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§ O Introduction

In this paper we describe some recent results concerning
arithmetic quotiénts I'\X of the Siegel upper half space of
degree two, the de Rham cohomology groups B (T\X,E) of these
spaces and their relation with the theory of automorphic forms.
This study is motivated by arithmetic-geometric applications

we have in mind. For background we refer to [10l, [24], l26].

Let G = Sp4GR) be the symplectic group of degree two,
X the associated symmetric space and T c Sp4(ﬂﬂ a torsion
free arithmetic subgroup of G . The group I acts properly
and freely on X , and the arithmetic quotient MN'X is a non
compact complete Riemannian manifold of finite volume. The space
T'\X may be viewed as the interior of a compact.manifold
with corners '\X where X is a suitable completion of X
on which T acts freely [4]. The inclusion‘ T\X - T'\X is a
homotopy equivalence. Given a finite dimensional complex repre-
sentation (1,E) of G (defined over @ ) the de Rham cohomo-
logy groups H (I'\X,E) of T\X with coefficients in the asso-

ciated local system E are defined.
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Using the theory of Eisenstein series in the sense of
Langlands [14] we construct a subspace H;iS(P\X,E) in
g¥(r'\x,E) = E"(I'\X,E) which describes the cohomology of T\X
'at infinity', i.e. which restricts isomorphically onto the
image of the natural restriction o H*(F\X}E) -> H*(B(F\f)ﬂﬂ .

More precisely (cf. 3.2.), there is a direct sum decomposition
* O *
H" (I'\X,E) = H| (T\X,E) @ Hps o (T\X,E)

where HT(F\X,E) is the image in H" (I'\X,E) of the cohomology
of T\X with compact supports. By taking the analytic continua-
tion of suitable Eisenstein series attached to elements in

H' (3 (T\X),E) the Eisenstein cohomology H;is(F\X’E) is genera-
ted by classes which have as a representative a closed harmonic
form on T\X given by a regular value of such an Eisenstein
series or a residue of such at a special point. The size of the
Eisenstein cohomology can be completely determined (cf. 2.7.).

A precise description how the Eisenstein cohomology is built up
is given in 3.4.; the proof of these results combines analytic,
arithmetic and geometric methods. It requires an explicit know-

ledge of the constant terms of the Eisenstein series and cer-

tain intertwining operators involved.

*

(2

represented by closed square integrable forms on T\X ; by a

Let H )(P\X,E) be the subgroup of classes in H*(F\X,E)
representation theoretical interpretation it is related with
the discrete spectrum in the space L2(F\G) of square inte-
grable functions on TI'\G . It is also the space of classes re-
presented by a square integrable harmonic form and contains

HT(F\X,E). Thus, our result implies that each class in H*(F\X,E)
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has a closed harmonic form as a representative; moreover it can

be chosen among the harmonic automorphic forms.

This work has to be seen as part of the attempt to under-
stand various cohomology groups attached to an arithmetic group
and their relation with the arithmetic theory of automorphic
forms. The results of Langlands [12] énd Harder [7], [10] in
the case of an arithmetic subgroup T of the special linear
group SLz(k) over an algebraic number field k are basic for
this approach; it is pursued in [22], [24]. In particular, the
algebraic and arithmetic properties of the cohomology classes
are of interest (cf. |9], [10], [26]). However, if the under-
lying algebraic @ - group has @ - rank greater than one the
situation is not investigated thoroughly. In the case
T c Sp4(ﬂn considered here we will discuss these guestions
and some relations with other aspects as developed in [19], [20],

[32] elsewhere.
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§ 1 Generalities

1.1. Let & be a connected reductive algebraic @ - group
with rankQQ 3 O and without non-trivial rational character
defined over @ . Let K be a maximal compact subgroup of the
group G = G(R) of real points of G and X = G/K . Then X
is aucompleteRiemanniannmnifold with negative curvature. Let
{t,E) be a finite dimensional complex rational representation
of G , and let I'c G be a torsionfree arithmetic subgroup
of G . The group T acts properly and freely on X , and T
operates also on the space Q*(X,E) of smooth E - wvalued
differential forms on X . The quotient space 'X is a non-
compact X(I',1) - manifold of finite volume. Our object of
concern is the de Rham cohomology group H*(F\X,E) of T ,
which is, by definition, the cohomology of the subcomplex
Q*(X,E)F of I' = invariant elements in Q*(X,E) . It can be
naturally identified with the singular cohomology of T\X with
coefficients in the local system E defined by (1,E) , i.e.

we have (cf. [ 5 ], VII,2)

H' (I\X,E) = H'(I"\X,E)

1.2. There is also an interpretation of the cohomology
H*(F\X,E) of the arithmetic quotient '\X in representation-
theoretical terms. Denote by g resp. k the Liealgebra of
G resp. K , and let (m,V) be a (g,K) - module. The rela-
tive Liealgebra cohomology of g mod K with coeffiéients in Vv
is then defined as the cohomology of the complex D*(g,K;V) =

HomK(A*(g/g),V) with the usual differential as in [ 5] ,I,§ 1.
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Since the space F of K - finite vectors in a differen-

(K)
tiable G - module F is a (g,K) - module in a natural way
the above notion makes also sense for F i1f one puts

D*(g,K;F) = D" (g,K;F,.\) .

(K)
The space of smooth functions on '\G with values in

T will be denoted by C (I'\G) . The lifting of forms via the

projection G - G/K = X induces then an isomorphism of differ-

ential complexes Q*(X,E)r = D*(g,K;dw(P\G)® E) , whence an

isomorphism in cohomology (cf. [5] ,VII,2.7)

H*(I'\X,E) = H"(g,K;C (I'\G) ® E)

1.3. Given a smooth G ~ module (w,V) and an intertwin-
ing operator o : V - c”(r\G) one can study the induced map

in cohdmology
* * © *
H(a) : H (g,K;V ® E) > H (g,K;C (I'\G) ® E) = H (I'\X,E)

Two cases are of interest for us. Let LZ(F\G) be the space of
complex valued square integrable functions on T\G , viewed
as usual as a unitary G - module via right translations. The

space LZ(F\G) is the direct sum of the discrete spectrum

Léis(F\G) and the continuous spectrum Lgt(F\G) ; and the
space Lgis(F\G) decomposes into a direct Hilbert sum of
closed irreducible G - modules H1T with finite multiplicities.
The space Lg(P\G) of square integrable cuspidal functions on

''\G (cf. [11] for this notion) is a G - invariant subspace of

2 .
LdiS(P\G) and we may then write
2 ~ .
(1) | L (T\G) = & m(m,I)H_

TEG
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where m(7m,T) denotes the multiplicity with which H1T occurs

in Li(F\G) . The inclusion Lg(P\G) - C7(I'\G) induces then an
homomorphism

. * * ’ 2 ©
(2) J ¢ H (g,K;LO(F\G) ® E) - H (g,K;C (I'\G) ® E)

which is injective by [ 1] , 5.5. By definition, the cusp co-

* . .. . .
homology chsp(T\X,E) of T\X with coefficients in E 1is
the image of H*(Q,K;Li(T\G) ® E) under j* in (2).

Let HTz)(P\X;E) be the subspace of H*(P\X,E) given by
classes represented by closed square integrable forms. It can
be viewed as the image of the map

2

(3) H*(g,K;Ldis(P\G) ® E) - H*(Q,K;Cm(I'\G) ® E) = H (I'\X,E)

We denote by HZ(P\X,E) the cohomology with compact supports
of I'\X and by HT(P\X;E) the image of HZ(F\X,E) into
H*(I'\X;E) under the natural map. Then the space Hiz)(T\X,E)
contains the socalled interior cohomology HT(F\X,E) (cf£.[24],
1.8). On the other hand, the cusp cohomology of '\X 1is con-
tained in HT(T\X,E) hence we get

* * * -
(4) chsp(I’\X,E) € H, (I\X,E) c H{,, (T\X,E)

We remark that, by a theorem of Kodaira, Hiz)(T\X,E) is also
the space of classes represented by a square integrable harmonic

form.

1.4. As in 1.3.(1) the discrete spectrum Léis(F\G) de-

composes as a direct Hilbert sum of closed irreducible G - sub-
spaces with finite multiplicities. Let VTr denote the isotypic
component in Léis(P\G) corresponding to a given irreducible

unitary representation m® of G . Then it is shown in [ 3] that
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u* (g,K; L (F\G) ® E) is a finite algebraic direct sum

(1) H(q,K; L L(T\G) @ B) = ©_ H (g,K;V.® E)
TEG

where 7 € & runs over the finite set of equivalence classes
of all irreducible unitary representations of G whose infini=-
tesimal character X is equal to the infinitesimal character

X of the representation (T*,E*) contragredient to E

T%*
(cf. [ 5] ,I;Thm. 5.3). This finite set (up to equivalence) of
irreducible unitary representations of G with non-trivial
(g,K) - cohomology has been conveniently parametrized by Vogan
and Zuckerman [29] , [30]

Of course, by 1.3.(1) we have also a decomposition for

the cuspidal cohomology of T as a finite direct sum

(2) H* (T\X;E) = o m(m, I‘)H (g,K; H ® E)
cusp ’ZTEG

These two relations (1) and (2) imply that results in relative
Lie algebra cohomology with coefficients in irreducible uni-
tary representations of G apply to the cuspidal cohomology
of F‘ and to the groups HTZ)(F\X,E) as well (cf. [ 2] ,
[51 , [25] ). However, one still has to determine the multi-
plicities m(w,I’) . On the other hand, the study of H*(F\X,E)
can also sometimes used to get information on these multipli-

cities (see [ 6] , [16] for examples).

1.5. Examples

(1) Let G be the special linear group SLn/Q and T
an arithmetic subgroup of SLn(Q) . Then there is (up to equi-
valence) at most one (resp. two for n even) irreducible uni-

tary representation (ﬂo, HTT ) of G such that
o
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H*(g,K;H:O ® E) ¥ {0} and (ﬂO,Hﬂo) occurs with non-zero mul-
tiplicity m(r_,T) in the cuspidal spectrum L;Z(F\G) . This
result (due to Casselman, cf. [25] , § 3) implies a strong
vanishing result for the cusp cohomology H:usp(P\X,E) of T
outside a range [Cn(n),co(n)] of length «rk SLnGR)—rk SO(n)
centered around the middle dimension (1/2):dim X .

(2) For G egqual to SLZGR), SL3GR) resp. SLZ(E) one

can show that one has equality in 1.3.(4), i.e. for g > 1

q - n9d g |
chsp(r\x,E) = H!(F\X,E) = H(z)(F\X,E)

(c£. [ 61 , [15] ). As examplesshow this is not true in general.
For example, it follows from (1) that in the case

G = SL3GR) (with E = T ) one has

q . = 9 . o
chsp(F\X,E) = H (g,K,m(no,F)Hﬂ)

where the righthand side vanishes for gq # 2,3 . For T = TI'(m),
m > 3 , a congruence subgroup of level m it is shown in [16]
that dim HEUSP(P(m)\X;,E) , g = 2,3 , and therefore m(wo,T(m))

is greater than m(mt+1)

1.6. Eisenstein cohomology

The non-compact quotient TI'\X may be identified to the interior
‘of a compact manifold TI'\X with corners, where X is a suit-
able completion of X on which T acts freely. This compacti-
fication is due to Borel and Serre [ 4] . The inclusion

T'\X - TI'\X is a homotopy equivalence. The boundary 3 (I'\X) is
a disjoint union of a finite number of faces e'(Q) which
correspond bijectively to the T - conjugacy classes of proper
parabolic @ - subgroups of G . Denote by P the set of para-

bolic Q@ - subgroups of G . For a given P in P , P % G ,
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we denote the natural restriction of the cohomology of T\X
onto the cohomology of the corresponding face e'(P) in

3 (M\X) by

(1) rP* : H'(I'\X, E) - H*(e'(P),E)

Via Eisenstein geries in the sense of Langlands [14] one tries
to construct classes in H*(F\X,E) with a non-zero restriction
to 3(I'\X) and to get hold of cross-sections to (suitable
families of) the restrictions in (1) or, ultimately, the re-
striction

(2) * : BEY(N\X,E) - E (3 ("\X) ,E)

in this way. The use of Eisenstein series to construct cohomo-
logy classes which describe the cohomology of '\Xx "at in-
finity" was initiated by Harder [ 7], [ 8 | and pursued in [22],
[24] , [10] . If the @ - rank of G is one he has shown the
existence of a subspace H;is(r\x ,E) in H"(I\X,E) which
restricts isomorphically onto Im r and whose elements are ob-
tained either by evaluating suitable Eisenstein series at
“special points or by taking residues of such at simple poles.
Since there is almost no information concerning the behavior

of Eisenstein series at certain values which are of interest
here the result of ﬁarder has to be seen as an answer up to the
existence of poles. It can be made more precise in the case
SLz/k defined over an algebraic number field k where one
gets out of this a complete description of Im r* . Moreover

in this case Eisenstein cohomology classes have interesting
algebraic or arithmetic prbperties which led, for example, to

some rationality results on special values of L - functions
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attached'to algebraic Hecke characters [ 9], [10].

For groups of higher rank the situation is not investi-
gated thoroughly. However, as a first step, there is a general
result (cf. [24], § 4) describing in which way an Eisenstein
series E(9,M) which is associated to a cuspidal differential
form on a face e'(P) and depends on a complex parameter
provides us with a closed harmonic form on T\X and with a
non-trivial class in H (I\X;E) Aif E(¢,A) is holomorphic at
‘a special point AO uniquely determined by ¢ . As examples
in [10] , [24] show E(¢,A) may very well have poles at such
points. In this case we have to take residues of Eisenstein
series. However, in order to understand to cohomology of T
"at infinity" a detailed study of the behavior of Eisenstein
series at special points, of the corresponding cohomology classes
*

. . \ . . *
and its images under the various restrictions r, resp. r

is necessary.

10
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§ 2 The case Sp4/Q : The boundary of the Borel-Serre compac-

tification and its cohomology

We begin now with the study of arithmetic quotients of the
Siegel upper half space of degree two and the corresponding co-
homology groups of arithmetic subgroups T of the symplectic
group Sp4(m) . In this section we give a convenient descrip-
tion of the boundary 0(I'\X) of the Borel-Serre compactifica-
tion T\X of the quotient T\X in this case and determine its
cohomology. Out of this we derive a formula for the size of the
cohomology of T at infinity. For details we refer the reader

to § 2 in [26].

2.1. Now let G be the @ - split algebraic @ - group
Sp4/m , i.e. the symplectic group of degree two. The group 7

G = G(R) of real points of G is then

G =Sp,®) ={a€GL, M |a"T =J} with J = .

We fix asmaximal compact subgroup of G the group K = G n 0(4) ,
i.e. the group of orthogonal symplectic matrices. If T is a
torsionfree arithmetic subgroup of G(@) = Sp4(m) the guotient
''X is a 6 - dimensional non-compact X(I',1) - manifold of
finite volume. In particular we consider for a given m » 3

the full congruence subgroup [I(m) = {A € Sp,(&Z)|A = Id mod m}
of 5p4(zn - We fix m once and for all. This justifies the
notation £C = P(m)\Sp4(m) for the finite group which depends
on m . The group Sp4(ﬂn operates in a natural way on the
Borel-Serre compactification T\X and so also fG acts on
H*(P\X,E) resp. H*( 9 (M\X),E). In a similiar way the faces

e'(P) in 3(I'\X) (P € P) are acted upon by P n Sp,(Z) , and

11
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we put fP = (I'(m) N P)\(Sp4(Z)FWP) C¢G . As a first step to-
wards the cochomology of T at infinity‘we give now a descrip-
tion of H*(B(F(mﬁfoEn as a representation space for the
finite group fG . Out of this we derive a formula for the
dimension of the image of the restriction r* H* (T (m)\X,E) -

H* (3 (I (m)\X),E) .

For simplicity we will mainly assume that E = € 1is the
trivial representation, and in this case E =€ will be omitted
in the notation of the cohomology groups dealt with. However,

the methods work as well for arbitrary coefficients.

2.2. The G(@) - conjugacy classes of proper parabolic

@ - subgroups of G £fall into three classes, two conjugacy

=2

class Eo of minimal ones. We say a proper parabolic subgroup

classes P1 and P of maximal parabolic subgroups and one

P of G is of type i , i=0,1,2 , if P € ii . A given P

in P may be written as a semidirect product P = M «N where
N denotes the unipotent radical of P and M the unique Levi
subgroup of P which is stable under the Cartan involution 8
associated to K . For each gi , 1i=0,1,2 , we fix a represen-
1 n P2 .

The maximal parabolic @ - subgroups are labelled in such a way

tative P. with P, = M.+« N. and such that P =P
i i i i o

that M, is isomorphic to the direct product SLZGR) x GL1GR)

and N, is non-abelian resp. M is isomorphic to GLZGR)

2

and N, is abelian.
For a giVen P in P with Langlands decomposition
P = °MAN [where M = °Ma (resp. A ) denotes the unique Levi

subgroup of P (resp. split component) which is stable under 0 )

12
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the face e'(P) im 3 (I'\X) corresponding to the T - conjugacy
class of P is defined as e'(P) = PP\OP/K NP with °p = °mn
and Ip :=T NP . The projection «k : P - P/N induces a fibra-

tion

(1) TO\N = e’ (P) » T\\Zy,

of e'(P) over the locally symmetric space Ty\Zy =
(T n P)‘\(OP/N)/K(K N P) with fiber the compact manifold
FN\N where FN =T NN .If P 1is a maximal parabolic @ -
subgroup of G of type i=1;2 , then e'(P) is a 5 ~dimen-
sional manifold fibered over a non-compact 2 - dimensional mani-
fold I'M\ZM (homeomorphic to some arithmetic quotient
F:\SLzﬁR)/SO(Z) ) with fiber a 3f-dimensional nil-manifold for
i=1 (resp. torus for i=2 ).

According to [ 4 ] there is a natural compactification
577517 of e'(p;) , i=1,2 , which adds over each cusp of the

base T a 4 -dimensional nilmanifold. In particular,

M, Zu,
i i
the action of Pi 0 Sp4(ﬂn extends to one on e‘(Pi) , and the

group fPi acts transitively on the boundary components of

e'(Pi) . Indeed, one has an P, - equivariant diffeomorphism
. ' g v
(2) By = gPy X e (PO) 3(e (Pi)) .
P
f o

As here, we put now for i=0,1,2 resp. i=1,2

— 1 —_
(3) Yi = f,G X e (Pi) resp. Yi = fG X e'(Pi)
P, P.
£f71i £f7i

which is a disjoint union of copies of e'(Pi) resp. e'(Pi)

and has a natural action of fG which extends the one of fPi

13
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on e'(Pi) resp. e‘(Pi) . The manifolds Yi “are compact and

one has fG - equivariant diffeomorphism

. : Y . e'(P. i=
(4) TR SN MYi) G ;B(e (Pi)) , i=1,2 ,
£71i

£

defined by Id x 8, onto the boundary B(Yi) . Using the o

we get a closed 5 - dimensional manifold (with an action by fG )

(5) Y =Y, Y,

U

Y

o

by gluing together §1 and YZ along their common boundaries.

One»obtains then

2.3. Proposition. - The boundary 5 (I'(m)\X) of the Borel-

Serre compactification TI'(m)\X of T (m)\X is equivariant

diffeomorph with respect to the action of G to the manifold

£

Y given in 2.2.(5)

2.4. 1In order to describe H (3(r(m)\X)) and to determine

the fG - action on this one has to analyse the Mayer-Vietoris

sequence in cohomology attached to the decomposition

3 (M (m)\X) = Y1 U Yz . Since we have as G - modules
(1) B (Y,) =B (G x e (P)) =1 e [B*(e7(P))]
it TR Lgs 7 e iyl = AN RS T
P, f7i
G £f7i
(where IndfP [ ] denotes the representation of £G induced
£ i

from the representation of fPi on H*(e'(Pi)) ) this involves

to understand the cochomology H*(e'(Pi)) H*(e'(Pi)) as

P, - module.
£ i
Associated to the fibration 2.2.(1) of the faces e'(Pi) '

i=1,2 , there is a spectral sequence which converges to the

cohomology of e'(P;) , and whose E, - term is given by

14
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P9 _ 4P
E2 = H (I‘Mi\z

q
H (I‘Ni\ N.))

M.’
i
Since the base space is of type TI''\H (H = upper half plane,
' SLZ(ZU of finite index) and HP(F'\H,E) =0, p>1,
for an arbitrary coefficient system E we have Eg’q = 0 for

p>1, g > 3 and the spectral sequence degenerates at E2

We obtain

g (e (P.)) = © HP(I’M_\ A

BI(r \N,))
ptg=r i i

M.’

i

The natural Mi - module structure of H*(PN‘\Ni) can be de-
i

termined by a general result of Kostant using the identification

H*(TN\ Ni) = H*(Qi) with the Liealgebra cohomology of the Lie-
i

algebra n, of Ni (cf. [24] , 2.2. - 2.4.).
If we put My = (T(m) n Mi)\(Sp4(Z) n‘Mi) resp.
Ny o= (T(m) n Ni)\(Sp4(Z)r1Ni) then P, 1is a split group
extension of fMi by fNi . Then it turns out that the action
P q . .
of fPi on H (TM;‘ZMi’H (Ei)) is the pullback of the action
of fMi on these cohomology spaces obtained by the natural
. @] .
action of M, N Sp4(z) on PM} Zy ~ resp. the action on

1 1

H*(Ei) = H*(FN‘\Ni) just mentioned. We refer to 2.5. in [26 ]
i
for details.

A detailed study of the kernel resp. cokernel of the fG -
morphism ~ar ® a; in the Mayer-Vietoris sequence

a1 @ uz

- 593 (r\x)) - Hq(Y1) ® Hq(Yz) Hq(YO) -~ 589 (5 (D))

attached to 5 (I'\X) = Y1 y Yz leads then to the following

result describing 2¥(3(I\X)) as .G - module. For later puf—

£

15
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poses we give a description of the cohomology which reflects

the geometric source of the various summands.

2.5. Theorem. - For a given congruence subgroup T = T (m)

of Sp,(®) , m» 3 , the cohomology H* (3 (I (m)\ X),T) of the

boundary 3(I'(m)\X) of the Borel-Serre compactification of

F'(m)\X is described as representation space of fG = Sp4(ZZ/mZ)

by
_ - C q=0,5
(1) gL (5 (r'\X)) =
0 g >5

(2) 1l (3(n\X)) = é IndfG (2 (T.\ 2, )] @ St(m)
. P. ~Tcusp N i
i=1 f71i

(3) Hz(a(r\i)) = eza IndfG (H ! (r, \z ,H1 (n.))]®
i=1  fFi CUSP Mo Tt
2 £G
® Ind p [Ti]
i=1 £51

\ 2 G
3 =\ ~ £ 1 2

(4) H™(3(T\X)) = @ Ind P.[chsp(rM'\ Zy H (n;))]e
i=1 £fr i i i
2 £G 4O
® Ind H (I \ 2 ,H (n; )) ]
i=1  £5i My

) mG @I 2 e maf. [xf (T, 53(n,))] ® St(m)
1= fPi cusp i M.' =i

(where the action of P. on the various terms

£ i
gP q : :
cusp(I‘M\ ZM.’H (Qi)) is described above)
The £G - module St(m) is defined by the short exact sequence
2 fG fG
(6) O-C~ ® 1Ind p [¢] - Ind [¢] -~ st(m) - O .
. . ’ . P
i=1 £f71i f o

16
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and T, is a certain one-dimensional representation of 'fPi

which corresponds to the one-dimensional representation

HO(fM} ZM.’H3(Ei)) via Poincare duality for 3 (T (m)\X)

i i
Remarks: (1) If we deal with a non-trivial coefficient system
£ given by a rational representation (t,E) a similiar pro-
cedure allows also to determine H*(B(F\X,ﬁ) as fG - module.
The final result depends on the highest weight ii of the given
representation (7,E) , and is simpler than the one above
(for E =@ ) if u is sufficiently regular.

(2) By taking TI/I'(m) - invariants (with T (m) appropriat-
ly chosen) on both sides of 2.5. one obtains also H*(Q(F\ELE)
for an arbitrary torsionfree subgroup I of finite index in
Sp, (Z) .

2.6. We consider now the natural restriction
o H*(T\i) - H*(B(F\i)) . Recall that the cohomological di-
mension cd(I') of T 1is equal to dim T\X - erSp4 =4 , i.e.
we have Hi(F\i) =0 for i>4 by [4] , § 9. Obviously r°
is an isomorphism. The positive solution of the congruence sub-
group problem for Sp4 (c£. [17]) shows that the commutator
factor group I /[T : T] is finite. On one hand, this implies
that H1(F\Xf = T/[T:T] ® € vanishes and via Poincaré duality
one gets that r4 is surjective. On the other hand, one ob-
tains H1(F\§)‘= 0 , and therefore r' is trivial. Moreover,
there is a dual pairing on H*(S(F\f)) induced by duality such
that the image of H*(P\f) under r is its own annihilator;

in particular one gets for i=0,1,...

17



(1) dim Im r°~ % = dim HY (3 (I\X))-dim Im r-

which shows that Im r3 and Im r2 are related to eachother.

For T =T(m) , m » 3, the group FM can be viewed as
i

the full congruence subgroup TI'(2,m) of level m in SLZ(Z) .
The Eichler-Shimura isomorphism (cf.[28], 8.2)

1
(2) chsp(F(2,m)\H,E

= (r(2,m)) ® S (T(2,m))

k) = Sku1 k+1
relates the cusp cohomology of T (2,m}) with coefficients in
the representation of SL20R) of dimension k to the space
Sk+1(T(2,m)) of holomorphic resp. antihdlomorphic cuspidal
forms of weight k+1 on the upper half plane H with respect
to TI'(2,m) . The dimension of the spaces on the right hand side
are known ([28] , § 2). Using this and (1) we obtain the fol-
lowing dimension formulas for the image of the restriction map

*
r

2.7. Proposition. - Let TI'=T(m) , m > 3 , be the con-

gruence subgroup of level m of Sp4(z) . The dimensions of

the images of the restrictions 1r  : H (I\X) - H(3(I'\X)) are

given by
1 g =20
(1) dim Im r9 =
0 g=1 or gq3>5
\ 2 3 2
(2) : dim Im r°+dim Im r~ = z pi(m)(1+2 dim Sk‘(P(2,m)))
i=1 1
3 i=1
with ki =
4 i=2
4 2
(3) dim Imr” = I (pi(m)~2-dim SZ(F(Z,m)))

+ (po(m)-(p1(m)+p2(m))+1)

18
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where pj(m) = )ij\fG} denotes the number of TI'(m) - conjugacy

classes of parabolic @ - subgroups of Sp4GR) of type J

(3j=0,1,2).

19



205

s 3 Eisenstein cohomology for Sp4/Q

The theory of Eisenstein series ([11], [14]) can now be
used to construct a section to the natural restriction
r® ¢ B (I\X;E) - H (3(T\X),E) where T < Sp,(®) is a torsion-
free congruence subgroup and (t,E) a rational representation
of G = Sp4ﬂm as in § 1 . In explaining the main results we

have to assume some familiarity with this approach as explained

in [8], [10], [22], [24], [25].

3.1. Eisenstein cohomology classes. Let us briefly re-

call the construction of Eisenstein cohomology classes in a
simple setting. Given a parabolic @ - subgroup P of .G with
P = °MAN we consider the cusp cohomology
*
(

* ' e ¥
(1) chsp(e (p),E) : chsp(rM>ZM’H

n,E))

of the corresponding face e'(P) 1in the boundary of the Borel-
Serre compactification TI'\X . For a definition in representa-
tion theoretical terms we refer to § 1 . However, this space

" may also be interpreted in terms of H*(g) - valued differen-

tial forms on TM>ZM whose coefficients are H*(g) - valued

cuspidal functions. In particular, the cusp cohomology

*

chsp(e'(P)) can be identified with the space of harmonic

cuspidal € - valued differential forms on e'(P) , i.e. those
whose coefficients are cuspidal (see [2], § 5).

Let O # [¢] € qusp(e'(P),E) be a non-trivial cuspidal
cohomology class represented by a harmonic cuspidal form
b E Q*(e'(P),E). We have topologically FP\X = e'(P) X'AP

For a given A 'in the dual 3; of the complexified Liealgebra

20



ém of A = AP we can associate to ¢ wvia the differential

form ¢A = ¢aA+p Q*(FP\X) the Eisenstein series
(2) E(,A) = I veo, .
FPNP

This Eisenstein series is first defined for all A in
*.+ ‘
(3) (ap)” = {hea | (Re A,0) > (pp,a), o EA(R,A)]

and is holomorphic in that tube where A(P,A) denotes the set
of simple roots of P with respect to A and the element

(a) = (det 2d a n)1/2 , a €A . Via

* . .
Pp € 2 is defined by opp

analytic continuation it admits a meromorphic extension to all

of gé . We refer to [14], [11] for the general theory of Ei-

senstein series. If A € gé is fixed and E(¢,A) is holo-

morphic at this point, then evaluating the Eisenstein series

in AO gives an E ~ wvalued, T - invariant differential form

on X , i.e. we obtain E(¢,AO) € G(r'\X,E) . In fact, by 4.11.

[24] there is a special point A uniguely determined by ¢

¢

such that this construction provides us with a closed harmonic

form E(¢,A,) 1if E(¢,A) is holomorphic at this point A¢

¢

In particular, this form represents a non-trivial cohomology

class [E(¢,A.)] in H (T\X,E)

¢

However, since A¢ does not necessarily lie in the re-
gion (éé)+ of absolute convergence of the defining series
E(¢,A) may very well have poles at such points. In this case,
we have to take residues of these Eisenstein series, and the
sitﬁation is much harder to describe. It requires an explicit

knowledge of the constant Fourier coefficient of E(¢,A) along

the various parabolic @ - subgroups Q and certain intertwin-
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ing operators involved. In order to prove that these values of
Eisenstein series represent non-trivial cbhomolbgy classes in
H*(T\i,E) one considers its images under the various restrit—
tions rs : H (I\X,E) - H*(e'(Q),E) . By [24], 1.10. this re-

duces to study the image of the constant Fourier coefficient

*
E(¢,A)Q along Q wunder r

There is the following result, where we retain the nota-

tions of § 1 and § 2

3.2. Theorem.- Let rc.Sp4(ZH be a torsionfree sub-

group of finite index of the Siegel modular group of degree

two, X = Sp,(R)/K the associated symmetric space (K a maxi-
o 4 a maxi

mal compact subgroup of G = Sp4GR)) and (1,E) a rational

representation of G (as in § 1).

(1) There is a direct sum decomposition of the cohomology

of T as

HY(T\X,E) = H,(T\X,E) ® H_, (T\X,E)

where HT(P\X,E) is the image in H*(F\X,E) of the cohomology

*

with compact supports (cf. § 1), and HEi

s(P\X;E) is the space

generated by Eisenstein cohomology classes (i.e. classes with

a representative given by a regular value of an Eisenstein series

attached to the classes in H*(B(F\f),E) or a residue of such

at a point A ). The space H;is(P\X,E) maps under the restric-

tion 1 H*(P\E,E) > H*(B(F\f),E) isomorphically onto the

image of r* . (For a description of Im r” and the construc-

*

tion of HE' (I X,E) we refer to 3.4.)
o is

(2) Each class in H*(P\X,E) has a harmonic differential

79



203

form as a representative.

(3) The following spaces coincide (for notation we refer

to § 1):
5> (I\X,E) = H2(I\X,E) = H>,, (I'\X,E)
cusp ! R (2) !
res
u* (I\x,B) = 8., ("\X,E)
1 14 (2) 7 .
3.3. Corollary. - Each class in H*(F\X,E) can be re-

presented by & differential form whose coefficient functions

are automorphic forms with respect to T , i.e. if é(F,G)

denotes the space of automorphic forms with respect to r

(cf. 1.4. [24]) then the morphism

¥ (g,K;ACG) ® E) — H (g,K;C (I\G) ® E = H" (I'\X,E)

induced by the inclusion A(TI,G) - C (I\G) is surjective.

3.4. We describe mor precisely the image of the restric-
tion map r* : HY("\X,E) - H*(é(T\f),E) and in which way the
space H;is(P\X’E) is built up. We indicate briefly also some
of the methods of proof. For simplicity we assume that T = T {(m)
'm » 3 , is a full congruence subgroup and that E = @ is the
trivial representation;we will omit the trivial coefficients in
the notation. Recall that H¥(I') =0 for g > 5 or q =1
(cf. 2.6.) -

The set T\ i of T - conjugacy clasSés of parabolic
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@ - subgroups of G falls into two subsets, the set
F\(g1 U gz) of maximal ones and the set T\go of minimal

ones. Denote a set of representatives for these by Bmax resp.

D

“min °
At first, we consider the cusp cohomology spaces
g 1
(1) @ HI ('), Q€R
of the faces e'(Q) corresponding to the elements in Prax °
For g =1,...,4 the space in (1) corresponds to the fG -
submodule
2 G
£ 1 qg-1
® 1Ind B (r.\z, ,H* (n.,))]
1=1 fPi cusp Mi Mi i

in the cohomology #9(3(I'\X)) of the boundary (cf. 2.5.). The
Eisenstein series E(¢,A) attached as in 3.1. to a given non-

4
trivial cuspidal class of degree 4 [¢] € Héusp(e'(Q)) ,

pQ € 5; , and the

) is closed and harmonic and represents a non-tri-

Q € Emax , is holomorphic at the point- A¢ =

form E((brA

¢
vial class in H4(P\X) whose image under the restriction
rg : H4(F\§) - H4(e'(R)) to a face e'(R) in 3(I'\X) is given
by
4 [o] for R T - conjugate to Q
(2) re([E(8,4,) )=

0 otherwise

This is shown in [26], § 3. As a consequence, these regular Ei-

senstein cohomology classes generate a subspace

4

l (r\X) C Hp,_

nax (T\X) . of the Eisenstein cohomology of T

which restricts isomorphically onto the first term (1) in the
cohomology H4(3(P\Y)). Its dimension can be read off from for-

mula 2.7.(3).
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For a minimal parabolic P in gmin the face e'(P) is com-
pact, whence HZusp(e'(P)) = H*(e‘(P)) . If we consider then in

degree 4 the cohomology

4 e w whan
(3) H'(v ) =@ H (e'(P)) , PEPR .

of the faces corresponding to P € P it turns out that not

=min
all of this space is in the image of r4 . In order to deal
with this question we have to consider all faces e'(P) ,
P € gmin , simultaneously, i.e. we have to work in an adelic
frame-work (cf. [10], [22], [24], 127]). Again, there is an
Eisenstein series E(¢A,A) associated to an element ¢A in
H*(YO) which depends on the 2-dimensional complex parameter
A ; the possible singularities of E(¢A,A) lie along certain

hyperplanes. However, if a class ¢ of degree 4 satisfies

A
certain conditions (which can be formulated in terms of GrdBen-
charakters, cf. [22], '123]) the corresponding Eisenstein series
gives rise to a regular Eisenstein cohomology class (represen-

4

ted by an harmonic form) in H4(F\X) which restricts under «r

to the class we started with. These classes span a subspace

| - |p

—max

a

4 . 4 . .
H . (I\X) in Hp, (T\X) of dimension |p

: | + 1
—min

such that we have finally

4

.4 4
(4) HEiS(T\X) = Hmax(r\x) ® Hmin(r\x)

and this space is generated by regular, non-square integrable
Eisenstein cohomology classes. (By 2.5.(5) this proves also
3.2.(3) in degree 4). The proof of this result uses an exélicit
Computétion of the adelic intertwining operators occﬁring in

the constant Fourier coefficient of E(¢A,A) along P and the
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arithmetic information contained in there.

Thisvadelic procedure plays - -also a very important role
if we are dealing with the Eisenstein cohomology of T  in de=-
gree three. As above, there is a decomposition
(5) B3, (I\X) = H>__(I\X) @ H>, (T\X)

Eis ‘ max min
where Hiin(F\X) is built up in the following way: Starting

with a class in H3(Yo) which satisfies certain arith-

‘n

metic conditions there is a uniquely determined singular hyper-
plane r for the associated Eisenstein series E(¢A,A) such

that the residue Res E(¢A,A) along r gives rise to a

closed and harmonic form on TI'\X which represents a non-trivial
class in H3(P\X) . The space Hiin(r\x) generated by these
classes is of dimension \gm

under r3 : H3(r\§) > HB(B(F\i)) onto the second term in the

axl and restricts isomorphically
right hand side of 2.5.(4). These residue classés can also be
interpreted as classes obtained from Eisenstein series associa-
ted to non-cuspidal forms on the faces e'(Q) with Q a maxi-
mal parabolic @ - subgroup of G . The first term in the de-
scription 2.5.(4) of HB(B(F\X)) is partly lifted up by regu-

lar Eisenstein cohomology classes attached to wA in

® H>  (e'(0)), Q e B

cusp ; in an adelic setting; these classes

ax

generate H;ax(F\X) . We recall the formula dim Im r? + dim Im r-=

dim HZ(S(F\X)) = dim H3(8(F\X)) . In fact, it turns out that

. the part missed in H3(8(F\X)) by Im r3 is detected by classes

in Héis(r\xl, generated by residues of Eisenstein series
: 2 . . .
attached to WA in ® chsp(e (@)), @ € B . This game is

controlled by certain L - functions in the sense of Langlands

26



_12

([13]) which occur in the constant Fourier coefficient of
E(wA,A) and which have to be explicitly determined (cf. [27]).
One needs some arithmetic information on the vanishing or non-

vanishing of these Euler products attached to at special

A
points. As a consequence, the space Héis(r\x) consists out
of square-integrable cohomology classes. Moreover, by a dimen-
sion argument one gets that the‘second term in the right hand
side of 2.5.(3) is not in the image of r2 . In particular, we
have Héis(F\X) = HiaX(F\X) with the usual notation.

By the relation 2.6.(1) and the result in degree 4 we
see that r@ i (n® - B (3(r\X)) is the trivial map. In
degree zero we have that HO(I\X) =€ - HO(S(T\ﬁ)) =C is
injective and a non-trivial class in B9 (T\X) is given by the
successive residue of the Eisenstein series attached to a gene-
rating class in HO(YO) .

Assertion 3.2.(2) and corollary 3.3. follow easily from

this discussion. For the first assertion of 3.2.(3) we refer

to 3.5.

Remark: The proof of 3.3. in the case of a non-trivial coeffi-
cient system E given by a rational representation (1t,E) of
G whose highest wéight is sufficiently regular is simpler

than the one described above for trivial coefficients. In par-
ticular, the Eisenstein cohomology occurs only in degrees three

and four.

3.5. Following the general discussion in 1.3., 1.4. it

is of interest to determine the list of irreducible unitary re-

27



213

presentations of G = Sp4GR) with non-zero relative Lie alge-
bra cohomology. We consider the case of trivial coefficients

E = . One derives from the general result of Vogan and Zucker-
man [29], [30] that there are up to equivalence exactly eight
distinct irreducible unitary representations (w,Hm) of G

such that the relative Lie algebra cohomology with trivial

coefficients
(1) B (g,K:H) % O

does not vanish. First of all, there are (up to equivalence)

four discrete series representations which satisfy (1), twb
holomorphic ones and two antiholomorphic ones; they are charac-
terized by thé fact that they have the same infinitesimal charac-
ter as the trivial representation. For a realisation we refer

to [18]. For the relative Lie algebra cohomology with respect

to such a discrete series representation Y4is of G one has
(2) Hq(g,K;H:d. ) =0 for q = 3
is

Then there are (up to equivalence) three other irreducible uni-
tary representations; they have only non-trivial relative Lie
algebra cohomology in degree two and four. Their Langlands para-
meters are given in [26], 3.5. The list is completed by the
trivial representation T .

Due to a result of Harish-Chandra and Wallach (131], 4.3)
the discrete series representations Oéis

they occur as an irreducible constituent in the discrete spec-

occur already, if

trum Lgis(F\G) , with its full multiplicity in the cuspidal
spectrum Lg(P\G) . Since there are as unitary representations

only the discrete series ones which contribute non-trivially to
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cohomology in degree three we get (by 1.6. in [15])

3 I =
(3) chsp(F\x) = H!(T X) = H

75y (\X)

A similiar argument works for non-trivial coefficients E . The
I') with which the ., occur in
dis

Lé(F\G) can be interpreted as dimensions of certain spaces of

multiplicities m(mdis’

automorphic forms with respect to T .

29



215

References

(1]

(2]

(9]

Borel, A,: Stable real cohomology of arithmetic groups
II. In: Manifolds and Liegroups, J. Hano et al.
ed., Progress in Maths., vol, 14, 21 - 55, Boston-
Basel-Stuttgart 1981 -

Borel, A., Casselman, W.: Lz—cohomology of locally sym—
metric manifolds of finite volume, Duke Math. J.
20, 625 - 647 (1983) ‘ )

Borel, A., Garland, H.: Laplacian and discrete spectrum
of an arithmetic group. Amer. J. Math. 105,
309 - 335 (1983)

Borel, A., Serre, J-P,: Corners and arithmetic groups.
Comment. Math. Helvetici 48, 436 - 491 (1973)

Borel, A,, Wallach, N,: Continuous cohomology, discrete
subgroups and representations of reductive groups.
Annals of Math,., Studies 94, Princeton: University
Press 1980 T

Grunewald, F., Schwermer, J.: A non vanishing theorem
for the cuspidal cohomology of SL2 over imaginary

quadratic integers, Math., Ann. 258, 183 - 200 (1981)

Harder, G.: On the cohomology of SLz(G) . In: Gelfand,

I. M, (ed.) Lie groups and their representations,
139 - 150. London: Hilger 1975

Harder, G.: On the cohomology of discrete arithmetically
defined groups. In: Proc, of the Int. Collog. on
Discrete Subgroups of Liegroups and Appl. to Modu-
li (Bombay 1973), 129-160. Oxford: University Press
1975

Harder, G.: Period integrals of Eisenstein cohomology
classes and special values of some L-functions.
In: Number theory related to Fermat's last theorem,
Ed. N. Koblitz, Progress in Maths. vol., 26, 103 -
142, Boston-Basel-Stuttgart 1982 T

Harder, G.: Eisenstein cohomology of arithmetic groups:
The case GL2 . Preprint 1984

Harish-Chandra: Automorphic forms on semisimple Lie-
groups., Lect. Notes in Maths., 62, Berlin-Heidel-
berg-New York: Springer 1968

Langlands, R. P.,: Modular forms and %-adic representa-
-tions. In: Modular Functions of one variable II,
Lect. Notes in Maths. 349, 361 - 500, Berlin-
Heidelberg-New York: Springer 1973

30



[13] Langlands, R. P.: Euler products. Yale Math., Monographs
1, Hew Haven, Yale University Press 1971

[14] Langlands, R. P.: On the functional equations satisfied
by Eisenstein series. Lect. Notes in Maths. 544,
Berlin-Heidelberg-New York: Springer 1976

[15] Lee, R.,, Schwermer, J.: Cohomology of arithmetic sub-
groups of SL3 at. infinity. Journal f. d. reine

u, angew, Math. 330, 100 - 131 (1982)

[16] Lee, R., Schwermer, J.: The Lefschetz number of an in-
volution on the space of harmonic cusp forms of
SL3 Inventiones math. 73, 189 - 239 (1983)

[17] Mennicke, J.: Zur Theorie der Siegelschen Modulgruppe.
Math. Annalen 159, 115 - 129 (1965)

[18] Narasimhan, M., S., Okamoto, K.: An analogue of the
Borel-Weil-Bott theorem for Hermitian symmetric
pairs of noncompact type. Ann, of Math. 23, 486 -
511 (1970)

[19] Piatetski-Shapiro, I.: On the Saito-Kurokawa lifting.
Invent. math. 71, 309 - 338 (1983)

[20] Rallis, S.: On the Howe duality conjecture. Compositio
Math. 51, 333 - 399 (1984)

[21] Schwermer, J.: Sur la cohomologie des sous-groupes de
- congruence de SL,(Z) . C. R. Acad. Sc. Paris 283,
817 - 820 (1976)

[22] Schwermer, J.: Eisensteinreihen und die Kohomologie von
Kongruenzuntergruppen von ~SLn(ZZ).’BOnner Math.

Schriften, n® 99, Bonn 1977

A

[23] Schwermer, J.: Sur la cohomologie des SLn(ZZ) a

1'infini et les series d'Eisenstein. C. R. Acad.
Sc. Paris 289, 413 - 416 (1979)

[24] Schwermer, J.: KXohomologie arithmetisch definierter
Gruppen und Eisensteinreihen. Lect. Notes in Maths,,
vol, 988, Berlin-Heidelberg-New York-Tokyo:

- Springer 1983

[25] Schwermer, J.: Holomorphy of Eisenstein serieé at spe-
cial points and cohomology of arithmetic sub-
groups of SLn(Q) . Preprint 1984

[26] Schwermer, J.: On arithmetic quotients of the Siegel
upper half space of degree two. Preprint 1984

31



[27]

[28]

[29]

[30]

[(31]

217

Schwermer, J.: Euler products and the cohomology of
arithmetic quotients of the Siegel upper half
space of degree two. In preparation

Shimura, G.: Introduction to the arithmetic theory of
automorphic functions. Publ., Math. Soc. Japan 11,
Princeton: University Press 1971

Vogan, D. A,, Jr.: Unitarizability of certain series of
representations, Ann., of Math. 120, 141 - 187
(1984)

Vogan, D. A., Jr., 2Zuckerman, G,: Unitary representa-
tions with non-zero cohomology, Compositio Math.
53, 51 = 90 (1984)

Wallach, N.: On the constant term of a square integrable
automorphic form. In: Operator algebras and group
representations, vol., I. Monographs and Studies in
Maths., vol, 17, London: Pitman 1984

Zucker, S.: Locally homogeneous variations of Hodge
structure, L'Enseignement Math. 27, 243 - 276
(1981)

Mathematisches Institut
Universitdt Bonn
Wegelerstr. 10

D - 5300 Bonn 1
R. F. A,

32



