A naive example of a proper Π^0_4 set of reals

We show that a subset A of the product space 2^ω which is defined by

$A = \{ \alpha \in 2^\omega : \text{there are infinitely many integers } m \in \omega \text{ such that } \alpha \text{ contains infinitely many segments of the form } 10^m \}$

is proper Π^0_4.

§1. This is concerned with Landweber's work on finite automaton theory. A finite automaton \mathcal{M} consists of four elements S, $2 = \{0, 1\}$, s_0, and M. S is a finite set, whose elements are called states. s_0 is an element of S and is called the starting states. M is a function from $S \times 2$ into S, which is called a next state function. When a sequence $\alpha \in 2^\omega$ was given (which is identified with a data tape), the machine \mathcal{M} runs as illustrated below.

\[\begin{array}{c}
s_0 \xrightarrow{M} s_1 \xrightarrow{M} s_2 \xrightarrow{M} s_3 \xrightarrow{M} \cdots \\
\alpha(0) \quad \alpha(1) \quad \alpha(2) \quad \alpha(3)
\end{array}\]

The sequence $\langle s_i \rangle_{i \in \omega}$ in the above is determined by α, we denote it by $\langle s_i(\alpha) \rangle_{i \in \omega}$.
2

2. Let $D \subseteq S$. Then M accepts α with respect to D if some member of D occurs in the sequence $\langle s_i(\alpha) \rangle_{i \in \omega}$, and rejects α otherwise. This condition of acceptance of a sequence is of the most standard type. Some other conditions have been studied by Hartmanis, Stearns, Böhm, McNaughton, etc. ([1], [2], [3], [4], [5], [6]).

Let $D \subseteq S$.

- M 1-accepts α w.r.t. D if $\exists i s_i(\alpha) \in D$,
- M 1'-accepts α w.r.t. D if $\forall i s_i(\alpha) \in D$,
- M 2-accepts α w.r.t. D if $\exists^\infty i s_i(\alpha) \in D$, where $\exists^\infty i$ means that there are infinitely many i's such that... .

Put $\text{In}(\alpha) = \{ s \in S : \exists^\infty i s = s_i(\alpha) \}$. Let $\mathcal{I} \subseteq \mathcal{P}(S)$.

- M 2'-accepts α w.r.t. \mathcal{I} if $\exists D \in \mathcal{I} \text{ In}(\alpha) \subseteq D$,
- M 3-accepts α w.r.t. \mathcal{I} if $\exists D \in \mathcal{I} \text{ In}(\alpha) = D$.

Let i stand for 1, 1', 2, 2', or 3. $A \subseteq 2^\omega$ is i-definable if there is M and D (or \mathcal{I}) such that $A = \{ \alpha \in 2^\omega : M$ i-accepts α w.r.t. D (or \mathcal{I}) $\}$. The following are easily observed:

Proposition (Landweber [6]). (1) Every 1-definable set is Σ^0_1.
(2) Every 1'-definable set is Π^0_1.
(3) Every 2-definable set is Π^0_2.
(4) Every 2'-definable set is Σ^0_2.
(5) Every 3-definable set is Δ^0_3.

These estimations are known to be proper by the following examples:

Examples (Landweber [6]). Put $A^+ = \{ \alpha \in 2^\omega :$ in the sequence α, only a finite number of 1's occur $\}$. Then:

1. A^+ is 2'-definable and in $\Sigma^0_2 - \Pi^0_2$.
2. A^{+c} is 2-definable and in $\Pi^0_2 - \Sigma^0_2$.
3. $A^\# = \{ \alpha : \alpha(0) = 0 \& \alpha \in A^+ \} \cup \{ \alpha : \alpha(0) = 1 \& \alpha \in A^{+c} \}$ is 3-definable and in $\Delta^0_3 - (\Sigma^0_2 \cup \Pi^0_2)$.

- 2 -
Problem (Landweber [6]). Find a NATURAL condition for acceptance which enables finite machines to define sets above \(\Delta_2^0 \).

To answer this question, it needs to find a set of reals in a higher hierarchy which is however easily handled by finite automaton. Unfortunately we could not find satisfactory examples of such sets in the literatures. So we give here such an example. Our answer to Landweber's problem is under improvament, which will appear elsewhere in a satisfactory form.

§ 3. When a finite sequence \(x \in 2^\omega \) is an initial segment of a sequence \(y \in 2^\omega \cup 2^\omega \), then we write \(x < y \). The concatenation of two sequences \(x \) and \(y \) is denoted by \(xy \). Our results are as follows:

Put \(A_0 = \{ \alpha \in 2^\omega : \text{There is an } m \in \omega \text{ such that } 0\text{-blocks of length } m \text{ (} 0^m \text{-blocks) occur infinitely often in the sequence } \alpha \} \}, \text{i.e.:}

\[
\alpha \in A_0 \text{ iff } (\exists m)(\exists^\infty x \in 2^\omega) x 10^m 1 < \alpha.
\]

Theorem 1. \(A_0 \) is in \(\Sigma_3^0 - \Pi_3^0 \).

Put \(A_1 = \{ \alpha \in 2^\omega : \text{There are infinitely many integers } m \text{ such that } 0^m \text{-blocks occur infinitely often in the sequence } \alpha \} \}, \text{i.e.:}

\[
\alpha \in A_1 \text{ iff } (\exists^\infty m) \text{ s.t. } (\exists^\infty x \in 2^\omega) x 10^m 1 < \alpha.
\]

Theorem 2. \(A_1 \) is in \(\Pi_3^0 - \Sigma_3^0 \).

Theorem 1 is essentially a part of Theorem 2. The rest of the paper is entirely devoted to the proof of Theorem 2.

§ 4. Proof of Theorem 2. Identifying the finite sequence \(0^m 1 \) with \(m \) for each integer \(m \), we can translate the subset \(A_1 \) of \(2^\omega \) into the subset \(A \) of the space \(\omega^\omega \) as follows:

\[
A = \{ \alpha \in \omega^\omega : \exists^\infty m \text{ s.t. } \exists^\infty i \alpha(i) = m \}.
\]
Thus we show that \(A \) is in \(\prod^0_4 \Sigma^0_4 \). Since \(A \) is clearly \(\prod^0_4 \Sigma^0_4 \) by the definition, it needs only to show \(A \notin \Sigma^0_4 \). For the purpose we use the following lemma:

Lemma 1 (Landweber [6], in modified form). For every subset \(X \) of \(\omega^\omega \), \(X \) is \(\prod^0_2 \Sigma^0_2 \) iff \(\exists B \subseteq \omega^\omega \) s.t. \(X = \hat{B} \), where \(\hat{B} \) is the set of all \(\alpha \in \omega^\omega \) such that infinitely many segments of \(\alpha \) belong to \(B \), i.e.:

\[
\hat{B} = \{ \alpha \in \omega^\omega : (\exists y \in B) y \prec \alpha \}.
\]

To the end of contradiction we suppose \(A \in \Sigma^0_4 \), equivalently \(A^c \in \prod^0_4 \). Then by the lemma there is an indexed family of sets of finite sequences \(\{ B_{1,i} \}_{i \in \omega} \) such that \(A^c = \bigcap_{i \in \omega} \bigcup_{i \in \omega} \hat{B}_{1,i} \).

Definition. Let \(x \prec y \) and \(J \subseteq \omega \), and \(z \) be the sequence satisfying \(xz = y \). If in the sequence \(z \), only the elements of \(J \) occur, we say that \(y \) is a \(J \)-restricted extension of \(x \), or shortly \(y \) \(J \)-extends \(x \), and write \(x \rightarrow_J y \).

Notice that by the definition of \(A \), \(A^c \) is the set of all \(\alpha \) such that the set \(\{ m : m \) occurs infinitely often in \(\alpha \} \) is finite.

Lemma 2. If a family of sets of finite sequences \(\{ C_i \}_{i \in \omega} \) satisfies that \(A^c \subseteq \bigcup_{i \in \omega} \hat{C}_i \), then

\[
(*) \text{ for every } x \in \omega^\omega, \text{ each infinite set } I \subseteq \omega, \text{ and each finite set } F \subseteq \omega, \text{ we can take } x_0 \in \omega^\omega \text{ which } F \cup I \text{-extends } x,
\]

a set \(C_i \) in \(\{ C_i \}_{i \in \omega} \), and an infinite set \(I_1 \subseteq I \) such that for every \(x_1 \) which \(F \cup I_1 \text{-extends } x_0 \), for every infinite set \(J \subseteq I_1 \), there is \(x^* \) which \(F \cup J \text{-extends } x_1 \) such that \(x^* \in C_i \); in symbols,

\[
(\forall x, F, I) \exists x_0 \leftarrow_{F \cup I} x, \exists I_1 \subseteq I \exists C_i \in \{ C_i \}_{i \in \omega} \text{ such that}
\]

\[
\forall x_1 \leftarrow_{F \cup I_1} x_0, \forall J \subseteq I_1 \exists x^* \leftarrow_{F \cup J} x_1, x^* \in C_i.
\]

Proof of Lemma 2. If not, we can obtain \(x, F, \) and \(I \) such that:

\[
(#) \text{ (} \forall x_0 \leftarrow_{F \cup I} x, \forall I_1 \subseteq I, \forall C_i \text{ in } \{ C_i \}_{i \in \omega} \text{) } \exists x_1 \leftarrow_{F \cup I_1} x_0 \text{ } \forall J \subseteq I_1 \text{ such that}
\]

\[
\forall x^* \leftarrow_{F \cup J} x_1, x^* \text{ is not in } C_i.
\]
We extends this x to $\alpha \in \omega^\omega$ as follows:

$$x \xrightarrow{p_0} x_0 \xrightarrow{p_{J_0}} x_1 \xrightarrow{p_{J_1}} \ldots \xrightarrow{p_{J_1}} \ldots,$$

where infinite sets J_i, $i \in \omega$, are chosen so that:

$$(\$) \quad I \supseteq J_0 \supseteq J_1 \supseteq J_2 \supseteq \ldots \supseteq J_i \supseteq \ldots \quad \text{and} \quad J_n \cap \{0, 1, \ldots, n\} = \emptyset \text{ for each } n.$$

Moreover in addition x_i and J_i, $i \in \omega$, are chosen so as to satisfy that: $(\%)_0$ Every $F \cup J_0$-extension of x_0 is not in C_0;

$(\%)_1$ Every $F \cup J_1$-extension of x_1 is not in C_1;

$$\ldots$$

$(\%)_i$ Every $F \cup J_i$-extension of x_i is not in C_i;

$$\ldots$$

This is clearly possible by the condition $(\$)$. Now put $\alpha = \bigcup_{i \in \omega} x_i$.

Then by the condition $(\%)_i$, any initial segment of α which belongs to C_i must be shorter than x_i for each i, so $\alpha \notin \bigcup_{i \in \omega} \hat{C}_i$.

But by the condition $(\$), for every m in the co-finite set $\omega - F$, all occurrences of m in the sequence α are in the initial segment x_m. This means that α is in λ^c; a contradiction. Lemma 2 is thus proved.

In the present case, $\lambda^c \subseteq \bigcup_{i \in \omega} B_{i,1}$ for every l. Hence by this lemma, the following holds for every l:

$(\@)_l$ $(\forall x, F, I) \exists x_0 \leftarrow_{F_I} x \exists B_{1,1} \in \{B_{1,1} \subseteq \omega \mid \exists I' \subseteq I \}$

such that $(\forall x_1 \leftarrow_{F_I} x_0)(\forall J \subseteq I) \exists x^* \leftarrow_{F_{J^c}} x_1$ s.t. $x^* \in B_{1,1}$.

Using this, we construct α which is in $\bigcap_{i \in \omega} \bigcup_{i \in \omega} B_{1,1}$ but not in λ^c. Starting with null sequence λ, we repeat extensions of finite sequences in the following manner:

$$\lambda = (y_{-1}) \xrightarrow{\omega} (y_{-1}) \xrightarrow{\omega} x_0 \xrightarrow{p_0} y_0 \xrightarrow{p_0} x_1 \xrightarrow{p_1} y_1 \xrightarrow{p_1} x_2 \ldots,$$

where $F_0 \cup I_0 \supseteq F_1 \cup I_1 \supseteq F_2 \cup I_2 \supseteq \ldots$ and

$$(1) \quad F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots$$

$$(2) \quad F_0 \nsubseteq F_1 \nsubseteq F_2 \nsubseteq \ldots.$$
Stage to define $x_{\frac{1}{k}} \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1} \cdot y_{\frac{1}{k}}$.

The extension $x_{\frac{1}{k}}$ is taken together with a set $I_{\frac{1}{k}} \subseteq I_{\frac{1}{k}}^{L-1}$ and a set

$$B_{\frac{1}{k}}, i_{\frac{1}{k}} \in \{ B_{\frac{j}{k}}, i_{\frac{j}{k}} \mid j \in \omega \}$$

so that:

$(\exists)_{\frac{1}{k}} (\forall x \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1})(\forall J \subseteq I_{\frac{1}{k}}) \exists y \in B_{\frac{1}{k}}, i_{\frac{1}{k}} \text{ s.t. } y \leftarrow F_{\frac{1}{k}}^{L-1} \cdot x$.

This is possible by the condition (\exists).

We put:

$$F_{\frac{1}{k}} = F_{\frac{1}{k}}^{L-1} \cup \{ \min(I_{\frac{1}{k}} - F_{\frac{1}{k}}^{L-1}) \}.

Hence:

$$F_{\frac{1}{k}} I_{\frac{1}{k}} \cup I_{\frac{1}{k}} I_{\frac{1}{k}} 2 \cdots \geq F_{\frac{1}{k}} I_{\frac{1}{k}} I_{\frac{m}{k}} \geq \cdots .$$

Notice by the above conditions $(\exists)_{\frac{1}{k}}$, $(\exists)_{\frac{1}{k}}^2$, and $(\exists)_{\frac{1}{k}}^3$ that:

$(\exists)_{\frac{1}{k}}^m$ Every x_m with $m > 1$ or its any $F_{\frac{m}{k}} \cup I_{\frac{m}{k}}$-extension can be $F_{\frac{m}{k}} \cup I_{\frac{m}{k}}$-extended to a member of $B_{\frac{1}{k}}, i_{\frac{1}{k}}$.

Stage to define $y_{\frac{1}{k}} \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1} \cdot x_{\frac{1}{k}}$.

By the help of the conditions $(\exists)_{\frac{1}{k}}^0$, $(\exists)_{\frac{1}{k}}^1$, ..., $(\exists)_{\frac{1}{k}}^k$, we repeat extensions 1 times starting from $x_{\frac{1}{k}}$ as follows:

$$x_{\frac{1}{k}} \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1} \cdot y_{\frac{1}{k}, 0} \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1} \cdot y_{\frac{1}{k}, 1} \cdots \leftarrow F_{\frac{1}{k}}^{L-1} \cup I_{\frac{1}{k}}^{L-1} \cdot y_{\frac{1}{k}, L} ,$$

where $y_{\frac{1}{k}, j}$ is a member of $B_{\frac{1}{k}, i_{\frac{1}{k}}}$ for each $j \leq 1$. Now we $F_{\frac{1}{k}} \cup I_{\frac{1}{k}}$-extend $y_{\frac{1}{k}, 1}$ to $y_{\frac{1}{k}}$ so that all members of $F_{\frac{1}{k}}$ occur in the newly added part; for example, put $y_{\frac{1}{k}} = y_{\frac{1}{k}, 1} k_0 k_1 \cdots k_1$, the concatenation of $y_{\frac{1}{k}, 1}$ and a list of all members of $F_{\frac{1}{k}} = \{ k_0, k_1, \ldots, k_1 \}$.

The construction is completed. Put $\alpha = \bigcup_{x_{\frac{1}{k}}} \omega \cdot x_{\frac{1}{k}}$. Let $j \in \omega$.

Then for every k larger than j, the sequence $y_{\frac{1}{k}, j}$ belongs to $B_{\frac{1}{k}, i_{\frac{1}{k}}}$; this shows $\alpha \in \bigcup B_{\frac{1}{k}, i_{\frac{1}{k}}}$. Thus $\alpha \in \bigcap_{\gamma \in \omega} \bigcup_{x_{\frac{1}{k}}} \omega \cup \bigcup_{x_{\frac{1}{k}}} \omega \cdot B_{\frac{1}{k}, i_{\frac{1}{k}}} \cdot$.

On the other hand, for each $k \in \omega$, the segment $z_{\frac{1}{k}}$ that satisfies $x_{\frac{1}{k}} z_{\frac{1}{k}} = y_{\frac{1}{k}}$ has an occurrence of each element of $F_{\frac{1}{k}}$. Since $\{ F_{\frac{1}{k}} \}_{\gamma \in \omega}$ is strictly increasing, every element of infinite set $\bigcup_{x_{\frac{1}{k}}} \omega \cdot F_{\frac{1}{k}}$ occurs infinitely often in the sequence α, that means $\alpha \notin \mathcal{A}^\omega$; a contradiction. Theorem is thus proved.
References

