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The action of Hecke operators on theta series

By Hiroyuki Yoshida

Introduction

Let S be a 2n x 2n positive definite symmetric matrix

with rational coefficients. Let S ,Sc be a complete set of

1
representatives of the classes in the genus of S. For a positive

integer m, put

x9§m)(z) = ;E::; exp(27t4—lTrace(thixz)), z el

m’
XéMzn,m(Z)

where Hm denotes the Siegel upper half space of degree m and
M2n,m(z) denotes the set of all 2n x m matrices with integral
coefficients. As well known, dl§m)(z) defines a Siegel modular
form of weight n of a certain level. To determine the action of
Hecke operators on 1}§m)(z) is one of classical problems concerning
theta series.

In the present paper, we shall treat this problem from the
point of view of the Well representation. In _§1, we shall express
theta series in terms of Weil representations and shall show, as
Theorems 1.6 and 1.7, that it can be reduced to a local problem
(1.23). In the succeeding sections, 5.2 and _§3, we shall solve
the local problems concerning T(p) and T(S)(pz) respectively
(cf. (1.28) and (1.32) for the definitions of these operators which
are generdators of the Hecke ring). The main results are formulated

as Theorems 2.1, 3.7, 3.8 and 3.10. The'line of such method of

3
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investigation was suggested in our previous work (ﬁé] where only
the case m =n = 2 was treated; we shall carry out the program
more systematically in this paper.

Two works should be mentioned here in the relation with our
results. Freitag Eﬁ} has given a simplé formula for the action of
T(p) on {%gm) (cf. Proposition 1.9). His method of proof, which
employs the theory of singular Siegel modular forms, is different
from ours. Also our results are sharper in the sense that not only
they are not restricted to the level 1 case but also théy givé
explicit relations with automorphic forms on the orthogonal groups.
In the case m = n, Wé can give a simple formula (cf. Proposition 1.1
for the action of T(S)(pz) on {%gm) in a similar fashion as:[5]‘.

The paper of Rallis [7] is closely related to our results on
T(S)(pz) proved in §3. In fact, it seems that one is equivalent
to the other modulo some explicit computation of "the Satake
transform“ of Tcé)(pz). However we should not dispence with §3
because of the following reasons, The proofs in %2 and §3bare
similar in spirit and it is aesthetically unsatisfactory to restrict
only to the case T(p); furthermore our method of proof, which is
different from E7j , seems to be applicable, with rather small
number of modifications, to the case where the dimension of the

quadratic space is odd.



Notation. If S is an associative ring with a unit, s* denotes
the group of all invertible elements of S. Let R be a commutative
ring with a unit. We denote by Mm.n(R) the set of all m x n-

b

matrices with entries in R. Let I Dbe an ideal of R and A = (aij

B = (bij)é:Mm’n(R). We denote A= B mod I when aijzz bij mod I
for all 1=i<m, 1<j<n. We abbreviate Mm,m(R) to M (R) and
set GLm(R) = Mm(R)X. If Aé&Mm(R), 0 (A) stands for the trace of
A. The diagonai matrix with diagonal elements a1, 29,77, 2, is
denoted by diag Eal,az,'-',amj

By GSp(m) and Sp(m), we denote the group of symplectic
similitudes and the symplectic group of degree m respectively. We

assume that the group of R-valued points GSp(m)R (resp. Sp(m)R) ’

of GSp(m) (resp. Sp(m)) is given explicitly by GSp(m)R = {_g‘

g€ GL, (R), ‘ewg = m(g)w, m(g)eRx} (resp. Sp(m)y = {g | g€ ey, (R,

0] 1

tgwg = WC} ). Here w = m n , O and 1 are the zero

: ~1 0 m m
m m

and the unit matrix of size m respectively. We usually denote

a b A
gé&GSp(m)R as g = (’C d> with m X m-matrices a, b, c, d.

The Siegel upper half space of degree m is denoted by Hm' We set
e(z) = exp(2’/t'q/—lz) for zZ&C.

Let k be a field and G -be an algebraic group defined over k.
The group of all k-rational points of G 1is denoted by Gk' When

k is an algebraic number field, GA denotes the adelization of G.

5
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For a place v of k, G may be abbreviated to Gv' When k = Q,

k
v

o< denotes the infinite place.

The finite field with q elements is denoted by Fq. Among
the orthogonal groups associated to 2n-dimensional regular quadratic
spaces Qver Fq, there are two isomorphism classes over Fq. We
denote by Ol(2n,Fq) {(resp. 0_1(2n,Fq)), the group of all Fq—rationa]

points of the orthogonal group when the Witt index of the quadratic

space is n (resp. n-1).

If X is a locally compact abelian group, S(X) denotes the

space of all Schwarz-Bruhat functions on X.
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§ 1. Theta series and Hecke operators

In this section, we shall express theta series in terms of

the Weil representation and consequently we shall show that the>

action of Hecke operators on theta series can be explicitly localized,
Let G (resp./53 denote the symplectic group Sp(m) (resp.

the group of symplectic similitudeyGSp(m)) of degree m. Let Z

denote the center of /E: Let N be a positive integer and W be

a character of finite order of QE/QX whose conductor divides N.

For every prime number p, we define an open compact subgroup Kp

n ~ ~s
(resp. K_ ) of G (resp. G~ ) and a representation M_ (resp. M )
p Qp p p

Q
~ b
of Kp (resp. Kp) as follows.

2

| o
If pAN, we set Kp = Sp(m)zp, Kp = GSp(m)Zp; let Mp(resp. Mp)

be the trivial representation of Kp(resp.'Kp).

If p tN, we set

K =%(a Z)ésp(m)zpl'c_—EOmodpip} ,

p c
~ (a b) Lp
Kp = % c d E‘GSp(m)Z c=0 mod p } ,

L
where p P gdenotes the highest power of p which divides N, We set

.|

a b
Mp(k) QJp(det a) for k = ( d>€?K

c b,
Mp(k) = CUp(det a) for k = c d fpr

Let o be an irreducible rational representation of GLm(C).

For the infinite place o0 of Q, we set

Koo = 5(-2 :) < Sp(m)R} ;

T



and define a representation M, of K, by

(W)

~ ~

We set K“)= Ko M= My, -

T (a + by-1).

We note that KKEE/U(m,C), the unitary
group of degree m, and it is a maximal compact subgroup of G =
. . . r:' ) .

Sp(m)R as being the stabilizer of ,-1 1m€:Hm.

We put K = ]) Kv and define a representation M of K by

v
7~ ~ o~ ~
M= @M, ; similarly we set K= ||X , M= ®M, . Let W be the
A : \4 v
v v A
~

representation space of M and M.

Now let A&f)(N,CU) denote the vector space consisting of
all W-valued continuous functions F on GA which satisfy the following
condition (A).
(A) F(Y gk) = F(g)M(k) for any b/é:GQ, gE€G,, kEK.

~
Similarly let AéT)(N,Q)) denote the vector space consisting of
all W-valued continuous functions F on'EA which satisfy the following
Va4 . land
conditions (A) and (B).
la%d ~ ~S
(A1) F(Ygk) = F(g)M(k) for any reG., ge¢G., kek.
. - )

A €6y

Here we have regarded W as a character of ZA through the isomorphism

(B) F(zg) = w™=z)F(g)  for any zEZ

~r X
Zpy= Qy

Lemma 1.1. Let Res denote the restriction map from Ag?)(N,u))

to Ag?)(N,QJ). Then Res is gg isomorphism.

U X : x X T »X X
Proof. Let Z., = %Z-IZleER+J&CZm. By Q, =Q -[pi Z5 Ry
we get

(1.1) T, =T%.6,2_ TTX
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Hence Res is injective: For Féng?)(N,uJ), put

~/ N~ ~ I

(1.2) F(Y¥gzk) = F(g)M(k), YV €G,, g€Gy, 2€7,, , kéD‘Kp
~ o~ -

Then it is easy to verify that Fé.Ag§)(N,uJ). Hence Res is

surjective. This completes the proof.

We are going to define the classical spaces of Siegel modular

forms and investigate their relation with Ag?)(N,Q)). We put

) a b ~
(1.3) JU_(g,z) = g (cz + d) for g = ( c d><% Gy » ztiHm ,
~ o s .
where G“ﬁ = ~{g<&G“)\ m(g) >0} . We have the cond;tlon of automorphic

. . 3 ;N
factor: JO"(glg2,Z) - Jo-(gl’g2Z)Jo-(g2’Z)’ gl) gchbcH" ZEHm- Set

a b
'™y = %Y= (. d)é Sp(m),,

For a€ Z, (a,N)

CEOnmdN}

1, put

| w _(a)
p|N P .
Then W, is a Dirichlet character modulo N. Let GcﬂIigm)(N),UJo)

(1.4) w,(2)

denote the space of aiivééntinuous functions f on Hm which satisfy

fontimuons functions f on

(©)  H(¥(2) = W (det a)f(z)j_(¥,2)7" T (i-valued
a b '
for any X’= ( c d) € Iﬁém)(N), z«&Hm. Let Gv(Ifém)(N),uJo)

denote the space of all functions in —6;ﬁljém)(N);%lo) which are
holomorphic on Hm\j%cuspé} . As well known, the holomorphy at cusps

is automatically satisfied if m2>2.

(m) . Vod -
Take F&Ar (N,wW). For gEGOO, define gEGA by gy 1
if v xoo , Eio= g. Set
(1.5) (gi) = F r . .1 € G
. §(gi) = F(8)i(g,1) =, 8€ G,

where 1 = Al—l/lm and &{is the contragredient representation of ¢

1
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F@) = ate™h for gear (0.

Lemma 1.2. Let "} be the correspondence F—>f defined by
1
).

(1.5). Then ¥ is an isomorphism A‘™(N,w )":’Edz(:fém)(m,w;

Since this lemma should be well known, we omit the proof.

Now we are going to define Hecke operators. Assume p)/N;

~ r~ ~ Pavd

so we have ‘K_ = GSp(m) . Take aeG and let K aK = \) g.K
p Zy Q PP ;1P

be a coset decomposition. For Féfzgy)(N,u)), we put

~ . r~
(1.6) ((KpaKp)F)(g) = Ei‘ F(gg;), 8€G,.
Then it is clear that (Ebdﬁb)FéﬁZ@T)(N,a)). Assume a =

d1 dm €1 €mn

diag [p T L,Pp  ,p T ,-- D J with non-negative integers di’ e,

7

(1£i<m) such that d; + e, =u, m(a) = pl.

By the strong approximati

theorem, we see easily that a coset decomposition

d
(m) (m) - ) (m)
TPl = U T MY,
i=1
gives rise the coset decomposition
: d
Va4 _1/\/ _lf\/
Ka "K_ = U ¥ I7K
p p 21 1p
By rather formal manipulations(cf.[ié],_?6), we find:

Lemma 1.3.  The assumptions being as above, 1et'§y'9§'the Same

as in Lemma 1.2. In view of Lemma 1.1, use the same letter ¥ for
1

) for the sake of

the isomorphism 'KET)(N,QJ)gé/aéijjém)(N),u);
* - o~ I
simplicity. Put f = Y (F), £ = (X2 1Kp)F). Let k be the

integer such that WK&-lm) = <xk.identity for <A€CX. Then we have

* uk/2 d )
£ (z) = p '21; W (det ai)f()/iz)Jd‘i( ¢;,2), z€H,
1:

10
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_ ay bi)
where (i = c. d.
i i

This Lemma shows that the Hecke operators ’K;ak; essentially
coincide with the classical Hecke operators (cf. Andrianov flj ) when
interpreted in terms of the isomorphism !KéP)(N,uJ)Zéféngqgm)(N),a)glx

Now let us consider theta series. Let SiéMzn(Q) be a positive
definite symmetric matrix and H (resp. %3 denote the orthogonal
group (resp. the group of orthogonal similitudes). Set vV = M2n,1(Q)’

Q(x) = 'xSx for =x€V, X = M, _(Q) and we identify X with V®.

2n,m
We choose a character “V of QA/Q so that \¥KXX) = e(x), X€R,
\%p(x) = e(-Fr(x)), Xé.Qp, for every p, where Fr(x) denotes the
fractional part of x. Then, associated with S and “Yv‘(resp.”¥ ),
we have the local (resp. global) Weil representation ’7EV (resp. T )
of GV (resp. GA) realized on S(XV) (resp. S(XA)), where v is a
place of @Q (cf. [}é}, §2). Let W be the character of Qi/QX which
corresponds to Q(A/Y:E;EE;;¢§) by class field theory. Let L bé an

integral lattice on V and XK' be the stabilizer of L in HAQ'We have

K' = UKI'J,X’ K;, with K! = {hEHQp\ hL = Lp} and K/ = H, where
Lp =L &y Zp; Let T be a finite dimensional representation of K} on
the vector space W_ such that T is unitary with respéct to an inner

T
- 3 > '\ . .
product { , >‘c on W.__ . Define a representation P of K' by P (k)

=T(k) for k€K', Let ¥ be a W%§€alued function on H, which satisfies
(1.7) P (¥nk) = Y(h) P(vk)” for any ¢°€ Hy, heHA’, KEK,

Let P(x) be a WTJ® W-valued polynomial function on X, which
satisfies

(1.8)  P(k™*x) = P(x)( P(k) ® 1) for any k€K , x€X,,

(1.9) P(xa) = P(x)(1 @ (T (a)det(a)™™)) for any x€X, , a¢€ GLm(R)j‘

We set

11
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- t ooy
foo(x) = exp(-2TT ( "x8x))P(x) € S(X) ®W,C®W for x¢ Koo »
fp = the characteristic function of L$<£S(Xp),

f=T‘IfVGS(XA)®W,t@'W.

For v, V,€ WT, and w €W, put <v1®w, V2> =- <V1’ v2>tw;
extend this pairing to the map of WT:® W x Wt/ to W, which is

C-linear(resp. C-anti-linear) with respect to the first(resp. second)

argument. We put

¢ | -1
(1.10) P.(e) = {20 (@em x), P (h)) dn.
HQ\HA xeXQ B
Here dh denotes the invariant measure on HQ\HA which is derived
by Weil's relation from the Haar measure gﬂt on HA such that

S ﬁE'= 1. Let p be a prime. Put B(x,y) = Q(x + y) - Q(x) - Q(y)
K'

e L
X, y&eV, L_= %xéV \ B(x,y)¢ Z for all yelL } . Let (p )
p Qp p p .
\/
be the Zp—module generated by \Q(x)\ Xé:Lé% . We see that Qp is

a non-negative integer and is equal to zero for almost all p. We

set N = TT r p

p
Lemma 1.4.(ct.[13], 32) 1If r,_ satisfies)

a b '
(1.11) Ty ( (_b a))fé0

£,-0(a + bf-1)

a b
for any (—b a) &€ K. , then we have E@iCTAg?)(N,a)).

-

4
Hereafter we shall assume (1.11). Let ﬂzf be the extension of

Eﬁ? to Aé?)(N,aJ) guaranteed by Lemma 1.1. When there is no" fear

1) When P is a constant function on X, , this condition is

satisfied with T (g) = det(g)?, gééGLm(C) (cf.[ﬁé}, Lemma 2.2).

12
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of confusion, we shall abbreviate §f(resp. Qf) to §f(resp.§f).

. Ny o Y
We shall analyse the action of Hecke operators KpaKp, aE'GQ f\M(zm,Z )
~ p P
u . ‘ .
for pA/N on §§f' We may assume m(a) = p with a non-negative

integer u. Let %%éf; = k/ giﬁ% be a coset decomposition such that
i

m(gi) = pu for every 1i.

First let us consider the case where u is even. Put u = 2t

_ -t A _ -t
and set z = p leme;GQ, zZ_ =D

~
P 'IZmE-GQ . Then we have

p

~

—

o ~
Doleey) = Pplzey) = (W (07N Bylz g8,)

= w_ (™) j <2 (Tt(ez g8 (h7™1%), ¢ (h))> dn
HQ HA XE:XQ

Hence if we put

1.12 f! = E V7T NE
( ) D : fcp(ngl) D’

1
17 £ x £,
vip ¥ P

(1.13) £
then we get
~ ~ 7 t
(KK DD (e) = w (") Ry () for gegy.

. Vo e (m)
Since qtp(k)fp = fp for ké;Kp, we see that iﬁf,é Aq_ (N, w).
Therefore we get

ns r~ ~ mt e Yo sd

(1.14) (K ,ak )P () = ¥ ") P (e) for geGy,

where Ei is the unique extension of [ to ,K(m)(N w )
f' q ——f! g . ’
guaranteed by Lemma 1.1.

Next let us consider the case where u is odd. Put u = 2t + 1,
-t -t 0

1 0 p~t 1 ;
J = (P m - Bé%’Q V= ( L )efc\% ,
0 I p 0 D 21 p

13
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1
m

0]
_1‘1 ) gfoq), where
m
8¢ denotes the finite part of g. Then we get (use (K3 and (53)

~
Assume geGA satisfies g = 1 and <
0O p

$o(eg) = Pp(Veg))

—_ 1 0
— mt tee LR LR ] m
- W (p ) '@f( 51: ;1’ )/pgi’l’ > ( _1 )oogl)o)

O

W, (™) J { (T (L) x T (Vg )t
© H&ﬁ xEX vﬂ)m ‘v v b p-1=p

E]

1 0
T, ¢ ( R > g@fé(n’lx), ¢ (n)> dh

0 P 1m 00
Therefore if we put
E’I‘C y g )t
i p( Pgl) p

11 £, =1,
vED P

1.15 f!
( ) o

(1.16) £
then we obtain

~ r~~ < mt . o5 i lm 0
(1.17) (K aK)P)(g) = @ (p >$f,<( 1 )wg),

0 P llm
f T h that =1 =
or geG, suc at gp = ,m(goo)- N
-1 * %
We have kK)f' = £f' for ké UV K V-, Let M_ (resp. M
e have T (l)f) = £, for p'p P Mp(' p- Mp)
be the trivial representation of yprb’;l (resp. V K U'l) and set
— - ek — A
k"= [T K = UKUpl, K = ]]Kvx )/pr)/p,
vip PP vED
* ~x ~ ok
M = ®M®M , M = 8 M @M
VAP i vED P

Then we get
© *
Ps(¥ex) = Pr(e () for any Y€ Gy, g€6,, KEK .

By modifying Lemma 1.1 in the obvious manner, we see that ﬂ?f, can

14
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N

~ ‘
be extended to the unique function §§f, on_GA which satisfies
&= = ok %
Dorew) = B, (@M () for any re'§,, gel,, k€K,
I~ -
= = g
S,i(zg) = w2 P, (g) for any zez,, ge,.

We obtain

~ o~ nt . o 1 0
(1.18) (K ak )P )(g) = w (p") P ( ( i > g)
o

p p
0 p lm
for gé-GA, gf = 1.
For b€H , let K'bK' = K'h, = &] h.K' be coset
Q - P P T bJ . J P
p J J
decompositionsz). Put

(1.18)  ((KJPK1)T ) (x) ;’fp(hjx), xe X,
ij\n(hhj), heH,.

~ A~
Then (K'_bK! 1 tisfi 1.7). t K = %heH \hL = L}.
( p)%’ also satisfies ( ). We pu ’ | Q o .

(1.19) '((KébKé)?)(h)

p | D

For b€H. , let KIbK! = L’K‘h. = (b}h.K‘ be coset decompositions.
Q p . P J s 3D
p J J

Put

1.20 Kbk )£ >, £ (h X
(1.20) (( P p) p)(X) = j\ D jX), XE o’
~, s Lo ~ o T ~
Let K be the stabilizer of L in A? i.e, K" = WJ—KP-X Ha:' Let T

—_—

be a representation of H_ such that U\H“>=f7? and put P(k)‘= C (kg -

Yo td
for k€K', Identifying the center of ﬁ;)with RX, we have the canonical

~~

direct product decomposition /ﬁ;j= Rf X Hmb.-We assume that "T is
trivial on Rf-part. If tf is a function on’ﬁ; which satisfies .

2) Sihde H is a unimodular group,lwe can take %hj} so that

%

it forms a\complete set of representatives for both left cosets and

right cosets.

15
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(1.21) P (¥hk) = ?F(h)/F’/(k) for any 2/6 Hy, he?i;, kX",

we put

(1.22)  ((KIPE)F)(h) = 57, Fnny), nef
, ]

Remark 1.5. We can verify without difficulty that the map

o~ 1~ ~
m: Ké(\b 1K’b —> 72X is surjective for any b€ HQ since pﬁ/N.

p p D
Hence, if béEH s thé coset decompositions K bK' = \j K h, = h.K'
Q . J . J P
p J J
give rise coset decompositions KébK' = \j K h = h X! Therefore

: ~
e get K' bK')f K'bK')T d K'bK H, = (X'bK! if
we g (pp)p (KIbK!)Z an ((DP)WIA <pp>»01

~
Y is the restriction of ¥ which satisfies (1.21).
In the succeeding sections, we shall prove the local relations
of the following type.

1.23 K'b,. K')T €C, b 6??
(1.23) Zc(pip)p’cL By Slg

Theorem 1.6. Let the notation and the assumptions be the same

as above. Assume that u is even -and that (1.23) holds with oaé HQ

1Y
Then we have |
~ ’ ~
/\/1 Nv QP - mu/2 P
Kpak)@p = w " HBL
where ' = Zc , (Kb KDY
. . ! ! = = K' . . ;
Proof Let ,KprKp Lg Kpth \éohik P be coset decomposltlon
Put .
“Ei(g) = Z S < Z' (/T(g)f)(hlkh 1x), L{)(h)>dh géG
‘ k HQ\H xex

By (1.17) and (1.23), we get

(o]

s p/? mu/2 57 mu/2 :
(KK )& () = w, 6™/ H B, () = w o )27, E, (6 tor seq,

-

|6
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ince

v, @ = g (20 (uen e, th h, ) dh,

"HQ\HA xE:XQ

e obtain
A ol LP
(KK )P pye) = w ™/ (@) for geg,.

1
ﬂii éiAiS)(N,uJ), we get the conclusion by Lemma 1.1.

Theorem 1.7. Let the notation be the same as above. Assume that

is odd and that (1.23) holds with b € HQ such that m(?l) = p.

V — —
—

ssume furthermore that there exists a }’E-HQ such that m( Yy ) =

=~ X . . . .
nd that the map m: Ki-’ﬂ%7ZL, is surjective for every prime ( .

1 . . . . e . 3 .
hen, if %7 is the restriction of a function ¢ which satisfies

1.21), we have

% B 2 1)/2. 3¢
(KK By = o™/ @ ™ /2,87

here T = T Nv ‘@ .’ r = e
here 74 ELSCL(KprKp)LF , v ’HA.
Proof. Let K'b. X' = K'h h . K' be coset decompositions
Lp % Pk " g 2:5p p

ith m(h"k) = p for every k. Take any geEGA such that g 7 1

1/2 o |
nd put g* = ( o H1/2 \> g, By (1.18) and (1.23), we get
0} -1 60

(K aK >§\P>(g> w (" ”/2@? (8N = W m‘“““/%Zc T,

‘here

Lo eh = SH 1 Z<Z (Mg )E)(hy b7 x), P (0)> dh,

é\ A X€EX
‘e have
Y e = 2. S 2 eIy ™ Y ™), P> dn
k HQ\HA x €X, |

17



239

Z g N (20 (reenomn, ¢ (¢ ong )> an.

AJLk XéX

Take B‘GH so that m(g)V = p if v X p, m(y )p = 1, Then we have

XHAE%(-H? for any | and k. As
T, (g) = S 20 (Meennm ™y, Z%(h )Y dh
' 'HQ\HAT xeX
we get
R
(&K )T D) (o) = wo<pm(u‘”/2>§ (3 ennan, 9rmpa
Q\H%— XéX

By our assumption, we may assume Xvé K"z if v is a finite place

\of Q@ and E%)= p1/2.12n. Then changing the variable h to hS',
we ‘see

(%A% )® ) (e)

A £ g

= w (pteD/3 j C2L menHo@, ko, 9rmd .

é\HA XE:X
We have
a1, /21 0
(TC_ (8.0 %,0) (¥ x) = (0 (( m ) g )t )(¥)
- 0 p_l/2 170 %

2" (T (8, 01,0 (0 Py = D™/ 2T (g )f ) (x),

-1/2

where we put y = p X. Therefore we obtain

((KpaK )§ )(g)
pmn/z wo(pm(u—l)/z) 5 < Z (Tt (g)£) (h~1x), kf'(h)> dh

HQ\HA Xé& XQ

pmn/2 m(u—l)/2)§‘f;'(g)

W, (p |
if ge¢ GA, ge = 1. Since 580 EA(m)(N,cu), we get the formula of

Q7w
18

Theorem 1.7 by using GA = G,G_.K and Lemma 1.1.
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Now we shall clarify the implication of the above Theorems for

heta series in classical context. Let

c
1.24) H, = (/ H,h.K'
A g5 @l
e a double coset decomposition. We set L. = h.L, e. = |H Ah.K'hI1 .
i i i Q i i

et Y be as in Lemma 1.2 and put £ = SP(§§E). Then f €

& (Fém)(N), @) and we get (cf. [13] , _? 2)

C .
(20, Peoe(o (Pxsxz)), §(ny)/e;)

1.25) f(=z) = (
i=1l x éLi

Remark 1.8. (i) If 2\n and det SE€ (@)%, then the map
:Hy—> Q¥ is surjective (cf. Eichler(4), Satz 23.6). In this
ase, the ¥ required in Theorem 1.6-a1ways exists.

ii) If L is a maximal lattice, then m:'E% ~*’?Z§ is surjective
or every L (cf. Eichler[@), Satz 11.2).

iii) If the two conditions on L stated above hold, then the

>§Q\?{’A/1’5 is bijective (cf.[13), Lemma 3.5).

-anonical map Hé\HA/K'

f\/
n this case, ¥ always extends to ¥ as assumed in Theorem 1.7.

We assume that L satisfies two conditions stated in Remark 1.8.
. main theorem of Freitag[5](4.5) can be proved by Theorem 1.7
.ombined with Theorem 2.1 which shall be proved in the next section.
‘or the sake of simplicity, we shall consider the case of theta
ieries without spherical functions. Note that the lattices Li

lé;i§;c) defined above make a complete set of representatives of

:lasses of lattices on V in the genus of L. Let ¢if L; oz g2n
)e an isomorphism and define the symmetric matrix 4Si bys)
3) We consider an element of ,Zzn as a column vector.

I
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(1.26) T4 08, 9,(m = e, ver,.

We put

(1.27) @Q§m)(z)= Zm e(o (txSxz)) = > e(v (*x8,x2)).
XC—.Li X&EM m(Z)

Let p be a prime number and set

d
(1.28)  T(p)F{™(2) —)lgl Sy, z)det(c,z + 40, zeH_,

| | L
where '{™ydtag[1, -, 1,p, .-, p) TS0 = Y, r™any,
* *
fa ( c, d,> )
L

2L

Proposition 1.9. The notation and the assumptions being as above,

let Cn be the constant as in Theorem 2.1 with q = p. Assume pA/N.

Then we have

.
T(p) ${™) = o7t > (o 3 5(p)/e ;)45
j=

with ol (p) = \{XéMZH(Z) | *xs,x = pSJ.H :

Proof. Let Y be the map as in Lemmas 1.2 and 1.3 and (f be

the characteristic function of H th' Take bééHQ (\M2nCZp) such

Q
that m(b) = p; put (f'»— (K bK’ 97 We have (c¢f.(1.25))

’\T’(.SE(F) = &gm)/e.. Since w = 1, the action of the center of /(\}/A

on @‘P is tr1v1a1 Take aéG ﬂM (Z) such that m(a) =p

Then, by Lemma 1. 3, Theorems 1.7 and 2.1, we have

: ~
F (K 2K )Qf) = pmn/zT(p)«%m)/ei = /2By

Hence we get
c

(1.29) T<p>&(m) = cile; 21 (Franprepn &M

20



Therefore it is sufficient to show
(1.30)  ol,.(p) = e, P'(h.)
.30) 13 p) = ei<f ( 50
Al fad
Let K'bK!' = L/b,K' be a coset decomposition. Put
P P 7 2'p v
ij = % ?&’ h b, € Hoh;K } .

Then we have 35'(hj) = ‘B

B

i'! Put
J

- t _ '
S5 = %XﬂéMzn(Z)l XS;X = ij} .
It Xé-Sij, we see easily that only 1 and p can appear among elementary

16 S.,. 1is a bijection, i.e.

divisors of X. Hence Sij§>X —> pX~ ji

Isigl = Isyi] -

Now we are gcing to define a correspondence from Bij to Sij'
Vasd Va“d
. - . . .
Take pLE-Bij. Then hj?i )/hik with Y€ H., k€K', Since

X

L » we get m(y ) = p. We have

X
h;, h;€H, and m(k)é:Tg-Zp x R

h.b,L = YL,, h.b;L§%11JJ= L.. Let ( denote the inclusion map of
JK i’ 73k J J
2n

hyb L into L. Then the map v —> $,(C (£ ¢ 7)), vez™ is
. 2n 2n . |
a Z-linear map from Z’ to Z77. We define XE:MZn(Z) by

(1.31)  Xv = P L X, ver®

For véLi, we have X%i(v) = ¢J.(L(A/v)) = %J.(J/(/(v)). By
(1.26), we get

Eg (w8, §.0v = aw) = (L) = 7L (Fv))
_t -1 , _t ty, —1
=T e crvptsy Ficccrey = T ot s x fivy, very.

Therefore we get tXSJ.X = pSi, i.e. XGESji. If ¥ is given, X is
uniquely determined by (1.31). When pzé'Bij is given, we see that

o~
there are e; choices of Y€ HQ which satisfies hJ.bJZ = Xhik with

21
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k€K'. It is clear that if hby = Yhik, hb = Yh.k' with

Jj
g v e R RS &3 : J 1R
1S o’ k, k'€ K', then we have thp = bQ'Kp’ i.e. 4 =('. Thus

the image of the "1 to ey correspondence" Bij53§2—~*? XGE-SJ.i has
the order ei‘Bij!‘ We shall show that any XE.SJ.i can be obtained
in this manner. Let XE‘S'ji and take Xifgﬁé so that m()/l) = p.
Then ¢31(X22n) and XlLi are isometric as lattices. Hence we

3 _ -1 2n, . _
can_flnd XZGII such that Xé YlLi-— ¢j (xz“"y; put = Jé X&.

Q
For a prime number i,% p, we have (J/Lili = (szﬁ ; we have
()/Li)p gé(Lj)p. Hence we see that )/hik = hij holds for some
k€X' and pi . Tracing back the definition, this shows that X

belongs to the image of the correspondence defined above. Thus

we have
~ ’
eiﬁf"(hj) = ei\Biji = ‘ Jl\ =£ IJ‘ = lj(p)'
This completes the proof.
Let 0£s<m and set
. d
(1.32) 1% 3™ (zy = ST Iy zydet(c,z + 4,07, zeH,
i st i £ ga £ m

. 2 2 L (m)
where Iﬂ(m)(N)dlag[j o ,1,p,+7,p,0°, 77 ,p",p, - ,p] L' 7 (M)
o N S N S e o
m-s s m-s s

X L

d * *
) 1K=j1 rém)(N)YL ? YL: (c d )

Assume m = n. If we combine Theorem 1.6 with Theorem 3.7, we get
the following generalization of Freitag's theorem for the Hecke

operator T(s)(pz).

Proposition 1.10. Let the notation and the assumptions' be

the same as in Proposition 1.9. Set

22
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(s)z_]jL t _ .2
djj (p™) = Xé&Mzn(Z) XSiX p Sj’ the elementary divisors
of X are 1, ,1,p,*'’,Dp, p : 2 }?
- W‘Jv‘\/*/
m-s 2s

If m = n, we have

Sc(§§)(p2) + pm—s—l(ps+1_1)oc§§+1)( 2

o 2 £ D ]
T<S><p2w§’*’> =p " > i; &gm).
J=

e.
J

The proof is omitted since it is quite similar to that of

Proposition 1.9.

Remark 1.11. A similar result also holds when m % n. To
explain this, we use the notation of 33; there we shall prove

the local relation (1.23) written in the form

At (x) = 4\;, cg (mmB{T (), x€X,

where the coefficiehts cil(m,n)'s are explicitly computable.

Then we have

: c
() (p?) § (™ = pm > (ST eq mmd £ (0% (8 ™ e
J= '3

Numerical example 1.12. Let D be a defite quaternion algebra

over Q which does not ramify except at 3 and ¢. Let R be a maximal

order of D. When a suitable isomorphism ¢ : R= Z4 is fixed,
we have
1 0 3/2 0
" 0 1 0 3/2
N(x) = "¢ (x)S $(x) for x€R with S = 32 o 3 o |
0 3/2 0 3

where N(x) denotes the reduced norm of x€ R. For this symmetric

23
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matrix S, we have ¢ = 1. Put

'\9‘(2) = Z e(O‘(thxz)), zéHz R
, xéM4,2(Z)
- t -
e = ‘{XGMLI(Z) } XSX = S}‘ ,
- t -
o (p) = HX&MLL(Z) | txsx = ps}j ,
d}s)(pZ) = S{XE-M4(Z) l tXSX = pZS, the elementary divisors of
' 2 2
X l;”’ ’1) y 27 L, P, y £ T \ )
are 1, ,1,D, r2c PP, 07 P }
2-s 2s 2-s

where p is a prime and 0&<s<2.
Since \RX] = 12, we easily get e = 2 x 122>= 288. We have,

when p ¥ 3,

T(p)¥ = 27 (pr1)F

D p?§ = p {(pz—l) + p(p+1)2}19' ;

1 %) & = 57 {20%001) + ) Ppo-1f A
(For the proof of these facts, use Lemma 1.3, Theorems 1.6, 1.7,
2.1 and 3.7. The first two of the formulas, in the case p is odd,
are nothing but Theorem 6.1 of [1%]). Hence, by Propositions 1.9

and 1.10, we get

-

ol (p)/288 = 2(p+l),
o $2)(p2y/288 = 1,
oL (1) (p?) /288 = (p+1)?,
o {90 (p?)/288 = 2p(p+1),

for a prime number p X 3.

24



§ 2. Local relations for T(p)

Let k be a non-archimedean local field whose characteristic
is not 2, O be the ring of integers and - be a prime element of k.
ut q = }O/@fO‘.Let G = Sp(m), 8/= GSp(m), and H (reSp.lﬁﬁ
lenote the orthogonal group (resp. the group of orthogonal similitudes)
yith respect to a symmetric matrix Séngn(k), det S X 0. Set
I = M2n,l(k) and define a quadratic form Q on V by Q(x) = thx,
<€V. Let | | denote the normalized absolute value of k and “k be
1 non-trivial additive character of k. Let TU be the Weil representation

»f G, realized on S(M2n m(k)). For the sake of completeness, let

k
1s recall that ‘IU is characterized by the following properties.

1 by, _ . —
2.1) %((0 1))9(x)= Yo bFxsx) P (x),

a

. 0 . —
2.2) fn;(( ta_l>>§(x) = W(det a) |det a|® @ (xa),

0
o)

20 ([, B - 13w

lere §§GS(M (k)); w is the trivial character if (—l)ndet 3

2n,m
C—(kX)2 and is the character of k> which corresponds to the
juadratic extension k(,(-1)%det 8) if (-1)%det S &(k5)2; /) is
L complex number of absolute value 1 which depends only on S, “P
ind m; gé* is the Fourier transform of §§ with respect to the self
iual measure on M2n,m(k)'

Hereafter we assume that SEEMzn(O), det S€0° and that “% is
:rivial on O and is non-trivial on 0}710. Furthermore we assume
chat the residual characteristic of k is not 2 (c¢cf. Remark 2.7 when

b1y

] is even). Put
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n-1 n-1
0 1 1 0]
s=(n n),s—= 0 s 0
1 1 0 d 0 -2
n n
ln_1 0 0
. . S’ X X2 .
with a fixed € 0" - (07)?, As well known, we can find XéEGLG(O)
such that tXSX = Sl or Sg . For our purpose, we shall lose
no generality by assuming S = Sl or Sg . If S = Sl’ we shall

call H ‘"split type'"; otherwise "non-split type". We put & = w Wy,
Then we have ¢ = 1(resp. -1) if H is of split type(resp. non-split
type).

We identify M (k) with v™  and denote it by X. Set

2n,m
. . N~ Ve
L = M2n 1(O), which is a lattice on V. For gegGk(resp. he:Hk), let
)

m(g)(resp. m(h)) denote the multiplicator of g(resp. h). Put

nv _ ~ X _
G = {268, (0) | m(ere o b= aspimgy),
o~ ~ ] X}
i = {héHk{\Mzn(O) | m(n) €0 :
~, o - _ ~o,
Clearly HO is the stabilizer of L in Hk' Put GO = Gk[\GO (= Sp(m)O)X
N . £ 3
HO = ka\HO . For a positive integer N, put
N, _ n : N x
T ™) = ggéGkﬂMZm(O)l n(g)e wlo*}
N Y N.x
o™y = JneH My (0) | m(nye o 3.
Let Eg{@f) = \] giGO’ m(gi) =W be a right coset decomposition
i
and set

(2.4) A G = 20 (T(VgHH(x), x€X,
1

1 0 A~
where YV = m >€3€{. Similarly let T(w) =‘\J)H h. be
=1 k H . 7073

0 < 'lm ‘ j

a left coset decomposition and set

2.6
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(2.5) B_(x) = ;%:f(hjx), xex.,

Our purpose in this section is to prove the following Theorem

which gives the local relation (1.23) for the double coset T@{GT).

Theorem 2.1. (a) If H is of split type, we have Bm(x) =

cmAm(x) , XEX with

2 n-m-1
2q(-m -m+2mn ) /2 i (q9~ + 1) if m+ln,
=1
(n-n)/2
c = 2q o=
m 2
q(n -n)/2 if m = n,
2 m-n
q(n -n)/2 11 (qQ £ 17t if m>n.
L=1

(b) If H is of non-split type, we have Am(x) =0, x6¢X for n<m.

Before proceeding to the proof, we shall make several preliminary
considerations on the nature of Am and Bm' First we shall give
an explicit expression of Am. By the Iwasawa decomposition,
representatives %\g;} of right 66—cosets in T@{@VN) can be taken
| A B
0o o tp”

choose . {g. explicitly in the following way. For A€GL (k) and
i : m

in the form ( ;> . Then it is easy to see that we can

B, B'é:Mm(O), we write B=B' mod A if and only if A_l(B - B")

€M_(0). For non—negative integers 411,-",<Xm, let R(til,"’,CKm)

4) When H is of non-split type, Tﬁﬂﬂf) = ¢ and Bm is not

defined.

2
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(resp. L(o(l,"‘,ogn)) denote a complete set of representatives of

right(resp. left) GLm(O)—cosets in

: ol o+ o o4 o 4 oer + O
GL_(0) diag[’aj'l,’a)" 2 . w2 mJ 6L (0).

If we let A run over R(oil,"’,Cim), 0(1 +-d2 +--~+(¥m§;N and
let B run over a complete set of representatives of BE:Mm(O)

such that A—lB is symmetric under the equivalence relation = mod A,

A B
then {( N t 13} give the desired set of representatives.
0 w A”

Therefore, by (2.1) and (2.2), we get

(2.6) A_(x) = DL >4 V(o (Btatxsx)) x £(xA) x w (det A)

A B mod A
x |det a|®
where A extends over R(&y,"'" ,C(m), O(iZO(léiém),
ol o e <
BT +dm_1.

Lemma 2.2. Am(X) and Bm(x) are invariant under the

transformation x —> hxk + t, where hé&HO, ké.GLm(O), téELm.

Proof. The assertion for Bm(x) is obvious by the definition
(2.5); we shall prove the assertion for Am(x). Take any\gg € S(X),
geG,, heH and put “P(X) = @(hx), x€ X. Then we get easily
(Te(e)P)(hx) = (T (e)T)(x), x€X by using (2.1)~ (2.3) (i.e.
the actions of Hk and of Gk on S(X) commute). Hence Am(x) is
invariant under x-¥f> hx, hé:H'.’By (2.1) ~-(2.3), we see easily

(0]
that ‘L (g)t = £ for gé;GO (cf.Lli], Lemma 2.1). Hence we have

- v ~1
(2.7) ’Tc(g)Am = Am for any ge I/GO)J
by (2.4). Taking g = ( o tk_£> s ké'GLm(O), we get Am(xk) = Am(x)

28
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x& X. To show the invariance of Am under X—>x + t f;r tELm,
we use (2.6). It suffices to prove “}/(T(BtAthX))f(xA) is invariant
under x—> x + t. We may assume xXAE€ Lm. Then we have |
CT(BtAt(X + t)S(x + t)) - G"(BtAthX)é O; hence we get

Vo (B%at(x + t)s(x + t)) = “f’(O—(BtAthX)); it is clear that

f(xA) = £((x + t)A). This completes the proof.

Lemma 2.3. (a) If x&(w 'L)", we have A (x) = B_(x) = O.

(b) Assume xé(@*’—lL)m. It t(fafx)S(m’x)”\:?;.O mod @w~, we have

Am(x) = Bm(x) = 0.

Proof. Assume Bm(x) X 0. Then, for some bé'/I\-I/k{\MZn(O) such

that m(b) =@, we have bxe L™. Since p~t = a1 1tbS€%:1M2n(0),

e

s™

m barx)S(bawrx) = ar( o x)SErx)

we get x¢€& (@/_IL) Since we have
=0 modm'z, we get t(-ic’x)S(/w/x):——_: 0 mod-W

Next assume Am(x) X 0. By (2.6), we have =xA¢ L™ for some A.
Then we can easily get xé(/@flL)m. By (2.1) and (2.7), we have

V(o @ b xSx))A_(x) = A_(x)

for any bE Mm(O) which is symmetric. Hence we get thxe@:le(O),
i.e. t(/w’x)S(/wx)z 0 mod w. This completes the proof.
Hereafter we shall write x = (Xl,?u X)) with x.€ v(1£Li<m).
Lemma 2.4. We assume x, = 0, m=2 and put x' = (,xl,r'f ’Xm—l)'
_ . m-n '
Then we have Am(x) (1 + €9 )Am—l(x ).
1 0
Proof. By the Iwasawa decomposition, we may set A = (c a)

-1
_ -1 A 0
with Alé M _1(0), a€0O. We have A ~ = ! 1 .1 ’

21
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Since GTA_lé.Mm(O), we may take either a =1 or a =W, If a = 1,

: . rank(Al mod @)
we may assume ¢, = 0. If a = W, there are ¢

1
Bij1 Big
choices of c¢,. We put B = ( ) with B,-€ M (0).
1 le B22 11 m-1

By (2.6), we get

(2.8) a0 = > 21 V(o ta sy x 2((x'a;,00)
" A B mod A

x w(det Ap) x \det Al\n x w(a) x \a!n
. ( B11 0

First assume a = 1. Then we see immediately that B = 0 0) mod A

Therefore there is a one to one correspondence between equivalence

classes B mod A and B mod A. Next assume a = . We have

11 1
-1 -1
“1. A17Bq; A17Byg
A7B = o leatln. . 4o lp I S B
| C181 P11 T Bgy W G189 Pig 22
We must have @WA-IB,. = t(-c ATlB, . + B ). Put x = -c A”lB . + B
1 °12 181 P11 217" 11 P11 21"

Then tx must belong to A1¥ﬁme_l 1(O). Hence there are

m—l—rank(A1 mod )

q choices for le. Clearly there are q choices
for B22. Summing up, when B11 mod A1 is given, there are

) m-1l-rank(A, mod®@)
qrank(Al mod-&) X q 1 X q = qm possibilities for

B mod A. Therefore, by (2.8), we get

B mod A

A0 = 2 S5 bt trsxy) x £((x'81,00)
1 11 1

x  w(det A;) x |det A|" x (1 +Eq"™),

30



where A, extends over R(o(l,'-- y L 1), L iZ_O(léi_é_m—l),

011 + oo+ OLm—l < 1. This proves our Lemma.

Lemma 2.5. We assume xéi(@r—lL)m and t(@fx)SCw'x)Ez 0 mod T,

For k&GL_(0), put xk = (yy, " ,¥,); yieV(l_S_iém) and assume

2
ymé;L for any k. Then Am(x) = 6m q(m +m—2mn)/2.

Proof. We use (2.6). Suppose that xAE€ L™ for some A&

R(& ), o Z0(1Sigm), ol + ... + O(mél. Put A = (a..).

1"" 1 ij

We have x,a., + -/ + xmaimé;L. If 0(1 = 0, there are some i, j

17i1
such that aijég 0 modw ; so we can find k = (kij)G:GLm(O) such

that kmi = aﬂl

have yme.L. This is a contradiction. Therefore =xA€ L™ if and

, 1< U< m. Then, for y = (yl,«"?ym) = xk, we

only if A€ R(1,0, ,0). In this case, we may assume A =

diag E@f,:ff,?ﬁ] . We have

B = Em ™ 2 (o stataen)).
B mod A

Since thXé.f(b“—le(O), we have 7V (o-(BA®xSx)) = 1. By definition,

there are qm(m+1)/2

-equivalence classes for B mod A. This completes

the proof.

Lemma 2.6. Let the assumptions on X be the same as in

Lemma 2.5. We assume further that H is of split type. Then

1 if m = n,
B (x) = 2 if m+l = n,
m
n-m-1 3
2 T] (a&+ 1) if m+1< n.
L =1

31
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—

Proof. Put V = L/WL and Q(x mod@wl) = Q(x) mod® for
X & L. Then (7, 6) defines a regular quadratic space over Fq =
O/ 0. Let 'H denote the group of Fq—rational points of the
orthogonal group associated with (7, ~Q,‘). With a suitable basis of

. _ _ o 0 1
V, we may assume Q(x) thx, XV, S = ( 1 On>6Mz (F_ ). Put
n noaq

'§i =Wx, modwL &V, X = (El, v ,El'n). Our assumptionson x imply
that 3?1,~~ ”X‘m are linearly independent over Fq and that t§§5<_= (

Note that m=<n must be satisfied for the existence of such x.
Let ve&V be a non-zero isotropic vector. Then it can easily
be shown that hv = t(1 O0-+- 0) for some —1—16‘:_H— By induction

on m, we can find hEH and —l‘«:—EGLm(Fq) so that 7y = (_ir—l,-'r,ffm)

= hxk satisfies ‘571= t(l 0 --- O),V2=t(0 1 0.--0), f“,ﬂs-f—m=
Y-~ 0 1 0-...0); put z1=t(W'l 0-0), 25 =
t(o ’,W‘l 0 «~-0), ++¢ | z_ = t(O“, 0 /q;/-'l 0--- 0). Here the

m

j-th coordinate of yi(resp. zi) is l(resp.’a\r—l) if j =i and

0 if Jj ¥ i. Since the reduction map

¢ : Hy —> H, {(h) = h mod W~

m

is surjective, thereexist héHO, kéGLm(O) and te&L such that

z = hxk + t, z = (zl,»r- ,zm). Hence, by Lemma 2.2, we may assume
X, = < i
X, = z;(1=ism).

( ln 0 > : : P~ o~
= i I =
Put 3 0" .1,/ - As is well known, Ty@r) =y SH,.
' s o~ -1z . :
A left coset decomposition HO = k‘;/(ﬁ/o{\ E Ho\g)dj gives rise
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~ ~—
the coset decomposition ’EbjiHO = U HO\EOCJ. The canonical map
J

-1 ‘ ~ 5 Ve -
Hoﬂ§ HOS\HO — HO{\} HO}\HO is bijective. Put

oe fe (2 De

Then the reduction map { induces a bijection HO{]TE—IHOfi\ﬁO

a, b, c, dé:Mn(Fq), b = O}

—_ B\ﬁ: By definition, we see the following: For & = (afij)éiHO,
T o x€L™ if and only if odij:io mod®@ for 1£Li<n, 1<Lji<Lm.
Therefore we have

(2.9) B (x) = | Fl/|B} , where

(2.10) F = {g = ggij)é“ﬁ 1gij =0, 1£i<n, 1éj__<:_m}.

Now we are going to compute IF}. For x, yéf§, put <:X, y> =
t§§y. We write g& F as g = (Xl,'“ ,in) with column vectors
x;€V. Then ge&H if and only if <fxi, Xj>> =0 for |i- j| Xn,

= i< i '
<:Xi’ Xi+nj> 1 for 1£iZ£n. First we choose Xy » X, SO

that they are linearly independent and that all the first n-coordinates

of Xq,°7t, X are 0. The number of choices of such vectors is
equal to (qn - 1)(qn - q)- (qn - qm—l). Let F be the number
of vectors Xi4n’ " 0 Zpen which satisfy

{ Rygs Xy> = V45, 14,35,

(2.11)
= 0, <i,j
< Xi+n) xj+11> 0, 1217Jém'
fe have
m-1 i
(2.12) | F] =" - D@ - @ -dHF x |oj(2-2m,F)| ,
assuming F is independent of the choice of Xq,re, Xy To compute
i cee v = <5
F, choose a basis Uy, s Uop of V so that uy xi(l__léém),
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Lug, ui> =0 if i -3} xn, {uy, w5 =1 (1<i<n). Let

W be the subspace of v spanned by u u

m+1°’ ? n’fun+m+1"" ’ u2n'

Put

Xpan = Aquy + Buggy +oolgug + Bougyy v oup 4 Bou bW wEd
From ‘<X1+n’ u£> =0 for 2<i<m, we get B2‘= 133‘= s =‘%gm = 0;
from <:Xl+n’ ul>> = 1, we get ﬁ31 = 1; from <fx1+n,‘x1+£> = 0,

we get c%l + Q(w) = 0. Thus

Xpap = Oquy *upy + oodpuy v+ o uy +ow, weW, oy +Q(w) =0,

is the condition posed on X14n by (2.11). Therefore the number
of choices of x,,  is q2n—2m x qm—l. Repeating this procedure,
we get

F = (q2n;2m x ™1y x (o202 4 ™2y ¢ ... g (q2n—2m‘X qo).
Therefore wevobtain
(2.13) [F] = (@ - @™t - 1) o0 (@™ o gD

x [ol(Zn-zm,Fq)]

Since ]BI = qn(n-l)(qn - l)(qn_l - 1)+ (q - 1) and lOl(Zn—2m,Fq)?
_ 2(qp—m B 1)(an--Zm—Z 1) e (q2 -1 q(n—m)(n—m—l) (we‘qnderstand.
I01(2n—2m,Fq)l =1 if m = n), we obtain the formula of our

Lemma by (2.9) and (2.10).

Proof of Theorem 2.1. By Lemma 2.3, we may assume xeé(@vrlL)m,
Y@ x)S(@x)=0 mod 4. Put xk = (y, <" , y) for k&GL (0).
Only two cases can occur.
Case (I) ymégL, for any k&GL (0).

Case (II) ‘y‘r*neL' for some k€GL_(0).
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Proof of (a). For Case (I), m<n must hold and we get
Bm(x) = cmAm(x) by Lemmas 2.5 and 2.6. Suppose that we are in
Case (I1). By Lemma 2.2, we may assume X, = O. When m = 1, we
get Al(O) =1 + ql-n by (2.6). By similar considerations as in
the proof of Lemma 2.6, we immediately get Bl(O) = 101(2n,Fq)[/]B\.
Thus we obtain Bl(O) = ClAl(O)' Now we shall proceed by induction

m_n)Am_l(X'); Bm(x) =

on m. By lemma 2.4, we have Am(x) = (1 +qg
Bm_l(x') is clear by definition. Therefore the assertion for the
case m follows from the fact cm-l/cm =1+ q and the inductive
hypothesis for the case m - 1.

Proof of (b). Since we have assumed m_>n, the vectors -Ei =
o Xq mod-G-L, - -~ ,'§5 = WX, mod@wL are linearly dependent over Fq.
Thus Case (I) cannot occur. Suppose n=>2. Then, by Lemma 2.4, we
get Am(x) = 0 for m = n. Therefore we obtain Am(x) = 0 for
m>n again by Lemma 2.4. Suppose n =1. If m = 1, we immediately
get Am(x) =0 by (2.6). Then Am(x) = 0  for mj>1 follows

from Lemma 2.4.

Remark 2.7. Let us consider the case where the residual

characteristic of k is 2. We assume

(A1) L = 02" is an integral lattice.

Put
B(x,y) = Q(x +y) - Qx) - Qy) = 2thy, x, yeV,
Y - %xéV ‘B(x,y)éo for all yc¢ L} :

We assume

(A2) Y= 1L.

By (Al) and (A2), we have 7(g)f = f for ge&G,, where £ is the

characteristic function of L% (cf.[ﬁé}, Lemma 2.1). In particular,
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k(A/(—l)n det S) is unramified over k. Put S = (sij); we see that

s;;€0 and 2sij€i0 when i %X j. We can also show det 2S¢ 0%,

Now Theorem 2.1 holds true without any change. The proof
kp
folyws along the same line as before though we must be more careful

in this case; we shall therefore indicate briefly the places where
the proof must be modified.

Lemma 2.3 (b) must be changed to "If Am(x) %X 0 or Bm(x) X
then

(2.14) the diagonal (resp. 2 x non-diagonal) components of

| Yy x)S@yrx)e wo .
For the assumption in Lemmas 2.5 and 2.6, we assume (2.14) instead
of ‘trx)s(@x)= 0 mod .

Concerning the proof of Lemma 2.6, we must be very careful
since we are dealing with the quadratic space (§,7§) over a finite
field of characteristic 2. We shall only indicate the following
point. By choosing suitable basis of V, we may assume that 25' has
one of the following forms which are distinguished each other by

the Arf invariant (cf. Dieudonné[3], p.34).
(I) 'Q—(E) }.1?1_'_1,1 + Ez }2+n + oo + SHEZD H
, 2
§l§1+n + §2 }2+n o F En—132n-—1 + (OLEn *
2
}n §2n +°(§2n) ’

where \§ = (31,' re ,EZH)E—V— and oLqu does not belong to the

image of the map x —> x2 - x of Fq into Fq. Since W =1 (i.e.

(II) Q(3)

(-1)" det 25 €(0%)2 which is the definition of H to be split type),
we see that the case (II) cannot occur. To prove this, assume

36



254

sy = 0 modw’ (1£i%2n-2),
— E = /C\*/
Sn,n—SZn,Zn oL mod & ’
= < i<
251,1+n" 1 mod W (1%=1i%nmn),
—_— . . v
2s; ;=0 mod w, i - 3| X n,

where o, €0 satisfies ’5( modW = & . When n = 1, we can show
~-det 28%(0)()2 by noting

() 1+ 4wos (057,

(b) |1+ 40/(1 + 40N 05| =2 and 1+ 4W &£©05?,

(c) (1 +w0)? - 4aXN©H%=9¢.

In general case, we get easily (—1)n det 28 &(OX)Z by induction

)

on n. Thus Q must be of the form (I)5 and the rest of the proof

of Lemma 2.6 can be done quite similarly.

5) In the same way as above, we can show ~Q— is of the form

(II) if W 5( 1.
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