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Flow past two spheres located close to
each other at small non-zero

Reynolds number

Muhammad Umar Farooq (AA7F~7?¢M 7py—7)

Faculty of Engineering, Nagoya University

The problem of axisymmetric flow past two spheres at small
non-zero Reynolds number(R) is considered. Assuming the location
of the spheres in the inner region of expansion of the other,
forces(in R) on two equal sized spheres are computed for an arbit-
rary seperation between their centers. The comparison between nu-

merically determined forces and their difference(interaction), -and
those reported previously for large seperation is found promising

and the case of small seperation is discussed in details.

Introduction

The study of steady laminar flow of an incompressible fluid
past rigid spheres require the solution of the Navier-Stokes and
continuity equations for a non-zero parameter R{the Reynolds num-
ber), subject to the prevailing boundary conditions. Such studies
for the case of a single sphere for R“2 0 have been done by Stokes
(1851),'Proudman & Pearson(1957) and Hamielec & Hoffman (1967);
and for two spheres with R=0 and R << 1 respectively by Stimson &
Jeffery(1926), Batchelor(1976), and Vassure & Cox(1977) and Kaneda

& Ishii(1982). Both of the later studies deal with the asymptotic
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behaviour of the hydrodynamic forces on two spheres in the limit
of large seperation between their centers. These works are based
on'the use of matched asymptotic expansions in the small Reynolds
number(for the treatment of non-linear term in the Navier-Stokes
equations. In the former case spherical particles. -locate_in the
outer region of expansion, whereas in that of later one(Kaneda &
Ishii) they lie in the inner region of expansion of each other.

It appears from the above discussions that the Navier-Stokes
equations has so far proved insoluable for the problem of flow
past two spheres with small seperation. The motivation of this
study is therefore, to investigate these solutions for an arbit-
rary seperation between the spheres’ center. "Since‘a general
study of such kind is a time consuming process, the present paper
is devoted to the particular case of equal sized spheres With
the assumptions that' i) the spheres lie within each other’s inner
region of expansion, ii) Reynolds number is small but non-zero -and
iii) the flow is axisymmetric.

In this regard, the expression to obtain the drag force on
one of the spheres in a uniform flow is known(Kaneda & Ishii).
Utilizing this expression for the case of axisymmetric flow and
getting the integrals involved in it in bipolar co-ordinates,
forces are computed. Comparison'of the numerically determinéd
forcés .with those reported previously for large seperation is
found in géod agreement. Results are discussed in detail for the
small seperation. Successful application of the approach to equal
sized spheres leads to further investigation for the case of un-

equal spheres and the other related one
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1. Flow past two spheres

Consider the streaming flow of an incompressible fluid past two
solid spheres A and B{(radii a and b). The local fluid motion sat-

isfies the Navier-Stokes and continuity equations

pv'.v'a' - V'p' = pu'.v'u', V'.au' = 0: (1.1)
With the exception of constant parameters such as py and p, primed
symbols are dimensional- and unprimed symbols are dimensionless.

For streaming flow with velocity V(of magnitude V) in’ the directgion

of e(a unit vector), the boundary conditions are

u'= 0 on |r'|= a and |r'-r'|= b,
u's-ve as r'+ «, (1.2)

r' and r' are the position vectors of the spheres A and B respect-

ively, and «r'=|r'|.

In terms of dimensionless quantities the previous equations of

motion and the boudary conditions !become

2
V'u — Vp = R u.Vu, V.u = 0 (R = pav/u), (1.3)
u=0 onr =1, |[r-r'|= . (1.4)
u —> -e at infinity

In these equations the characteristic length and the velocity are
taken respectively a(the radius of the sphere A) and V.

The solutions of (1.3) with (1.4) for small R(R<<1l) can easily be
obtained by the use of the matched asymptotic expansion in the small
Reynolds number. In this procedure, the non-linear field (u,p) is
expanded in the inner and outer regions(Brenner & Cox 1963), result-
ing in (uo,po) and (ul,pl), with (uo,po) the solution of (1.3) with

(1.4) for R=0 and that of (u ) upto the term of O(R).
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2. Drag force(general case)

, It is clear from the above discussion that the non-linear force

F° on s(s is A or B) due to the field(u,p) may be expanded as

5 #5

FS= S

[F0+RF]S_+————O(R)] (2.1),

6muav
where Foeand?Fl are the forces(dimensionless) due to the fields
(uo,po) and (ul,pl) respectively. It is to be noted that FO can
be obtained by the analysis based on the Stokes‘equations, where
as the determination of F, creates difficulty due to the pressence
of non-linear term in the Navier-Stokes equations even for small R.
Kaneda & Ishii(1982), gave a formula for Fl’ using solely the
Stokes fields. It is given in the following form(details are given

in their paper) for the first-order force F A on one of the spheres

1
A in the streaming flow.
61T(FA)-=I—I—I + I (2.2)
174 1 2 3 ’ )
where
*
= 1 . . =
Il lim } (u Yy (Il)i,j dSJ 0, (2.3)
L ~»> OO”SL
I, = lim | ‘ *
, = lim [ (ul)i(r )i,jdsj (2.4)
L > o SL ’
I, = 1i *
3 = lim < (uo)i(uo)j(u )idsj, (2.5)
L »> o L
I = 1 i *
= lim . | (uo)i(uo)j(e )i,jdv, (2.6)
L > o L

where the integral‘is'takenvover the volume VL bounded by the

spherical surface S;, of radious L and internally by the surfaces

S, and sBcof the spheres A and B.
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d8 has the direction of the outer normal to VL bounded by SA’ SB.
* * - ®
T,,T are the stress tensors due to the fields(ul,pl) and (u ,p ).
* * *
(e )i;j = 1/2[(u )i,j + (u )j,i]’ is the dimensionless rate-of-

*
strain tensor for the flow u .

Using the following procedure, I(2.6) can be written as
3 4, (2.7)

where I3 is given in(2.5) and I4 is

I, = lim f u, X(quo).u* av. (2.8)
\Y%
I, » » L
* * *
(uo)i(uo)j(e )ij =[(u0)i(u0)j(u )i,j],j"[(uo)i(uo)j,i u j]

Integrate both sides over the volume V one can get

LI

*
I =1I,- 1lim J (us) . (us) . .u . dv.
3 Lo 'VL 0°1*70°3,1" 3

Use of the formulae

(u.V)u =1/2 Vu2 - ux(Vxu)

2 2

2 *
Vu“.u = u"'V.u - u”.u

glves I in the form

1. .

I=I,-3%51lim |, (u,). (u,).dS. + lim J u.x(Vxu,) .u* 4dv.

3 2 Lo J 0’1 0'37 73 Lo v 0 0
SL L

The second integral in the right hand side vanishes(see Banner &

Cox 1963) and we got

I = I3 + I4(2.7)



3. Drag force(particular case) --

“In the present study, the flow is assumed axisymmetric-past two
equal sized spheres. For the axisymmetric flow, equation(2.9) may

Be written in bipolar co-ordinates(see Happel ‘& Brenner p. 516) as

follows"
A
(Fy ), == Iy + Iy (3.1)
where
= *
I, 3/8 (Fy ), (F*),, (3.2)
I, =% [a f 1,
= *Yy
4 = 3 8 —1";7 E (wo) J(Yo,v*) dudg, (3.3)
where (for the der;vatlon see appendix)
2 3 19 32
E® = r == —% =z + 572(in cylindrical co-ordinates) s
Py oP*  dy, dY*
I(Worv*)= —2 -0

3¢ du Su oz

o> 0 and B<0( for equal sphere B=—,u),

wo and y* are therStokes stream functions.

The Stokes stream functions appearing in the integrand of I4

correspond to the following equations and boundary conditions.

o

14

B (yy) =

r2 at infinity (3.4)

-

5
Vo= 520= 0 on a and 8, TS

It is convenient to write the stream function wo in the form
1 2 -
wo-_: ___.2 r —lp (3.5)

and to formulate the problem in terms of y rather than by It is

clear that y satisfies the same differential equation(3.4)'as,¢0.

-6-



232

In addition, it must give rise to a vanishing velocity at infin-

ity, and fulfil the conditions

U= _%_ r2, %% - r 3 ona and B. (3.6)

Other Stokes stream function yY* satisfying the same equa-

tion as in (3.4) but with the following boundary conditions.

*
P¥= % r2, %% = r%%— on o,
*
Y*r= %% =0 on B (3.7)
and Yp*> 0 at infinity.

The reason of using (3.5) is that ¢ is known in its exact
form(Stimson & Jeffery 1926) and gets the following form for the

boundary conditions(3.6)

3/2

Y = (coshi- u) 2U Vo, (3.8)

n

U_(2)= A_cosh (n- %)c+ B_sinh (n~ %t»c+ c_cosh (n+ %);+ p_sinh(n+ %)r,,"

Vo =Pp L) -P 00,

where Pn is the Legender Polynomial.

For equal spheres the constants Bn and Dn which can be obtained
with the use of (3.6), vanishes and the analytic expressions of

An and Cn are available. A similar expression like(3.8) can be
imagined but with the contants A*n, ceey D*n which can be obtained
with the use of (3.7) also in analytic form for equal spheres. In

actual calculations these constants are computed and are checked

(for the case of ¥) with the available exact expressions’ values.
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The other part of the integrand appearing in I4(3.3) is also

available(Stimson & Jeffery) in bipolar co-ordinates and is given by

5/2 .
1 &2y y= (coshg- u) _ 2 sinhg 3(coshz-3u)
r2 E (wO) A 5 i Vn{(Un)CQ coshg - u(Un)§+ 4 {coshg-y) Un
c (1 - u™) §
+ A-HU (W) + 2 (V) }]
n n’uu coshz-u nu "’
where (3.9)

c >0 and ( )C/u are respectively the derivatives with respect to
2,7 _ 2
£ and j. Note that E"{y)= E"(y,).

Note that 12(3.2) contains (F and (F*)z which can be ob-

O)Z
tained with the informations of wo and P* respectively. For the

case of equal spheres

(FO)Z = 2(F*)Z = Known(StimSon & Jeffery p. 11l6{(equation(37))

Hence the first-order force on one of the spheres'A ie (FlA)Z
in the uniform flow can be obtained.from (3.1) numerically. For
the computation of I4(3.3), a library program AQ2DS of Nagoya Uni-
versity has been used. Formula (3.1) gives the force on sphere A
in the leading position. To get force on the other sphere B, it is
convenient to imagine the sphere A in the trailing position. It
can be done if the direction of the uniform flow is reversed. Note
that reversal of the uniform flow does not alter the value of 14.
With this procedure, drag forces on the sphere A are computed for
the leading and for the trailing positions, for the arbitrary
seperation between the spheres’ centrs d. For the case of equal

sized spheres difference between them gives the hydrodynamic

interaction.
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Appendix. Derivation of (3.3)

Consider the streaming flow past a body of revolutiion,
parallel to its symmetry axis. Such motions which are termed as
axially symmetric are characterized by the existence of a stream
function. For such motioms it is possible to express the velocity
field in terms of stream function. Further for streaming flow Past
spherical shaped objects, it is convenient to use cylindrical co-
ordinates (r,z,¢). Let wd and yY* be the Stokes stream functions

defined by the relations

1
U, = ¢ e¢ X VwO,
u* = 1 e, x Vy* (1)
r ¢ !
- e O 129 9
where vV = erBr + e¢ r 5% + e, Nz !

and (er,ez,e¢) are the unit vectors in the directions of the
cylindrical co-ordinates axis.

If the expressions

e
02
V x u, 7 E wO'

u, x(V x uO) = (uo.uo)v - (V x uO)u0
are used then the integrarnd of I4(2.8) may be written as

_ 1 .2 ;
u, X (V x uo) = ;7 E (WO)LV?O - (e¢.VWO)e¢]. (IT)

Taking the dot product in (II) both. sides with respect to u*, the
integral I, may be obtained in cylindrical co-ordinates as

L 2 (0g 9%)
Iy = | =3 E W) 57,0 "

fvl r

(II1)
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Since in the cylindrical co-ordinates

dVl = r d¢ dr dz,

the integral in (III) after evaluating with respect to ¢ is given
by
[e0] o .
Ty =27 J J — E® 34y, ¥*) ardz, (IV)
r
where

o, 0%y, opH
TV r¥*) = 50— 55~ ~ 37 37

For the problem of two spheres we take 7, n curvillinear co-

ordinates in the meridian plane(¢=constt), where

r + iz

r- iz V)

z + in = log

T

so that,

c sinn _ _ ¢ sinhg
coshrz- cosn '/ coshz - cosn’

r = (c>0) (VI)

With~ these transformations, two spheres external to each other

can be defined by = o, =B such that o>0, B<0. For the case of
equal spheres B=-a.and the radius ©f each sphere and the sepera-
tion d between théir centers can respectively be obtained by the

relations

a = c cosech(a) , d = 2 ¢ coth(a). (VIT)

In these co-ordinates the expression of I4(IV) may be given by

@ 1 A,
I, = 6m J J 1_g? 0 an dr, (VIII)
1

7
-1t oz, W) (cosn= u, B=-a)
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4. Summary of results

In order to understand the role played by the hydrodynamic
interaction between two equal sized solid spheres in a uniform
flow, the drag forces on one of the spheres in the leading and
inh the trailing positions are computed using (3.1l) for the sepera-
tion d and radius a ratio(VII). For equal spheres, I2(3.2) is
available in exact form and the integral I4(3.3) is evaluated
(within an accuracy of 10_3) numerically for B=-o. These results
are presented in Fig.l, which contain the values of the first-
order force Fl(dimensionless) I(for leading position), III(for
trailing position) and II=I-III(difference between the leading
and trailing positions) verses seperation-radius ratio. dl’ d2,
d3 and d4 are the regions of seperation(in the increasing order),
and the stage d/a=2 is.the contact of spheres' surface. The he-
haviour of the forces in these regions, which give an idea of
interaction between them are summerized as follows.

The leading sphere is always experienced a larger force than
that of the trailing one even near the contact. Since the computa-
tion can not be done at the contact due to the singular behav-
iour of the integrand of Tyr the behaviour is still unknown there.
But roughly, the leading sphere seems to attain a constant value
of drag, whereas the drag on trailing sphere diminishes, giving
a certain constant value of interaction at the contact.

In the region dl,increase in the leading force is slower than
that on the trailing one, which appears in the decrease of attrac-
tion. Later on in d2,

the interaction remains constant. 'This region can be considered as

both the forces increase linearly such that

an intermediate stage, since it distinguishes the behaviour between
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the small and comperatively large seperations. The region d3 is

characterized by the opposite behaviour as is found in the region
dl. Leading force increase faster than trailing and consequently
the interaction gets weaker. In this region the coincedance of
the present numerically detérmined values to those reported by
Kaneda and Ishii(1982) start, which agreed well in the region d4.

Further, for the values greater than 4 they seem to attain the

4'
constants (in the right hand side of the vertical axis'Fig. 1) pre-
dicted by Kaneda & Ishii for higher values of seperation.

In the present study, though the attention has been paid for

the equal sized spheres, the same analysis is also applicable to

the case of unequal spheres. For such case, in addition to I, (3.3), .

4

12(3.2) is required to computé numerically since the later is not

available in exact form.
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