol-

lowing conditions be satisfied for i=1,...,p:
(2.2) EZ# <=,
and there exists a constant d; > 0 such that
(23) | J2 [ o th®)dt s ¥ + fu)dudy | < difi2),
where ¥V = f_: 2%f;(z)dz. Then the risk of &, is uniformly smaller than that of X
ua;6§¢/pmmo<bsz@-qn<
i= .

Proof.

X% = :
&) R””*”““ﬁ)z%ﬁg ;+mw)‘zw?ﬁ%m4'

The conditional expectation of a term of the summation in {2.4) equals

F:{&m—m)_ {&m+m)1
Tl e+ XIR ] Ba + 12 + O]

Integration by parts gives

(5 = —f:‘g l(zi)f_:“yfi(y)dydzi

= VEglg(Z)} + I

where

_ 1 2(21: + 731‘)2
R6) 9:=) = T T G e 5 9P
and
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L= =V [ g oufiw)dy/ V + fo(z)dz

Integration by parts is applied to /7, twice, then

@7) 1= 6V [ ga(z)t S S (S a0t 7 V + 1u(w))dudy b,
where

1 8(z +9;)° 8(z; + ¥9;)*

943) = T 9P @t s 0 @tz v 9P

v, . . ‘
Note that f_r‘(f_qtf,;(t)dt/ V+ fi(u))du is an odd functxsm and that
F v u A ;
f—c‘f—c,(f-c,tfi(t )dt/ V + fi(u))dudy is an even function.

1
(a+ |z + 3%

(28) 1= -0 ”"X‘{m IR

and from the last expression of (2.5) and (2.8),

The inequality |ga2{z;)| < 5-and the condition {2.3) show that

. 1 2x¢  ed |
= VE""[G +IXIE (@ +IXIRR (o +IXIR?)

Hence from (2.4),
R(X,8) - R(6,,9)

ap + (p —2)IX|F - Bgd‘ b|1X][®

= 2o @+ xP? T 2V(a + IXIPE)

which is nonnegative if @ > 6§ d;/pand 0< b < 2(p — 2)V.
el

Remark 2.1. Note that —fitfi(t)dt/ V = fi(y) in the normal case. It is shown,

by using integration by parts also, that

LSS a4 fiu))dudydz = (52} - (EZO/ SELE
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Under a stronger condition an alternative sufficient condition is obtained.

Thearem 2.2. Let f; satisfy the conditions of Thearem 2.1 and
z Y u
(2.9) f_c‘f c‘(f L)V + fi(u))dudy =0, [z .
Then the risk of &, is uniformly smaller than that of X if
0224(2-—\@){%%(15/}) and 0 < b <2(p -2}V
Proaf. The inequality
gafz:) = —4(2 - V2)(z, +9.)%/ (a + |z + 87)°,
(2.7) of Theorem 2.1 and the condition (2.9) give
(2.10) 1= -24(2 - V2)VEx {d: X7/ (a + || X|P)3.

Therefore from the last expression of (2.5) of Theorem 21 and (2.10),
R(X,8) — R(6,,8) = 0 if the condilions on a and b are satisfied.

In Theorem 2.1 and 2.2 it is shown that the estimator &, which pulls X's
towards the origin, dominates X. Here the estimator d; of (1.2), which pulls the
estimators towards a sub-space spanned by B, is considered, and some
sufficient conditions on the constants a and b of (1.2) are given such as
R(X,¥) — R(6,,8) is nonnegative.

Theorem 2.3. Let f; satisfy the conditions of Theorem 2.1. 'I"hen the risk of d; is

uniformly smaller than that of X if

szsigbadi + Bl-vora
i(l - by)
i=)

e =

and
0<b<2(p ~ 3 bs —2)V,
i=1

where B = (by).
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Proaf. Theorem 2.3 can be proved in a similar way as Theorem 2.1 and the proof

is omitted.

Theorem 2.4. Let f; satisfy the conditions of Theorem 2.2. Then the risk of 8z is

uniformly smaller than that of X if
@ =63 (1~ b/ (1 - by)
iq i
and

O(bSZ(p—ibﬁ—2)Vf
i=1

Corollary 2.5. let f; satisfy the conditions of Theorem 2.2. Assume that the diag-

onal elements of B are equal. Then the risk of d; is uniformly smaller than that

of Xifa 224(2—\/5)miax!i¢/p and 0 < b <2ip(1 —by) - 2}V.

Remark 2.2. If B =(by), by = 1/p for all i and j, the estimator 6, pulls the

estimators towards their average X = (X, + - - - + X,}/p.

3. Examples

In this section Theorem 2.1 and Theorem 2.2 are applied to the truncated
normal, the parabola and the cusp shaped distributions to obtain the estimator
0, which dominates X.

Erample 3.1. Suppose that Z; has the common density of the form

(B1) fi(z)= geme " Hi~ai(2)/ (8(c) - #(—c)),

where ¢ is a c.d.[. of standard normal distribution and I[T_c](z) is an indicator
function of the interval [-c,c]. (i.e. [[c)(2) =1if |2z] <¢, and /| ()(2) = 0if

lz| >¢c.)
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Then, integration by parts shows that

it

piz) = —f ottt v+ £ )ty

g €22

R IOEDYA zi)fa(20)

where
g1(2:) = {2c2,8(2;) + 2¢®B(~c) — (2& — c*)Rd(c) —~ 1)/ 2
—c(z; + c){ez‘a/z +2c{1 - e ce)/z)/VZn’,
Note that g.(z;)=<0 for 0<z <c. The

&(z;) = (28(c) — 1)z/2c + 1/2 gives

—qu(z) < (~k,22/2 + e /2 + ket

where k, = 28(c) — 1 and k, = 2ce ®*/2/ V27, and

(32) -pi(z:) < (ke - kz)flj(zi)/klv-

inequality

—~2c/Ven forD<z <c,

By Theorem 2.2 and (3.2), the risk of §, is uniformly smaller than that of X if

-1 tky/ky

a >ag where oy = 24(2 — V2)(k,e —ky)/ kpV

0<b=2(p —2)V.
Table 3.1 gives the value of agforc = 1;¢c =2 and ¢ = o

Table 3.1 ag: the lower bound of a

c 1 2 -
6.40V/ p 5.52V/p 24(2—V2)/ ep
(V=0.7559) | (V=0.8214) | (V=1) |

Qg

Frample 3.2. Suppose that Z; has the common density of the form

3
4{72

(33) [fafz) = (92 - 22)[{- c.c ](z)-

Without loss of generality we set ¢ = 1. Then



4 -2 LAV + fo(u)dudy = - J{(2E - 1 o(=)

> — fZ(Zi )/ 24.

According to Theorem 2.2 and (3.4), R(X,8) — R(6,,3) is nonnegative if
a>502-V2)V/pand 0<b < 2(p —2)V.
Erample 3.3. Suppose that Z; has the common density of the form

(35) fa(x) = (e — 121 F Iy,

where k = 0. Assume ¢ = 1. Then

Poz) = — [ [t 1 o(t)dt s V + o)) dudy
_ {(1-2)?
T2+ Dk +2)(k +4) 18

(z,;)fs(zi), for 0 < 2; < 1.

where gg(z;) =—(k + 1)(k +2)zf + (k +2){(k —2)z; +k —2. To evaluate
p3{2z;), we consider the following two cases: 0< k <2andk > 2.

Case 1: 0 <k < 2. Noting that gg(z;) < 0, we can show that

(38) a2} < U(lp + 1gL12) Vf 5(2,),

where
1, = (k +3)72048(k + 1)%k + 2)%(k + 4),
I, = —27k% - 252k% — 6820k* + 640k% + 4992k? + 7168k + 1024,
Iy = %*+ 62k3 + 72k2 — 9Bk + 128,

and

ly=(k +2)%5k —4)% - 18k(k —2)(k + 1)(k + 2).

Therefore from Theorem 2.2 and (3.8), R(X,¥)- R{6,,8)>D if

a =242 -V, (l,+ L }2)V/p and 0 < b < 2(p — 2)V.

Case 2: k > 2. Noting that

(k+2)(k—2) + {(k+2)2(k—2) + 4(k —2)(k +1)(k +2)}1/2
‘ 2k + 1)k +2) '

?0’ ifOSztS

qa(2:) <0, otherwise,

~5
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we get

@7 Ipaz)l sh(llel + Lal}/2)VF a(21)-

By Theorem 2.1 and (3.7) R(X3) — R(6\9)=0if o = 6l,(|Le] + Lald/?)V and
o<b<=2(p -2V

Remark 3.1. Note that the best invariant estimator of the location parameter of

the uniform distribution has the probability density (3.5). According to Example

3.9, the estimator 6, has a smaller risk than the best invariant one.

4. Fstimation of location parameters for the mixture of uniform distributions.

Suppose that components of X have mixture of distributions with the same
variance. Let their densities satisfy the conditions (2.2) and (2.3) of Theorem 2.1
In this case, sufficient conditions on the constants a and b of the estimator 6,1in
(1.1) to dominate X are obtained by applying Theorem > 1. Here we study the
case where Z; has the common density which is a mixture of two uniform

distributions,i.e. the density is

a I{’Tz.c zl(z )'

1
@1) [(2)= g limwe(®* oo,

where0$u<1andc‘$cz.

Thearem 4.1. Let Z; have the common density of the form (4.1). Then the risk of

8, is uniformly smaller than that of Xif

@ > max §6co + 32 —\/'Z')czzkp 3cq + (9§ + 680cq(2 — \ié)cgz)l/zg
and

0<cb=<2(p -2V,

where’

a(1 — ayorea(es =€) (Vey = Vo)
2((1 —a)cy t+ aca)V

cgo = max

/0
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_ % 2P = 2
Vci.-f__ctz:-i—dz. and V—f f(z)dz—aV +(1-a)V,

Note. 1t is easily seen that

o1 —ajeycxce — ey Ve, — %) £ oa< c?
2((1 — a)ey + acz)V ' T cxfca—cy) Fcf
cq =
0= |tz = ek, -~ 1) ) o
- ifa > -~ TR
2V colce —cy) + cf

Proof. From (2.4) of Theorem 2.1, the conditional expectation of a term of the

summation in §R{X,9) — £{6,,8)}/2b can be written as

_ X (X —8y)
L= E"?{ a + X l

f—q zt(zz +1’i) 1 / )f Z‘l(zt + 731.) 1

a+ |z + 9 2¢, ¥

—d2;
‘2 g +|z+9R 2y

Integration by parts shows that

z, ¥ u
(4.2) f_:jf ()., tdt/ 2o; Ve + 1/ 2c;)dudy

= 16C (zr. —012)2 J =12

The last expression of (2.5) of Theorem 2.1 and (4.2) give

(43) L=a v}j_c ‘( 1) 2 + (1 - )V, f_ft‘(z‘)
= VEZ‘iti(Zi) +L,,

where
£ (z) = 1 2z + 9;)? _ 3(2 - V)5 (z; + 9y)?
T Gz + 07 (a + ||z + OFF (a+z +3R2
= V[ b () — £ (z))d,
and

Flz)= 2 Vf[—:lc,](z) + '—2';‘;,—[[-12@21(2)-

Note that F(z)-—j(z)>0 ife,<|z| <c, and F(z)-j(z)(() if|z] <c¢,

/1



Integration by parts is applied to L, twice, then

¢ ~
Ly=-6 Vf_,ztz(zi}g(zi)dziv

where
_ 1 (2 ~Vv2)cE -8(z + 9,
P e AN R P
. 8(z + 9;)* — 15(2 — V2)c§(z; + B F
(a + ]z +3®*
24(2 — V2)c § (z; + 9)?
(@ +llz +9)3)°
and

g{z) = (1 - a)(Vo/ V= 128/ 4ca— (1 —a)(Ve/ V= 1)| 2] /2
+(1 —a)(l{.z/ V-1)ca/4, ifc, <|z| <cy,
=a(V, / V=12 4c, + (1 - a)(V,/ ¥V — 1)2%/ 4cy

+{1—a)(Ve/ V—1)(co—c1)/ 4, if|zi] <cy.
‘ |
Note that g(2z;) is positive, even and unimodal on (~¢ac2) and f(2;) is a step

function of the same property. Thus, §(2;)/ f(2z;) has the maximum value when

2; =0or 2; =c,, and
(4.4) §(z) = cof (20).
The inequalities (4.4) and
toz) < 1/(a + |z + 8|F)° — 10(2 - V2)cf/ (a + ||z + 8?7,
give

1 , 1o —-Vv2)ed|
(@ + XA ° (a+|XIB? J

(4.5) L= —SCQVE’X‘{

Therefore from (4.3) and {4.5),

1 _ 2X2 + Bcq
a+[X|?  (a+[XIP)? |
_3(2 = VB)cEXE + 60(2 = V2)ccf |
(a + XT3 )

/2



Hence

R{X.9) - R(6,,9)
>2b VE{q’p + (p — 2)”X1|2 —Begp — 3(2 - \/é)cg

(z + |IXI]R)Y?
, 32=vBac — 602 ~VRlowedp ___ b|xP |
(@ + |XIP° 2V(a + ||XIRR ]

which is nonnegative if
@ =max {6cg+ 3(2 —VZ)c3/p . 3cg + (9cd + 60co(2 — VB)cd)/3,
and

0<b=2(p -2V

Table 4.1 shows the lower bound of a/V for p=3; cy/c; = 1.5, 2,2.5 and
a = 0.2, 0.4, 0.6, 0.8. The lower bound of a/V becomes large when ¢/ ¢, or « is

large.

Table 4.1 The lower bound of a/V

a
cal €y 0.2 0.4 0.6 0.8

1.5 2.63 | 3.82 4.84 7.51
2 3.91 | 6.61 | 12.15 | 23.93
2.5 4.55 | 942 | 19.01 | 44.58

Hemark 4.1 Theorem 4.1 can be extended to the mixture of n-uniform distribu

tions.

5. Estimation of location parameters for the uniform distribution under the

loss||6, — 8|[*

In this section the constants a and b of (1.1) are given such as the risk of

the estimator 4, is uniformly smaller than that of X with respect to the loss

2
(5.1) 6, == Li (04 - 19;‘)2} ,

=

/3
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for the uniform distribution.

Following Berger’s notation (1978), let

7(X) = (n(X). ... n?’p(X))' =6 (X) - X
and
1, ifi =0,
chi= |0, ifi <0ori>noriis add,
Aot if2<i<n.
Z]Cj—‘!.i-i-
A

Ifg : R' » R'is n times differentiable, let
' d? )
gWz) = 5-9(2), 0=j=n. (9°9%=) =g(2)).

If A : R? » R'is a function with sufficient order derivatives, let

gk 1)
dztoz}

RHELIGI( ) = h{z).

The following lemma is useful in carrying out integration by parts for the
loss ||6, — 8%

lemma 5.1. Let Z have the density of the form

J(lz]) if |z] =c,
t2) ={ 0, otherwise.

Suppose that g{z) is a real-valued n times continuously differentiable function

and that

c . R
[, 198Dz} |2]ifn5(2)dz <= for0<j <n,
where

Si(z)= [ -yl (y)dy for 1<i<n and fofz) = f(z).
Eg(D)7 = [ Y ons 9 ) (n /@)

/&
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where [ ] denotes Gauss’ syrubol.
Proaf. This lemmma can be proved by induction on n along the same line as in the
proaf of Lemma 1 in Berger (1978).

Thearem 5.2. Let Z; (i=1,...,p) be p independent random variables from a uni-
formn distribution on (-c,c). Then the risk of the estimator §; is uniformly smaller

than that of X with respect to the loss given by {5.1) if

. P +107/30 331

P +4/5 b+ 20 v
and
+4/5 o\
0O<cb=s?2 p+2 2V
Proa
6, —||* = !)ﬁ(?«;(x) +x; -9 = Zi(m(z +9) + 2 R
i3 i3
Therefore

(5.2) () = Ells; - 3| — E|lX - 8|
= B{AY DviviZiZi + Y Uyt + 4 YnZi2f
ij i) ij
+ 22 Z')‘izzjz + 42 271:712212;'
ij ij
Using Lemma 5.1 to evaluate the conditional expectation of a term aof each sum-

mation in (5.2), we get

c _ c
Ep 7823 = 2f_c§(7i‘('))2 + 27BN S o(2;)dz; + f__c?‘tzf i(zq)dz;,
[+ C . . . .
Ez . z\77i2:2;3 = f_cf L0y 4 5 J
+ Ay BT £ (20) f1(25)d2 d2;,
¢ . ¢ .
(6.3) Ez{7.Z8 = f_cyi‘("’fa(zi)dz‘- + 3f_c7im)f2(zi)dli.
c .c . .
Ezt.Zj,?’iZiij; = f_cf_c%‘(])" @)f 1(2;) f o 2)dz;dz;
AR
+ fcf_t'}‘f F(z)f (z5)dz dzj,
c o . ‘ ¢
Ez 223 = 2 [t + 3 rd D o(e))dz; + 120 1(25)dz;,

Ay



and
c . .
Eg by = [ i + 2578 o2z,

where

b(z,; + 19-,,)
a +|jz + 3|7’

1 1
faz) = w_c(z“z —c?®? and fs(z)= 56—5‘("2i2 +c?)d

1

7ilz +0) = - Filz) = 328 + 09,

Similarly in the proof of Theorem 2.1, a straightforward calculation of each term

in (5.3) gives

| b mAXE + ma  mgXIE + m,
(5.4) M”S4a+mvk”+ 2t W+ (o + KPP

mollX|[* + mellX|[° + my _mellX|F mglXi* |
(a +[IX]3)° (a +IXIB)* * (a + XIS

where

mg = —4p({p + 4/5)c?/9, m,; =2(p + 2)c? /3 + 8(p +4/5)c*/9,

m, =4p{p + 107/30)c*b/9 + 81p(p + 89/ 61)c8/ 135,

mg = —4{p + 2)c?b%/3 ~ 176(p + 19/ 11)c*b/ 45 — 128(p + 2)c ¥/ 135,

my =pctb? + 4p(p —1/10)e% /3 + 3p(p — 1)c8r5,

ms = b3 + 8¢ + 64¢% /5 + 128c8/ 45,

mg = 21(p ~ 4/ 7)c*b?/ 5 + 1492(p — 1477/ 1492)c® /75 + 186(p — 1)c®/25,

m, =3p{p —~1)ctb /2, mgzg=352(p — 1)c®, and mgy = 480c%s,
Define

my +my mgyt+m, msy®+ mgy +m,
a+y (a +y)? (a +y)8
2
+ mey + mey ]
{a +y)* (e +y)

v{y.a,b)=mg+

It is clear from (5.4) that A(8) <0 if a and b can be chosen so that »{y,a,6) <0

for all 0 < y < «. To evaluate u(y,a,b), we decompose v(y,a.b) as

v(y.a.b) = v,(y.a.b) + ualy.a.b),



where
my + mg m, m'gy + m, mgy
= + + + + -
’vl(y.tl,b) mQ a +y (a + y)z (a +y)3 (a +y)4
2 " 2
mgy msy® + m gy ™mgYy
vo(y,a,b) = + + -
(@ +y) (@ +y)° (a +y)
m'g = 3(p —2/5)c?*b? + 1492(p — 1477/ 1492)c®b /45 + 186(p — 1)c®/ 25,
and

m"g = 6(p — 1)/ 5.

It is straightforward to verify that v,(y.2,b) <0and v,(y.a,b) <0 if the

conditions on a and b are satisfied. The proof is completed.
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