CANONICAL DUALITY for u.s.d-SEQUENCES

by

Naoyoshi SUZUKI (鈴木直羲)

Department of General Education

Shizuoka College of Pharmacy (背风菜(片))

Oshika 2-2-1, Shizuoka-shi

422 Japan

We treat here the following QUESTION:

If a sequence of elements ${\bf a}$ in a commutative ring A forms an unconditioned strong d-sequence (abbreviated to u.s.d-seq.) on an A-module E, then does it form a u.s.d-seq. on the canonical module ${\sf K}_E$ of A, (here we use the term 'canonical module' very roughly.)

This raised naturally from an elementary proof to the following problem given by the author ($[S_5]$):

If a Buchsbaum local ring A possesses the canonical module ${\rm K}_{\rm A}$, then ${\rm K}_{\rm A}$ is also a Buchsbaum module.

Our main theorem is:

THEOREM. Let A be a commutative ring with $1\neq 0$ and E an A-module. Assume that a sequence $\mathbf{a}=\mathbf{a}_1,\dots,\mathbf{a}_s$ of elements in A form a u.s.d-sequence on E. Then for any injective A-module I, the sequence form a u.s.d-sequence on

$$\operatorname{Hom}_{A}(\operatorname{H}_{\mathbf{a}}^{\operatorname{S}}(\operatorname{E}), \operatorname{I}),$$

where $H_{\mathbf{a}}^{\mathbf{S}}(\mathbf{E})$ stands for the limit of the direct system of Koszul (co-)homology modules

$$H^{i}(a_{1}^{n},\ldots,a_{s}^{n};E)$$

and mappings

$$\emptyset^{n,n+1}: H^{i}(\mathbf{a}^{n}; E) \longrightarrow H^{i}(\mathbf{a}^{n+1}; E),$$

where \mathbf{a}^{m} denotes the system of elements $\mathbf{a}_{1}^{m}, \dots, \mathbf{a}_{s}^{m}$.

As an easy but useful corollary to our main theorem, we have the following, which treat essentially the (S_2) -fication of a ring that plays an important role in the argument of Sharp's Conjecture by Aoyama and Goto in this same volume.

Corollary. Let A be a complete local ring with the canonical module K_A . Then if a sequence of elements ${\bf a}$ in A forms a u.s.d-sequence on the A, then it also forms a u.s.d-seq. on the A-module

$$Hom_A(K_A,K_A)$$
.

We must give here the

DEFINITION. Let A and E be as in the theorem above. A sequence of elements in A is called a d-sequence on E if for each i=1,...,s and for any j with i \leq j \leq s the following holds,

$$(a_1, ..., a_{i-1})E : a_i a_i = (a_1, ..., a_{i-1})E : a_i$$

A sequence ${\bf a}$ is called a strong d-sequence on E, if for any integers ${\bf n_1, \dots, n_s}{>}0$, the sequence

$$a_1^{n_1}, \dots, a_s^{n_s}$$

forms a d-sequence on E.

If besides each of the properties is stable under any permutation of the sequence, the term <u>unconditioned</u> is attached.

DEFINITION. Let A be a Noetherian local ring with the maximal ideal \mathbf{m} and the residue field \mathbf{k} and E a finitely generated A-module. A finitely generated A-module K is called the canonical module of E denoted by \mathbf{K}_{E} if the completion of K is isomorphic to

$$\operatorname{Hom}_{A}(\operatorname{H}_{\mathbf{m}}^{S}(E), \operatorname{I}_{A}(\mathbf{k})),$$

where s=dimA and $I_A(k)$ denotes the injective envelope of ${\bf k}$ over A.

Together with the characterization of Buchsbaum modules by the d-sequence property of system of parameters, the Main Theorem leads the canonical duality theory of Buchsbaum modules:

THEOREM, ([S₅]). Let A be a Noetherian local ring with its maximal ideal \mathbf{m} and the residue field \mathbf{k} . Assume that a finitely generated A-module E possesses the canonical module $\mathbf{K}_{\mathbf{E}}$.

If E is a Buchsbaum module, then ${\rm K}_{\rm E}$ is also a Buchsbaum module.

In this note, to introduce the reader to the theory of u.s.d-sequences, we quote some results stated in $[S_6]$ without proofs with the exception for the Main theorem.

u.s.d-sequences

Throughout this section, let A denote a commutative ring with $1\neq 0$ and E an A-module, unless specified otherwise. For a system of elements $\mathbf{a}=\mathbf{a}_1,\ldots,\mathbf{a}_s$ of A, let $K_*(\mathbf{a};E),Z_*(\mathbf{a};E)$, $B_*(\mathbf{a};E)$ and $H_*(\mathbf{a};E)$ denote the complex generated by \mathbf{a} over E, the cycle, the boundary and the homology module, respectively.

We begin with:

LEMMA. Let $a=a_1, \ldots, a_s$ be a d-sequence on E, then:

- (1) For any i=2,...,s, a_i ,..., a_s is a d-sequence on $E/(a_1,...,a_{i-1})E$.
 - (2) If $i \le j$ then we have

$$(0:a_i)\subseteq (0:a_j)$$

and

$$(0:a_1^n) = (0:a_1)$$

for any n>0.

(3) If therefore a is a u.d-sequence on E, then

for any $i(1 \le i \le s)$.

Consequently, if a is a u.s.d-sequence on E, then

for any $i(1 \le i \le s)$.

(4) If $\mathbf{a} = a_1, \dots, a_s$ is a u.s.d-sequence on E, then $H_q^0(E) \bigcap qE=0,$

where q=(a)A.

LEMMA, (Goto's lemma $[S_5]$). Assume that a_1, \dots, a_s is a u.s.d-sequence on E/bE for some b A. Then for any integers $n_1, \dots, n_s > 0$ we have,

$$(a_1^{n_1}, \dots, a_s^{n_s}) E : b = J \subseteq 1, \dots, s \quad (j \in J^a j^{-1}) [(j \in J^a j^E) : b].$$

The next theorem is one of the fundamental facts for

the local cohomology with respect to a u.s.d-sequence.

Essentially the proof had already been given in [S3]Prop.4.

Theorem. If $\mathbf{a}=\mathbf{a}_1,\dots,\mathbf{a}_s$ is a u.s.d-sequence on E, and $\mathbf{q}=(\mathbf{a})A$. Then:

$$qH_{p}(a_{1}^{n},...,a_{s}^{n};E)=0,$$

for any n and p>0.

Consequently, if p<s, then

$$qH_q^p(E)=0$$
.

Proof of the main Theorem .

Let q=(a)A and $L = Hom_A(H_q^S(E),I)$.

We must show that for each i and j with $1 \le i \le j \le s$, the following holds

$$(a_1,...,a_{i-1})$$
L: $a_i a_j = (a_1,...,a_{i-1})$ L: a_j .

There exists an exact sequence

$$(\#):0 \longrightarrow H_q^{s-1}(E) \longrightarrow H_q^{s-1}(E/a_1E) \longrightarrow H_q^{s}(E) \xrightarrow{a_1} H_q^{s}(E) \longrightarrow 0$$

and the I-dual sequence which is also exact,

 $(\#2):0 \longrightarrow L \xrightarrow{a_1} L \xrightarrow{T^*} L' \longrightarrow \operatorname{Hom}_A(\operatorname{H}^{s-1}_q(E),I) \longrightarrow 0 ,$ where $L' = \operatorname{Hom}_A(\operatorname{H}^{s-1}_q(E/a_1E),I)$.

We at first treat the leading two elements in the sequence. From (#2) it follows that a_1 is regular on L. Also a_2 must be regular on L' by the same reason, because a_2, \ldots, a_s form a u.s.d-sequence on E/a_1E , hence a_2 acts regularly on the submodule L/a_1L of L'.

Note that we have already finished for the case where i=1 and 2, in general.

In order to go further, we prepare the following lemma which is the key:

LEMMA ([S₅]). Let A,E and **a** be as the statement of the theorem (1.1) and $s \ge 3$. Let P denote the A-linear mapping

$$H_{q}^{s-1}(E) \longrightarrow H_{q}^{s-1}(E/a_1E)$$

induced from the natural mapping

and I be any A-mdule.

Suppose that g_2,\dots,g_s are A-linear mappings of $H^{s-1}_q(E/a_1E)$ into I satisfying the following equation:

$$a_2g_2+...+a_sg_s=0.$$

Then for each i=2,...,s the composition $g_i \circ P=0$.

Let us continue the proof of the Main Theorem. The remaining cases are $s \ge 3$ and $i \ge 3$. Let

$$f \in (a_1, \dots, a_{i-1})^{L:a_i a_j}$$

Then we have

$$a_i a_j f \in (a_1, \dots, a_{i-1}) L$$

and by operating T*

$$a_{i}a_{j}T^{*}(f)$$
 $(a_{1},...,a_{i-1})L!=(a_{2},...,a_{i-1})L!$

By the induction hypothesis on the length s of the sequence, we may conclude that

(#3)
$$a_{j}T^{*}(f) = \sum_{l=2}^{i-1} a_{l}g_{l}$$

for some g_1 's L'. By the lemma above, for each $1=2,\ldots,i-1$, we have

$$P^*(g_1) = g_1 \circ P = 0$$
.

By the exactness of (#2), for each l=2,...,i-1, there exists f_1 L such that $T^*(f_1)=g_1$. Substituting them to (#3), it follows,

$$T^*(a_j f) = \sum_{j=2}^{i-1} a_j T^*(f_j)$$

and hence

$$T^*(a_j f - \sum_{i=2}^{i-1} a_i f_i) = 0.$$

Again by exactness of (#2), there must exist f_1 L such that

$$a_1 f_1 = a_j f - \sum_{i=2}^{i-1} a_i f_i$$

namely as required we have

$$a_j f \in (a_1, \dots, a_{i-1})L.$$
(Q.E.D.)

Let us give you a brief Proof of the Corollary stated in the introduction.

Proof of Corollary. Since we may consider A as a homomorphic image of a complete Grenstein local ring R of the same dimension as A, $K_A = Hom_R(A,R)$ and it follows by the local duality theorm that

$$\operatorname{Hom}_{A}(K_{A},K_{A})=K_{(K_{A})}.$$

Consequently the assertion follows directly from the main theorem.

We close this note with an example which sustains the best possibility of our main theorm.

Example. The d-sequence property is not necessarily inherited by the canonical module, even in the case where A has the finite local cohomology.

Indeed let (A,m,k) be a local ring of dimension d>2 and depth d-1 such that $H^{d-1}_{m}(A)=A/m^2$. Let $a=a_1,\ldots,a_d$ be a s.o.p of A. If furthermore we choose for some a_i with i<d, say i=1, a_1 is not contained in m^2 , then, with $A'=A/(a_1,\ldots,a_{d-1})$,

$$H_{\mathbf{m}}^{0}(A')=[0:(a_{1},...,a_{d-1})]_{A/\mathbf{m}}^{2}=[0:a_{1}]_{A/\mathbf{m}}^{2}=\mathbf{m}/\mathbf{m}^{2}.$$

This means that A' is a Buchsbaum ring of dimension 1, hence a forms a d-sequence on A. On the other hand,

$$H_{\mathbf{m}}^{2}(K_{A}) = Hom_{A}(H^{d-1}(A), E_{A}(\mathbf{k})) = Hom_{A}(A/\mathbf{m}^{2}, E_{A}(\mathbf{k}))$$

and

$$H_{\mathbf{m}}^{0}(K_{A}/(a_{1},a_{2})K_{A})=[0:(a_{1},a_{2})]_{H_{\mathbf{m}}^{2}(K_{A})}=Hom_{A}(A/(a_{1},a_{2})+m^{2},E_{A}(\mathbf{k})).$$

Let us choose a_1, a_2, a_3 so that they form a part of a minimal

generating system of \boldsymbol{m} from the first. If they were d-sequence on $\boldsymbol{K}_{A}\text{,}$ then we have

$$a_3 H_{\mathbf{m}}^2(K_A/(a_1,a_2)K_A) = \mathbf{0}$$
,

namely, a_3 belongs to the annihilator $(a_1,a_2)+\mathbf{m}^2$. But it is impossible, because dim A >2.

ACKNOWLEDGEMENT: The key idea of this paper is obtained from joint work with S. Goto. The author wishes to express his thanks to S. Goto for his advice.

REFERENCES

- [A] Aoyama, Y., Some basic results on canonical modules, J. Math. Kyoto Univ.23(1983)85-94.
- [G₁] Goto, S., On Buchsbaum rings, J. Alg. 67(1980)272-279.
- [G₂] Goto, S., On the associated graded rings of parameter ideals in Buchsbaum rings, J. Alg. 85,No.2(1983)490-534
- [G₃] Goto, S., Blowing-up of Buchsbaumrings, Commutative Algebra: Durham 1981, London Math. Soc. Lect. Note Ser. 72.140-162, Cambridge Univ. Press.
- [G₄] Goto,S., A note on Quasi-Buchsbaum rings, Proc. A.M.S.90(1984)511-516.
- [G=Shi]Goto, S. and Shimoda, Y., On Rees algebras over Buchsbaum rings, J. of Math. Kyoto Univ. 20(1980)691-708.
- [G=S] Goto, S. and Suzuki, N., Index of reducibility of parameter ideals in a local ring, J. Alg. 87(1984)53-88.
- [G=Y] Goto, S. and Yamagishi, K., The theory of unconditioned strong d-sequences with applications to rings and modules possessing finite local cohomology, in preprint (1983).
- [Hu] Huneke, C., The theory of d-sequences and powers of ideals, Advances in Math. 46(1982)249-279.
- [Sch] Schenzel, P., On Buchsbaum modules and their canonical modules, Teubner Text zur Math. 29, Seminor Eisenbud/Singh/Vogel, Vol.1, (1980)65-77.
- [St] Stückrad, J., Über die kohomologische Characteriserung von Buchsbaum-Moduln, Math. achr. 95(1980)256-272.

- [St=V₁]Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitatstheorie, J. Math. Kyoto Univ.13(1973)513-528.
- [St=V₂]Stückrad, J. and Vogel, W., Toward a theory of Buchsbaum singularities, Amer. J. Math. 100(1978)727-746.
- [S=C=T]Schenzel, P., Cuong, N.T. and Trung, N.V.,
 Verallgemeinerte Cohen-Macaulay-Moduln, Math.
 Nachr.85(1978)57-73.
- [S₁] Suzuki, N., On the generalized local cohomology and its duality, J. Math. Kyoto Univ. 18(1978)71-85.
- [S₂] Suzuki, N., On applications of generalized local cohomology, Proceedings of the 1^{-st} symposium on commutative algebra, Karuizawa (1978)88-96, in Japanese.
- [S₃] Suzuki, N., On the Kosuzul complex generated by a system of parameters for a Buchsbaum module, Bulletin of Department of General Education of Shizuoka College of Pharmacy, 8(1979)27-35.
- [S₄] Suzuki, N, On a basic theorem for quasi-Buchsbaum modules, ibid. 11(1982)33-40.
- [S₅] Suzuki, N., Canonical duality for Buchsbaum modules-An application of Goto's lemma on Buchsbaum modules, ibid.13(1984)47-60.
- [S₆] Suzuki, N., Canonical duality for u.s.d-sequences, preprint.
- [V] Vogel, W., Uber eine Vermutung von D.A. Buchsbaum, J. Alg., 25(1973)106-112.