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A decision method for a set of
first order classical formulas and its application

to decision problems for non-classical propositional logics.

Nobuyoshi MOTOHASHI

I. Main Theorem

Let LN be the first order classical predicate logic without equality
which has a fixed binary predicate symbol R , unary predicate symbols
P1,..,PN and no other non-logical constant symbols. Suppose that X is

a set of sentences in LN. Then a decision method for X is a method by

which,given a sentence 4 in X ,we can decide in a finite number of
steps whether or not it has a model. X is said to be decidable if there
is a decision method for X. It is well-known that the set of all the
R-free sentences (sentences is LN which have no occurrences of R) is
decidable ,but the‘ set of all the sentences in LN is not. R-formulas
are formulas belonging to the least se%%(s/uch that; (i)A“R-free formulas
belong to X, (ii) X is closed under —=,A,v, D>, (iii) If A(%)

belongs to X, then FvA(W), IvRE, WA AW)), IvR(v,x)A A(v)) belong
to X. R-positive formulas are formulas which have no negative occurrences
of R. Also, Tr 1is the sentence YuVvVwR(u,v)A R(v,w).D Ru,w))
and Sym is the sentence VuVv(R(u,v)D R(v,u)). Let FN be the

set of finite conjunctions of sentences: R-sentences, R-positive



sentences, Tr and Sym. Then,our main theorem is:
MAIN THEOREM. FN is decidable.

In fact, we show that for each sentence A in FN, we can calculate
a natural number n(8)/ This fact clearly implies our main theorem. [
such that of A has o model ,TEJMA“;CJ"B »cé:l‘m;‘b\‘pre ca;gmﬁéy ic af b-.‘os'i n(A)

I1. Applications.

Suppose that L is a formal logic. Then a decision mekbod for L is
a method by whi:ch, given a formula of L, we can decide in a finite
number of steps whether or not it is ﬁrovable in L.

1) Intuitionistic propositional logic.

Let IPL be the intuitionistic propositional logic whose propositional
variables are pl,...,pN. For each formula A in IPL, and each free
variable x in LN, let (A4,x) be the formula in LN defined by:
(pi,x) is Pi(®, (-4x) is WRG&WD -~ A,v)), (@ABx is
(A.0A Bx), (@AVBx) is @,X)V B,x), and, (A DB,x) is
YvR(x,v) D ((A,v) D> (B,v))).

Then,{&ripke’s completeness theorem for IPL, we have:
by

Completeness Theorem for IPL. For each formula A in IPL, A is
1%

provable in IPL iff the sentence; Tr ,\/\Tr(Pi)' A v, v)
[ ]

has no models, where Tr(Pi) is the R-sentence Y uPi()>D

YvQRu,v)D RAW).
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N
Since Tr, A I\ Tr(Pi) A 3v-(A,v) belongs to FN, our main
=]

theorem clearly implies that the logic IPL is decidable.

2) Modal propositonal logics.

Let MPL be the modal propositional lanéuage whose logical constants

are -, A,V ,D and O, and whose propositional variables are pl,..,pN
For each formula A in MPL and each free variable x in LN,let

<A,x> be the formula in LN defined by; <pi,x> is Pi(x), <~Ax>

is —<A,x>, <AAB,x> is <A0A<B,x>, AVB,x> is <4,V <B,x>,

<40 B,x> is <A, x> D <B,x> and <OA, x> is WQRK,v)D <4,v).

Let M, S4, B, S5 be modal propositional logics in Kripke ( ) ,whose

language is MPL. Then, by Kripke's completeness theorem for modal

logics, we have:

Completeness Theorem for modal logics. For any formula A in MPL,
(i) A is provéble in M iff VuR(u,u)a Jv<=A,v> has no models,
(ii) A is provable in S4 iff ¥ uR(u,u) 5-Tr AT v<-A,v> has no
models,

(iii) A is provable in B iff VuR(u,u)p Sym,\’-_ilv<-1§,v> has no
models, -

(iv) A is provable in S5 iff VuR(u,u), Tr A Sym A3 v<4,v> has

no models.

Since finite conjunctions of sentences VuR(u,u), Tr, Sym, and
dy<-A,v> belong to FN, our main theorem clearly implies that four

logics M, S4, B, S5 are all decidable.
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ITI. A proof.

1) R-degree. For each R-formula A, let R-deg(d) be the non-negative
integer,called the R-degree of A, defined by: R-deg(d) =0 if A is
R-free,R-deg(—A) = R-deg(d), R-deg(AAB) = R-deg(dV B) = R-deg(A>B)
= max { R-deg(d), R-deg(B) } , R-deg(3IvA(v)) = R-deg(A(x)), and
R-deg (IvR(,v)A A(W))) = R-deg(IvR(v,)A A(¥)) = R-deg(A(x)) + 1.

2) R-basic sentences.
Define Zn(n = 0,1,2,...) and = by: Z0 = Pow( {1,....N})
ZntD= Zn X Pow( Zn) X Pow( Zn), (0 =0,1,2,...) and T = /=,
where Pow(Z) is the power set of Z.
For each ¢ in 2, let A(s,x) be the unary formula defined by:
ACo,x) is  API® , APi® if ¢ & =0 and
ieo ito

Ao, is AC VO ANIVRWIAAC @, IR A IVRG,0A A, M) A

' Jg.’ic_ ! “fi B

ATvRE W) AAT @, A2TvREL ) A A2, ).

Jea"-: N J-QY' I

if ¢ =< v,1,r> ¢ Z@+l).
Then, A(c,x) is an R-formula whose R-degree is n if & ¢ Zn.
For each subset X Qf 2n, let AX be the sentence;
/\QVA( o,v) A /\‘\;VA( o,v)
oeX o X

AX (X € Zn) are called R-basic sentences of R-degree n.

AN
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3) Representation theorem.

(1) For each R-formula A(x,...,y) of R-degree n, whose free
var{ables are among X,...,y¥, we can concretely construct a Boolean
combination B(x,...,y) of formulas of the forms: -'_-lvA(mv},A(a,x),
....,AC ¢,y),where 6 ¢ Zn 'such that A and B are equivalent in
LN.

(2) For each R-sentence A of R-degree n, we can concretely

 obtain finite subsets Xl,...,Xn of Zn such that AX1Y--- ViXn

and A are equivalent in LN.

4) Reduction lemmas.
Let GN ( HN ) be the set of sentences in FN which are finite
conjunctions of the sentences: R-basic sentence (R-basic sentences of

R-degree 1), R-positive sentences, Tr and Sym. Then HN < GN < FN.
Reduction Lemma 1. If GN 1is decidable, then FN is decidable.

Reduction Lemma 2. If HN (N =1,2,...) are all decidable, then
GN (N =1,2,....) are all decidable.

5) Main Lemma. For each sentence A in HN, if A has a model, then

N oo2¥ o 52Y
A has a model of cardinality no more than 2X 2 X 2 .

Clear}y, Reduction Lemma 1, Reduction lemma 2 and Main Lemma imply our

main theorem.



