Satellite Links with Brunnian Properties

Taizo Kanenobu (全信 泰造)

We shall work throughout in the PL category. An n-link with m components is a locally flat oriented submanifold of the oriented (n+2)-sphere S^{n+2} homeomorphic to m disjoint copies of S^n . An n-knot is an n-link with one component. A trivial n-link is one whose components bound disjoint locally flat (n+1)-disks B^{n+1} in S^{n+2} . An n-link L is splittable if there exists an (n+2)-disk B^{n+2} in S^{n+2} satisfying L $\cap B^{n+2}$ $\neq \emptyset$, L $\cap \partial B^{n+2} = \emptyset$, and L $\cap (S^{n+2} - B^{n+2}) \neq \emptyset$, where ∂B^{n+2} is the boundary of B^{n+2} .

Let \mathcal{O}_{L} be the family of those subsets S of I = {1, 2, ..., m} for which the sublink $L_{S} = \bigcup_{i \in S} L_{i}$ of an n-link $L = L_{1} \cup L_{2} \cup \ldots \cup L_{m}$ does not split. Then we call L has the <u>Brunnian property of type</u> \mathcal{O}_{L} . For the convenience we assume that \mathcal{O}_{L} , {i} \mathcal{O}_{L} for all $i \in I$. In this family of subsets \mathcal{O}_{L} , the following condition must be satisfied:

(*) If S, T $\in \mathcal{O}$ L and S \cap T \neq \emptyset , then S \cup T $\in \mathcal{O}$ L. Conversely we prove:

Theorem. Suppose $n \ge 1$ and $m \ge 2$. Let \mathfrak{A} be a family of subsets of I satisfying the condition (*). Then there exists an n-link with m components with the Brunnian property of type \mathfrak{A} .

This theorem is previously obtained by H. Debrunner [3] for $n \ge 2$, using a ribbon n-link. Our example is a satellite link, which is defined in a similar way that a satellite knot is defined in [11, pp.110-113] and [7]. As partial results, the following are known: Let \mathcal{B}_k , $2 \le k \le m$, be the family of all the subsets of I consisting of k or more elements. An n-link with the Brunnian property of type \mathcal{B}_k is one such that no sublink with k or more components is splittable but every sublink with less than k components is completely splittable. For n = 1 and k = m, such links were given by H. Brunn [1], see also [11, pp.67-69]; for n = 1 and $k \le m$, by H. Debrunner [2]. R. H. Fox [3, problem 38] asked whether examples existed for n = 2 and $k \ge m$, and T. Yanagawa [13] answered by constructing such examples using ribbon 2-link. For $n \ge 1$ and k = m, see also [11, pp.197-199].

A group G is indecomposable (relative to free product) if G = A * B implies A = 1 or B = 1. To prove that a link is unsplittable, we use the following fact, cf. [10, Theorem 27.1]:

<u>Proposition.</u> An n-link L is nonsplittable if its group $\pi_1(S^{n+2}-L)$ is indecomposable. If n=1, then the converse is valid.

Hence any 1-knot group is indecomposable. Moreover an n-knot group with a nontrivial center ([5]) is indecomposable ([9, p.195]).

Proof of Theorem. Let $O = O_1 \cup O_2 \cup \ldots \cup O_m$ be a trivial n-link with m components. Let $x_i \in \pi_1(S^{n+2} - O)$ be a meridian of O_i . Let $S = \{i_1, i_2, \ldots, i_k\}$ I, $1 \le i_1 < i_2 < \ldots < i_k \le m$. We write F_S for the free group with basis $\{x_{i_1}, x_{i_2}, \ldots, x_{i_k}\}$; thus $\pi_1(S^{n+2} - O_S) = F_S$. Let $\alpha_S = [x_{i_1}, x_{i_2}, \ldots, x_{i_k}]$, where $[x_{i_1}, x_{i_2}] = x_{i_1}^{-1} x_{i_2}^{-1} x_{i_1}^{-1} x_{i_2}$ and $[x_{i_1}, \ldots, x_{i_{j-1}}] = [[x_{i_1}, \ldots, x_{i_{j-1}}], x_{i_j}]$.

Let $\mathcal{O}_{k} = \{s_1, s_2, \ldots, s_r\}$ and let $\alpha_i = \alpha_{S_i}$. If n = 1, then α_i can be represented by mutually disjoint simple closed curves ℓ_i in S^3 - N(O), where N(O) is a tubular neighborhood of O in S^3 , such that the $(\#S_i + 1)$ -component link $O_{S_i} \cup \ell_i$ has the Brunnian property of type $\#_{S_i+1}$ and that the r-component link $\ell_1 \cup \ell_2 \cup \ldots \cup \ell_r$ is trivial. We can always find such ℓ_i as illustrated in the figure, which consists of four circles $O_1 \cup O_2 \cup O_3 \cup O_4$ and three curves $\ell_1 \cup \ell_2 \cup \ell_3$, where ℓ_1, ℓ_2 and ℓ_3 represent $[x_1, x_2, x_3]$, $[x_3, x_4]$ and $[x_2, x_4]$, respectively, see [7, p.67]. If $n \geq 2$, we can also find mutually disjoint simple closed curves ℓ_i in S^{n+2} - N(O); each α_i is represented by a unique isotopy class of ℓ_i ([6, Corollary 8.1.2 and Theorem 10.1]).

Hence in any case, if let V_i be disjoint tubular neighborhoods of the ℓ_i in S^{n+2} - N(O), then S^{n+2} - int V_i is homeomorphic to $s^n \times p^2$, where int V_i is the interior of V_{i} . Let K be an n-knot such that $\pi_{1}(S^{n+2} - K)$ is not infinite cyclic and indecomposable. Let $h_1: S^{n+2}$ - int $V_i \rightarrow$ N(K) be a homeomorphism. Then S^{n+2} - int $h_1(V_i)$ is homeomorphic to $s^n \times p^2$, $2 \le i \le r$. In the same way, we inductively define homeomorphisms $h_j : S^{n+2} - int V_j^{j-1} \rightarrow N(K)$, $1 \le j \le r$, where $V_i^0 = V_i$ and $V_i^j = h(V_i^{j-1})$, $j+1 \le i \le r$. Let $\ell_i^0 = \ell_i$ and $\ell_i^j = h_i(\ell_i^{j-1})$. Let $L_0 = 0$ and $L^j = h_j(L^{j-1})$, where $L_i^0 = O_i$ and $L_i^j = h_j(L_i^{j-1})$. We show that the iterated satellite link $L = L^r$ ($L_i = L_i^r$) has the Brunnian property of type OL. If $S_i \not \subset T \subset I$, then ℓ_i and O_T split and if S_i $S_{j} = \emptyset$, then ℓ_{i} and $O_{S_{i}}$ split. Thus, if $T \notin \mathcal{O}$, then L_{T} is splittable. Moreover, to show the contrary, we have only to prove that L is nonsplittable assuming I $\in \mathcal{O}$.

Let $S_1 = I$ and $m > \#S_2 \ge \dots \ge \#S_r$. Applying the van Kampen theorem, we have the diagrams of inclusion homomorphisms:

for $1 \le j \le r$. Note that $\pi_1(S^{n+2} - int N(K)) \cong \pi_1(S^{n+2} - K)$. Since O_{S_j} and ℓ_i split for $1 \le i \le j$, $L_{S_{j+1}}^j = O_{S_{j+1}}^j$, and so $\pi_1(S^{n+2} - L_{S_{j+1}}^j) = F_{S_{j+1}}^j$. By deleting the components which are not contained in S_{j+1} , we have an epimorphism $\psi^j : \pi_1(S^{n+2} - L^j) \to F_{S_j}$.

If both η and θ^j are injective, then both ξ^j and ω^j are also injective ([9, Sec. 4.2]), that is $\pi_1(S^{n+2} - L^j)$ is the free product of $\pi_1(S^{n+2} - K)$ and $\pi_1(N(K) - L^j)$ with an amalgamated subgroup $\pi_1(\partial N(K))$ [9, p.207]. Further suppose that both $\pi_1(S^{n+2} - K)$ and $\pi_1(N(K) - L^j)$ are indecomposable, then $\pi_1(S^{n+2} - L^j)$ is indecomposable [9, p.246].

Case 1. n=1. Let $\pi_1(\partial N(K))=\langle \mu,\lambda \mid [\mu,\lambda]=1 \rangle$, where μ is a meridian and λ is a longitude. Since K is knotted, η is injective ([11, Theorem 4B2]). Let $f^j:\pi_1(N(K)-L^j)\to\pi_1(S^3-L^{j-1})$ be an isomorphism and $\zeta^{j-1}:\pi_1(S^3-L^{j-1})\to\pi_1(S^3-L^{j-1})$ be an inclusion homomorphism. Then $\psi^{j-1}\zeta^{j-1}f^j\theta^j(\mu)=\alpha_j$, which has infinite order in F_S ([9, Sec. 1.4]). Furthermore $f^j\theta^j(\lambda)$ is a meridian of ℓ_j^{j+1} , and so θ^j is injective. Thus ξ^j and ω^j are injective.

Since any proper sublink of $0 \cup \ell_1$ is trivial and ℓ_1 represents a nontrivial element α_1 in F_1 , $0 \cup \ell_1$ is nonsplittable, and so $\pi_1(N(K)-L^j) \cong \pi_1(S^3-0 \cup \ell_1)$ is indecomposable. In the same way, $L_{S_j}^{j-1} \cup \ell_j^{j-1} = O_{S_j} \cup \ell_j$ is

nonsplittable. Suppose that L^{j-1} is nonsplittable. Then L^{j-1} \cup $\ell_j^{j-1} = (L_{S_j}^{j-1} \cup \ell_j^{j-1}) \cup L^{j-1}$ is also nonsplittable, and so $\pi_1(N(K) - L^j) \cong \pi_1(S^3 - L^{j-1} \cup \ell_j^{j-1})$ is indecomposable. Hence by induction on j, $\pi_1(S^3 - L)$ is indecomposable.

Case 2. $n \ge 2$. Let $\pi_1(\partial N(K)) = \langle \mu \mid \rangle$. Then $\eta(\mu)$ is a meridian of N(K), and so η is injective. Since the inclusion homomorphism $\pi_1((S^{n+2} - \operatorname{int} V_j^{j-1}) - L^j) \rightarrow \pi_1(S^{n+2} - L^j)$ is isomorphic, we have an isomorphism $g^j: \pi_1(N(K) - L^j) \rightarrow \pi_1(S^{n+2} - L^j)$ and $\psi^j g^j \theta^j(\mu) = \alpha_{j+1}$, which has infinite order in $F_{S_{j+1}}$, and so θ^j is injective. Thus ξ^j and ω^j are injective.

If $\pi_1(N(K) - L^1) \cong \pi_1(S^{n+2} - L^1)$ is indecomposable, then by induction on j, $\pi_1(S^{n+2} - L)$ is indecomposable. Hence the proof is reduced to the lemma below.

Sublemma. Let $H_m = \langle x_1, x_2, ..., x_m \mid [x_1, x_2, ..., x_m] = 1 \rangle$. If $m \ge 2$, then H_m is indecomposable.

<u>Proof.</u> We prove by induction on m. H_2 is free abelian of rank 2, and is indecomposable. Assume that H_{m-1} is indecomposable. Let $H_m = A * B$. Since $\beta = [x_1, x_2, \dots, x_{m-1}]$ and x_m commute, either both β and x_m are in a conjugate of A or B, or β and x_m are both powers of the same element [9, Corollary 4.1.6]. Considering the exponent sums on generators, the latter case cannot occur. Thus by an inner

automorphism of H_m , we may suppose that $\beta \in A$ and $x_m \in A$. Let N be the normal subgroup generated by β and x_m in A. Then we have $H_{m-1} \stackrel{\circ}{=} A/N * B$, cf. [8, Problem 4.1.5]. By inductive hypothesis, we obtain A/N = 1 or B = 1. If A/N = 1, then $H_m \stackrel{\circ}{=} A * H_{m-1}$, and so the rank (i.e., minimum number of generators) of A is one [8, p.192], a contradiction. This completes the proof.

<u>Lemma.</u> If $n \ge 2$, then $G = \pi_1(S^{n+2} - L^1)$ is indecomposable.

<u>Proof.</u> Let G = C * D. Then by the condition, $\pi_1(S^{n+2} - K)$ is contained in a conjugate of C or D [8, p.245]. We may suppose that $\pi_1(S^{n+2} - K)$ is contained in C. Then the HNN extension of G with an associated subgroup $< \mu \mid > \cong Z$ [8, p.179]

$$G^* = \langle G, x_{m+1} | x_{m+1}^{-1} \mu x_{m+1} = \mu \rangle$$

is a nontrivial free product $C^* * D$, where C^* is an HNN extension of C

$$C^* = \langle C, x_{m+1} | x_{m+1}^{-1} \mu x_{m+1} = \mu \rangle.$$

On the other hand, since $\mu = [x_1, x_2, \dots, x_m]$, G^* is the free product of H_{m+1} and $\pi_1(S^{n+2} - K)$ with an amalgamated subgroup $< \mu \mid >$. Now both H_{m+1} and $\pi_1(S^{n+2} - K)$ are indecomposable, so is G^* , and this contradiction completes the proof.

Remark 1) A satellite n-link built from the trivial link 0 and the simple closed curve ℓ representing $\prod_{S \in \mathcal{L}_k} \alpha_S$, where ℓ is the family of all the subsets of I consisting of k elements, has the Brunnian property of type \mathfrak{B}_k .

2) If n = 1, then the Alexander polynomial of our link L is zero by [12, Theorem 5].

References

- 1. H. Brunn, Über Verkettung, Sitzungsberichte der Bayerische Akad. Wiss., Math-Phys. Klasse, 22 (1892), 77-99.
- 2. H. Debrunner, Links of Brunnian type, Duke Math. J., 28 (1961), 17-23.
- 3. H. Debrunner, Über den Zerfall von Verkettungen, Math. Z., 85 (1964), 154-168.
- 4. R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, (Prentice-Hall, Englewood Cliffs, 1962), 168-176.
- 5. J.-C. Hausmann and M. Kervaire, Sur le centre des groupes de noeuds multidimensionnels, C.R.Acad. Sc. Paris, 287 (1978), 699-702.
- 6. J. F. P. Hudson, Piecewise Linear Topology (Benjamin, New York, 1969).
- 7. T. Kanenobu, Groups of higher dimensional satellite knots, J. Pure Appl. Algebra, 28 (1983), 179-188.
- 8. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory (Springer, Berlin-Heidelberg-New York, 1977).

- 9. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory (Interscience, New York, 1966).
- 10. C. D. Papakyriakopoulos, On Dehn's lemma and asphericity of knots, Ann. of Math., 66 (1957), 1-26.
- 11. D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, CA, 1976).
- 12. G. Torres, On the Alexander polynomials, Ann. of Math., 57 (1953), 57-89.
- 13. T. Yanagawa, Brunnian systems of 2-spheres in 4-space, Osaka J. Math., 1 (1964), 127-132.

Department of Mathematics Kyushu University 33 Fukuoka, 812 Japan

