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Cohomology modules defined by an unconditioned strong d-sequence

FREMKSAR 4 LB 28 (Kikumichi Yamagishi)

The notion of a d-sequence is first introduced by Huneke [1],
who has proved important results on the properties of ideals gen-
erated by a d-sequence. We presently realize that d-sequences
play roles comparable to regular sequences in the theory of the
ordinary Koszul complex, [2][3]. However it is impossible for
us to study the behaviours of d-sequences in the cohomology theory
because the cohomology functors are just given by the direct limits
of the Koszul cohomologies. So we will try to do it introducing
new sequences "unconditioned strong d-sequences' instead of d-se-
gquences, see [41. In this lecture we will discuss several prop-

erties of the cohomology modules defined by a such sequence.

§1. Let A be a commutative ring and E an A-module. Let
81y 8gy eer ag be a sequence of elements in A and denote by
qQ the ideal of A generated by al, a2, cee aS . For con-
venience’ sake we will use the following notations:

(i) Q. = (al, e ak) for 1 g k < s and 9y = (0)

(ii) qp = (ai lie 1) for I1C{1, .., s} and ag = (0) .

*) This shall appear in the joint work [5] with Goto.
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Recall that a;s 25 N as is called a d-sequence on
E 1if the equality
ql_lE alaj = ql_lE aJ
holds for every 1< i< j< s [1]
Definition (1.1)([4]). We will say that 2y aé, cee s ag

form an unconditioned strong d-sequence (henceforth a USD-sequence)

n n n
1 2 s .
o see s By form a d-sequence on E in any

Npy eee s ns'> 0

on E if a

order for every n

Our first result is stated as follows:

Theorem (1.2). The following are equivalent.
(1) 815 Bps e 5 B form a USD-sequence on E
nq gk
(2) qH (a. s eee, A. i E) = (0) for every 1 Lk <s,
1 k
lg11<.”<ik§s,ny.”,r&>o and p >0
q Nk »
(3) c;Hl(a. , ., a. ; E) = (0) for every 1< k< s ,
l l = =
1 k
1< i 4 < i { s and ng, ..., n, >0

- Proof. (1) = (2) As it holds that
n, j ng '
(ai | i€ I)E : 2 <:(a,i |i€e I)E : q
for every Ig{l, .o s}, j €I and n,, nJ.>O (i € 1I), this
implication comes at once. (2) = (3) Clear. (3) = (1)

It is enough to show that

*%) "d_" means "determinantial" (an informal talk of Huneke at
Nihon University).



nq i Ny 0y nq i
(a1 A )E a; aj (::(al A JE aj
for 1 S i S j<s and Ny, «.., Dy, Ny >0 . Let x Dbe an
element of E - and assume that
a nla an = a nlx + + a nl_lx
i J __ 1 1 et i-1 i-1
with Xy € E . Consider the element
"3
od = X € * eee F X; €. o 4 (- aj x)e:.L
n; ng
of Kl(al s oeees By T E) . Then & is a cycle, whence by (3)
we have that qO((: B1 , thus we get
n. n n. '
J 1 i-1
aj(aj x) E.(a1 R E
as aj € q . Therefore we can express that
a nj+1x = a " + +oa i
J =8 Y e i-1 Yi-1

with yke E . Put

B = yi€q * cee v Vi 1854 7 (- x)ei
nl ni_1 n.+1
in K,(a, =, ..., a. , a. J ; E) . Then as B 1is a cycle
171 i-1 J n
it yields that gB C:B1 by (3) again. This shows aj Jx is
i ni—l)

L e s By E .

contained in (a

Corollary (1.3). Suppose that A 1is Noetherian and E 1is
finitely generated over A and that g 1s contained in the

Jacobson radical of A . Then a as form a USD-se-

1 9
quence on E if and only if qu(a1 -1 ; E) = (0) for

all n ...,ns>0.

1’

§2. Let K’(al, ee., a_; E) (simply say K°) be the complex

s’
defined by

n.

J



P . _ .
K (al, ceesoag; E) = Ks—p(al’ ey E)
for each p &€ Z . Z° , B and H®' are the cycle, the boundary
and the homology of K" . Notice that there exists an isomor-
phism of complexes
K* = HomA(Kf(al, cees B3 A), E)

So it allows us to call K° the Koszul co-complex generated by

= N - | over E
1 s
We put
Hg a (.) = 1lim Hp(alm, ey asm; .)
1°°°77s —>m

for all p& Z , and call it the p-th cohomology functor defined

10 e as . If there is no confusion, we simply denote

; p
it by Ha(.) .

by a

To end of this note, let us assume that al, a2, ce e s aS
form a USD-sequence on E

Proposition (2.1). qHZ(E) = (0) for all p # s

Proof. As <qu(a1m, .o asm; E) = (0) for m >0 by

(1.2), this comes at once.

Proposition (2.2). Suppose that A is Noetherian and E
is finitely generated over A and that qE # E . Then either

(i) or (ii) has happened:

(i) htEq = s , where htEq = ‘ inf dimA Ep ;
P & Supp,E , p>a p
(ii) gE is contained in a primary component of =zero module (O)



which belongs a minimal prime ideal of E

Moreover one also has ht 0 qQ = s

E/HE(E)
Egample (2.3). Let A =Xk[a, ..., a, b, , b.] be
a polynomial ring over a field k and put E = A/I , where 1 =
(al, e as)/\\(bl, e s bt) . Then a1, 8ps e 5 A form
a USD-sequence on E and HZ(E) = (bl’ e bt)E . Further

» A form an E-regular sequence, where E = E/Hg(E)

10 %20 a
Let ¢P : HP(a;, ..., a; E) —> HJ(E) denote the canonical
map for each p € Z . Then -
Proposition (2.4). Each ¢P is surjective for all p # s.
Remark (2.5). Surjectivity of ¢P’s does not necessarily

imply the USD-sequenceness of ai’s

We put
M(qIE) = Z :[qI—{i}E : ai]_+ q;E
iel
for each I <:{i, ..,'s} . Of course AM(q¢E)_= (0)
By our definition of K® , we have the expression
p ®
KY = E R, Ae
1CH1, .., 8y AT
#I =s -p
with a free basis -{eIl #I = s - p} for each O g'p g s . Then
we define the A-submodule Mp(al, cees A E) (simply say MP)
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of KP such that

p .
M(a,, «.., a_; E) = ® M(q,_-E) &, Ae
1 s 1C{t,..,sp MU AT
#I =s ~-p
for each 0 { p £ s , where N = {1, e s}. M® = M(gE) clearly.

It is easy to check that MP :)Bp for each p . Moreover

we have the following

Theorem (2.6). Ker ¢° = 2P\ MP/BP holds for all 0¢ p
<s

Proof. Let O be an element of 2ZP so that A € vP .

Consider the following diagram:

¢
Zp,—>Zp(a12, “ees asg; E)
HP —~———9'Hp(a12, ey asz; E)

T

By our definition of MP , we see that Qﬁ%) is contained in

12, oo aSZ)Kp(alz, ey asz; E) , therefore i(d) is a

boundary. This shows Ker ¢ D zP\ MP/BP .  The converse is

p
HP(E)

(a
a routine.

Corollary (2.7). One has the following exact sequences:

DA P P
0o —> —Z———/Blp—M-——> wP 27, HP(E) — 0

0 —> _—C—lf—_—_>qE >H§(E).
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Theorem (2.8), Let s

i/
no
o
a
o

A

o}

VA

0]
|

no

Then

the canonical map

T

gt i B(E) —> © (E)

is an isomorphism.

Proof. Put

HP (n)

n n
Hp(al - P E)

Hp(aln, cee, @ n.om)

2

s-1
for each n > 0 . Let %ig_, g m} and '{g'g , E'i m} denote

the direct systems such that:

Il

1 P(n)

Hp(n)\\\Eg\\\5 1 P(n) -ri ,
Bal e YL W e
Y (m) = 5 HP(m) ~ Y0
for n< m, and let
Eh : H’(n) —— # P(n)
be the canonical map for n > 0O . Then we have the following

commutative diagram:

0 — Pl —> uP(n) —Efé HP(n) —> o

a m—n§'p—{L p l g3 l
S n,m n,m y n,m
0 —s HPlm) —> HP(m) =% HP(m) —> O

for n<m. Since the top .and bottom rows in this diagram are
exact and since the left hand side of vertical maps are zero maps

for each n < m , we get the next exact sequence of direct limits:

p
0 —> HO(E) 7, ub (E) —> ©

17 %1



Theorem (2.9). There exists a canonical A-isomorphism
qQ E : a
£P i HO(E) > P p+l

a E
9y

for every O § p < s

Proof. In case p = 0O there is nothing to say, so we may
assume that p > O . Because by (2.8) Hg(E) is canonically
isomorphic‘to Hg a (E) , we may further assume that p =

1°°° " p+1
s -1 . From (2.7) we can find an A-isomorphism such that
s-1
A :»HZ_I(E) > s—lZ s-1 '
= Z N M

Let .f : Ks“1 ——Fé E'@A Aes = E be the projection to the last

1 s-1 :
(recall K = Kl = E ®A (Ae1 ® ... @ Aes)).

Then it is easy to check that this map § induces an isomorphism

coordinate of K5~

Zs—l . qs—lE Poag
T - - > :
787t A\ st M(q_ .E)
s-1
We put & = Tej - Then this & 1is a required one.
Corollary (2.10). Let 0 < p (s . Then HL(E) = (0)

if and only if the condition

P “
qu Pagy = %:;:%[(al, » By e ap)E : ai] + qu
holds.
Theorem (2.11). If n Z 2 , the exact sequence
0 — #(®) = Hl(E/a,"E) — H2'h(E) — o
splits for every O g pLs-2. Therefore one also has



P N nk K p+i (?)
Ha(E/(a1 s oeee oA JE) = B H (E)
= i=0 =
for O g p < s-k,1 é k (s and Nys eee 5 T Z 2
Proof. We have the commutative diagram such that:
p m m, m P m m, n
H (al,’ cees Ay E) ——> H (a1 yoeees Bl E/a1 E)
P . P n
HE(E) B Hg(E/al E)
for each m Z n . As HIZ n , the map 5;1 splits, therefore we

know that the canonical map Hg(E) N HI;(E/alnE) also splits.

The rest of (2.11) comes by induction.

Corollary (2.12). Let 1 g k & s and Nps eee 5 N 22
N Nk
Then qHz(E/(a1 s oeee oAy JE) = (0) for all O {p { s -k
Corollary (2.13). Let 1 g k (s and Nyy1s +o+ o Og > 2
Then
n n
k+1 S, _
Hp(al’ ces By, Ay g s oees Ay E) = .
' ()
® H (a,, , a; E) ©
ig¢p
| i ()
® ® Ha p(E/qu)
0< 1<t
i>p

holds for all 1 S D g s , where t = s - k
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§3. Denote by 1,(.) the length of an A-module. Recall that

Al

a

we assume that a ag form a USD-sequence on E

1° Dy e
Proposition (3.1). The following are equivalent.

(1) All HZ(E) (p # s) have finite length.

(2)  All Hp(al, .-+» a3 E) (p # s) have finite length.

Proof. By (2.4) it suffices to show (1) = (2). We shall
prove by induction on k that Hp(al, cees A E) has finite
length for all p > O , where 1< ks . If k=1, there
is nothing to say because Hl(al; E) =0 : a, = Hg(E) . Let
k Z 2 and assume that our assertion holds for k - 1 . Put

K. = K.(al, cees oA E) and K. = K.(al, cees A g E)

Then we have the exact sequences:

,

(#) 0 — H, —> H — H,, = 0

p

for p > 2 and
. 0
(##) 0 — H, — H — Hé(E/qk_lE)-—e 0

Since Hg(E/qk_lE) also has finite length from (2.1) our asser-
tion immediately comes by (#) and (##) applying the hypothesis of

induction on k . .

If all Hg(E) (p # s) have finite length, we define

s -1

I(E) =) (5T Ly, vl ,
=0

i i
where h (E) = lA(Hg(E)) , and
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X(ay, «-vs ag; E) = % _ é(- DP1,(H (8, ooy ags B))

Theorem (3.2). Suppose that all HZ(E) (p # s) have

finite length. Then one has

7((al, ee., a_; E) 1,(E/qE) - I(E)

Proof. Since

1L (H (8, <oy ag; E)) 2 S G5y ). h'(E)

i

holds for all p ) O , we have

Il

y & L E)) - 1,(E/qE) + T - PGS S ). i)
8ys e as,z A q L. P o s .

. ls -1 .
1,(E/qE) - § '(5 j(- 1P % . ntE

T p

Il

1,(E/qE) - I(E)

s - i

because (° ;.1) =) ;(— l)p_l(p f i)' for 0<1i<s (if s
2 2).

Let Gq(E) denote the associated graded module of E with
respect to q and put h; = a, mod q2 in [Gq(A)]l for 1 S'i
<s

Theorem (3.3). Suppose that all Hg(E) (p # s) have

finite length. Then one has
: s =1
Xlay, .., =) (DD ntE) w1, (THRe (EN]

Proof. As E _ M(qE) D gE , we get by (3.2) that

- 11 -



X(a;, ..., a3 E) = 1,(E/M(qE)) + 1,(M(QE)/qE) - I(E)

Since we know that
=1 s i
1A(M(qE)/qE) = iE _ O:(i).h (E)
and

S
[ (G (BN] g = B/M(aE)

our assertion comes by arithmetical computations.
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