$\mathcal{P}(\omega)$ /finite \pm or limits

阪府大総 加茂静夫 (Shizuo Kamo)

 $P(\omega)$ 上の guasi-onder \leq^* を , $\chi \leq^*$ 8 となるのは $\chi \leq \gamma$ が finite のとき , で定める . $\chi <^*$ 8 は , $\chi \leq^*$ 8 かっ not $\chi \leq^*$ 2 を意味する . $\chi = \chi \leq^*$ 8 は , $\chi \leq^*$ 8 かっ not $\chi \leq^*$ 2 を意味する . $\chi = \chi \leq^*$ 8 からなる $\chi = \chi \leq^*$ 8 からなる $\chi = \chi \leq^*$ 9 (ω) 上の同値関係を $\chi = \chi \approx^*$ 2 か $\chi = \chi \approx^*$ 9 か $\chi = \chi$

定理(- 般連続体仮説) れを自然数とし、 $k_0,...,k_n$ と λ は negular cardinal で $w_i \leq k_0 < ... < k_n \leq \lambda$ をみたすとする。このとき、postet P で、次の(i)から(ii)をみたすものが存在する.

- (i) P to countable chain condition & Dt of,
- (ii) $\mathbb{P}^{\mathbb{P}} 2^{\mathbb{W}} = \lambda^{\mathbb{W}}$
- (iii) m = 0,1,...,n に対して、 $\stackrel{}{\vdash}_{\mathbf{P}}$ $= \overset{}{\mathbf{k}_{m}} limit " となる.$
- (iv) のが Ko,..., Kn 以外の regular cardinal なる, 1月"コヨローlimit"

以下,この定理の証明のため,一般連続体仮説を仮定し, $k_0,...,k_n$, λ : regular cardinals & $w_i \le k_0 < ... < k_n \le \lambda$ とする. $k = k_n$, $\overline{k} = k_0$ と記す.

 \ll poset Pの構成 \gg $T_{\S}(\S<\kappa)$ による κ -stage finite support iteration $S_{\S}(\S<\kappa)$ を \S に関する induction で次の様に

定める、ここで各番<Kに対して、GISは V-generic on S_5 を、 G_5 は V[G]3]-generic on T_5 を表的す.

1). 3=0のとき.

$$T_0 = 2^{<\omega} (= \{ t; \exists k < \omega (t: k \rightarrow 2) \}),$$

 $Q_0 = b_0 = \{ k < \omega ; \exists t \in G_0 (t(k) = 1) \}$

とする.

2)
$$\bar{s} = \gamma + 1 \text{ or } \bar{z}$$
.

 $T_{\bar{s}} = 2^{<\omega}$,

 $b_{\bar{s}} = \{ k < \omega ; \exists t \in G_{\bar{s}}(t(k) = 1) \}$,

 $a_{\bar{s}} = a_{\gamma} \cap b_{\bar{s}}$

とする.

3) きが limit のとき.

$$T_{\mathfrak{F}} = (\mathcal{P}_{<\omega}(\omega) \times \mathcal{P}_{<\omega}(\xi), \leqslant),$$

ただし、Tsのonderは、

 $(u, x) \leq (v, y) \Leftrightarrow u > v & x > y & u \setminus v \in \cap Q_{\eta}$ $Q_{\xi} = b_{\xi} = U\{u; \exists x ((u, x) \in G_{\xi})\}$

とする。

 $S_{\mathfrak{F}}(\mathfrak{F} \leq K)$ は,定理の心を成り立たせるための powetである、次の補題 $1 \sim 2$ が成り立つ.

<u>補題1</u>. きくてくんとすると, "+1+1" an ナタ & an <* as" である。

福題2. ∀0≤K(0≥W, regular → 1+0:"<0;15<0>:0-limit")

補題3. Sk は countable chain condition をみたす. 更に,

補題2より, poset Pを,

 $P = S_{k_0} \times \cdots \times S_{k_n} \times \{f: \exists \chi \in \Lambda(|\chi| < \omega \& f: \chi \to 2)\}$ で定めれば、Pは定理の $(i) \sim (ii)$ をみたす、そこで、以下、Pを拡張して、 $(i) \sim (iv)$ をみたす polet Pをつくる、

directed set $I = (I, \leq) \mathcal{E}$,

I = Kox ... x Kn x Pck(x)

(ヨo,…,ヨn,A) ≤ (フo,…, フn,B) ⇔ ヨ。≤ク。&…& ౾n ≤ ?n & A ⊂ B
で定める.

 $\times \subset \mathcal{P}(\omega)$ is strong finite intersection property (sfip) $\xi \not \exists \gamma$ $\xi \not \exists \gamma$ poset $R_X = (\mathcal{P}_{\zeta \omega}(\omega) \times \mathcal{P}_{\zeta \omega}(X), \leqslant) \xi$,

 $(4,2) \leq (v,y) \iff u \supset v & \alpha \supset y & u \lor v \subset \cap y$ で定める. Rx は strong countable chain conditionをみたす poset であり、Gを V-generic on Rx とし、 $\alpha = U \lor u; \exists \alpha((u,\alpha) \in G)$ } となくと、 $\alpha \subset w & \alpha \lor \phi & \forall \alpha \in X (\alpha \leq^* \alpha)$ が成り立つ.

各 $i = (30, ..., 3n, A) \in I$ に対して、 $Q_{\alpha}(i)$ ($\alpha < \overline{k}$)による $\overline{k} - \text{stage}$ finite support iteration $P_{\alpha}(i)$ ($\alpha \le \overline{k}$) を次の induction により

定める. ここで,各

る

に対して、Gla は V-generic on Pa(i) を表 りす、まず、

 $Q_0(i) = S_{\frac{1}{3}0} \times \cdots \times S_{\frac{3}{3}n} \times \{f; \exists \alpha \in A(|\alpha| < \omega \& f; \alpha \rightarrow 2)\}$ とし、 $0 < \alpha < \overline{\kappa}$ に対して、 $V[G[\alpha]$ において、

 $Q_{\alpha}(i) = \text{the finite product of } \langle R_X \mid X \in \Gamma_{\alpha}(i) \rangle$, (ただし、 $\Gamma_{\alpha}(i) = \{ X \subset \mathcal{P}(w) ; |X| < k & X は sfipを持つ \})$ とする. $P(i) = P_{\overline{\kappa}}(i) \times$ おく.

各 stage of で $Q_{\alpha}(i)$ が countable chain conditionを みたすから、P(i) \dagger countable chain conditionをみたす。又、 $i \le j$ のとき、 $Q_{\alpha}(i)$ が $Q_{\alpha}(j)$ の complete to subposed になることと、 $Q_{\alpha}(i)$ 、 $Q_{\alpha}(j)$ (0 < α < α く の の 定め うから、P(i) は P(j) の complete to subposed になる。

 $P = U_{i \in I} P(i)$

で定める。 Pが 定理で求める poset となることをみていく.

《Pは countable chain condition をみたすこと》

Iが σ-closed な directed set であることと, P(i) (i ∈ I) が countable chain condition をみたすことから, 容易に導かれる.

 $\sharp \ \sharp'', \ |P| \leq \Sigma_{i \in I} |P(i)| \leq \kappa |I| = \lambda \ \hbar'' \hbar 5,$

 \Vdash_P $z^w \leq \lambda^w$

である.

便宜のため、各 $p \in P$ に対して、 $P(o) = (A_o^P, ..., A_n^P, f^P)$ と記す。 今、 $Q = \langle p \in P; supp(P) = \langle o \rangle \& \forall m \leq n(A_o^P = \phi) \rangle$ とおくと、 $Q \cong \langle f; \exists \alpha \in \Lambda(|\alpha| < \omega \& f; \alpha \rightarrow 2) \rangle$ となるから、

Ita" X 個の Cohen real over V が存在する"

が成り立つ、これと、QがPの complete subposet であることより、

"P" N'個の Cohen real over V" が存在する"

が成り立つ、そこで、 トP "2" 2× " である.

≪ ∀m≤n(I-p"∃Km-limit") について ≫

Pが countable chain conditionをみたすことと、Iがのclosedにより次の補題が成り立つ、

補題4. χ をP-nameとし、 $\mathbb{P}^{"}\chi < \omega"$ とすると、適当な $i \in I \times P(i)$ -name $\overline{\chi} \subset \mathbb{P}^{"}\chi = \overline{\chi}"$ となるものかある.

∀m≤n(1-p" ョkm-limit")を示すため、

m≤n & G: V-generic on P

V[G] =" ∀y cw (y + 4 > = 3 < km (not y < * a + 1))"

を示せばよい、それを示すため、 $y \in V[G]$ を、 $y \subset \omega$ & $y \leftarrow \phi$ となる $x \neq x \neq y \neq z$ 補題4により、

y EV[GnP(i)]

となるこ=(\S_0,\dots,\S_m,A) \in I が 存在する. $S=k_m+1$ とかく、 このとき、 b_S^H は Cohen neal over $V[G\cap P(i)]$ となるから、 $y \setminus b_S^H$ ナ ϕ

T'\$ 3. IN X, $\alpha_{\delta}^{H} \subset b_{\delta}^{H}$ \$1, $y \setminus \alpha_{\delta}^{H} \not = \emptyset$.

I not $y \leq^{*} \alpha_{\delta}^{H}$

《 ∀ 0: regular (∀m≤n(0+km) ⇒ lp" ¬∃ď-limit") » 背理法で示すため、

- (1) $0 = \text{regular } \& \forall m \leq n (0 \neq k_m)$
- (2) 1-p" < y515 < o"> >: o"-limit"

とする. 各るくりに対して、 $i_S=(\S_0^\delta,\cdots,\S_n^\delta,A^\delta)\in I$ と $\alpha_S<\overline{K}$ を、 y_S が $P_{\alpha_S}(i_S)$ -name と t_S るうにとって t_S 、このとき、(1) に より、 $(\S_0,\cdots,\S_n)\in k_0\times\cdots\times k_n$ 、 $\alpha<\overline{K}$ で $D=\{\delta<0;\S_0^\delta\leq\S_0$ & $k\in k$ $\S_n^\delta\leq\S_n$ & $y_S:P_{\alpha}(i_S)$ -name t_S cofinal in 0 と t_S 3 も の が とれる.

Case 1. O < K o x 3.

i eI & VSED (ys: Pa(i)-name)

となる. そこで, Pa(i)-name X を,

It-Pa(i) " X = 2 483 8 ED }"

で定めれば、 $F_{R(i)}$ $X \in \Gamma_{\alpha}(i)$ となるから、 $P_{\alpha+1}(i)$ -name Cで、 $F_{R(i)}$ $C \subset W$ & $C \leftarrow A$ & $\forall \alpha \in X \ (C \leq *\alpha)$ "

となるものが存在する. D はOで cofinal だから,

1-P" c c ω & c + \$ & ∀δ < 0 (c ≤ * yδ)"

となる、これは、(2)と矛盾する.

Case 2. K < Q o Y to.