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ABSTRA $CT$

A simulation program generator, which generates circuitry

code for circuit simulation with input of circuit specification, is

developed based on computer algebra algorithms and Hamiltonian
formalism. The generator is easy to use and extensible to include

new logic function.

1. Introduction

In the process of developing a computer hardware, circuit simulation is
essential, since it provide the hardware designer with many useful information
prior to the actual hardware design. Basically there are two possible ways to
perform circuit simulations with software programming. The most primitive

method is for the user to code his own program based on some first principles

of circuit design. However, this method is not only time consuming, but also
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much error prone for a complicated system. The other method is to use some

software packages of circuit simulation available in the market. While it may

be convenience to do so for a conventional circuit design, it would be difficult

to modify the program to suit some particular applications which are not

available in the simulator packages. For example, if we are to apply the

conventional circuit simulator to the problems of Josephson junction circuitry,

probably many changes may have to be made to the circuit simulator since in

the superconductivity domain $dif\ddagger erent$ principles of circuit operation are

applied.

In the following we propose a third method which is to design an circuit

simulation code generator (CSCG) for circuit simulation. CSCG is not only

easy to use, but also extensible to allow the incorporation of new logic

functions into it as will be detailed in the following. One of the limitation of

this approach is that the system must be able to formulate using Hamiltonian

formalism. However the approach is particular superior in the application to

the DCFP1 , which is a kind of Josephson junction device intended for building

very high speed future computer system. Since writing down the Hamiltonian

or Lagrangian for a complicated circuit of DCFP would be easier than using the

conventional circuit analysis method, thus this tool is particularly suitable for

DCFP logic design.

In fact, the generator is built up from some modularity of sub-

Hamiltonians and the total Hamiltonian of the system need to be simulated is

the sum of many of these sub-Hamiltonians Owing to the modularity of the

Hamiltonian, the system is extensible, therefore an innovative user can design

his own new logic component. To incorporate a new logic component into the

system, the user only has to write the coding of the sub-Hamiltonian which

corresponds to the new logic component he intended to design In the other
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hand, for a user to use the generator would be very much easier, he only has to

input the specifications of the circuit and FORTRAN code can be automatically

generated from the circuit specifications. Hamiltonian and the computer

algebra based on REDUCE $(3.0)^{2}$ are essential in our design of the generator.

In the following the principles of Lagrangian and Hamiltonian formalism would

be illustrated using a simple example and the applications of REDUCE(3.0)

system will be given to illustrate the underlying principle.

2. Formalism of Lagrangian and Hamiltonian

A circuit which consists of superconductive inductances and Josephson

junctions with flux inputs and outputs can be easily specified by writing down

the potential energy $U$ , the kinetic energy $K$ and the dissipating function D.

the Lagrangian is given by the difTerence of the kinetic energy and the potential

energy, the Hamiltonian is given by the sum of kinetic energy, which must be

written in term of canonical momentum $p$ . and the potential energy. The

Lagrangian and the Hamiltonian of the system are as follow,

$L=$ K–U and $H=K_{p}+U$ (1)

where $K_{p}=K_{p}$ $(p_{1},p_{2}, p_{n})$ and $p_{k}$ is the canonical momentum related to the

Lagrangian formalism by,

$p_{k}= \frac{\partial L}{\partial x_{k}}$ (2)

Given the Lagrangian we can derive a set of simultaneous linear equations

from (2). Solving these equations we get, $x_{k}=f_{k}(p_{1},p_{2}, p_{n})$ and substitute

this into $K$ and $( \frac{\partial D}{\partial x_{k}})$ we obtain $K_{p}$ and $( \frac{\partial D}{\partial x_{k}})_{p}$ where $k=1$ , , $n$ .

In some systems equation (2) may have extraneous variables which are

linearly dependent on other variables, thus posing singularity problem to the

-3-
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method of linear equations solving. REDUCE(3.0) provides a linear equations

solving facility which will return a message for the set of equations having

singularity problem.

The Lagrangian form of equations of motion is given by,

$\frac{d}{dt}(\frac{\partial L}{\partial x_{k}})-\frac{\partial L}{\partial x_{k}}=-\frac{\partial D}{\partial x_{k}}$ (3)

The Hamiltonian form of equations of motion is given by,

$\frac{dx_{k}}{dt}=\frac{\partial H}{\partial p_{k}}$ (4)

$\frac{dp_{k}}{dt}=-\frac{\partial H}{\partial x_{k}}-(\frac{\partial D}{\partial x_{k}})_{p}$ (5)

3. A Simple Example of Lagrangian and Hamiltonian Formalism

We will derive the Lagrangian and the Hamiltonian equations of motion

for a simple example to show the overview of $thlS$ method.

Fig. 1

Fig.1 shows a harmonic oscillator with $x$ denotes the coordinate and $p$

denotes the canonical momentum. Also mass of the particle is $m$ , the

restitutional force is $-kx$ , the friction is $-\beta x$ . The potential energy $u$ , kinetic

energy $K$ and dissipating function $D$ are respectively given as follow,

$u=\frac{k}{2}x^{2}$ (6)

$K=\frac{m}{2}x^{2}$ (7)
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$D=\frac{\beta}{2}x^{2}$ (8)

the $\vee LagrangianL$ is

$L=$ K–U

$= \frac{m}{2}x^{2}-\frac{k}{2}x^{2}$ (9)

and the canonical momentum $p$ is,

$p= \frac{\partial L}{\partial x}$

$=mx$ (10)

then $K_{p}$ and $( \frac{\partial D}{\partial x})_{p}$ are obtainable as follow,

$K_{p}=\frac{1}{2m}p^{2}$ (11)

$( \frac{\partial D}{\partial x})_{p}=\frac{\beta}{m}p$ (12)

Therefore,

$H=K_{p}+U$

$= \frac{1}{2m}p^{2}+\frac{k}{2}x^{2}$ (13)

According to (4) and (5) the equations of motion are

$\frac{dx}{dt}=\frac{1}{m}p$ (14)

$\frac{dp}{dt}=\frac{k}{2}x-\frac{\beta}{m}p$ (15)

4. Computer Algebra Algorithms for Runge-Kutta method

In this section, we will show how to use computer algebra based on

REDUCE(3.0) to write the algorithm for Runge-Kutta method to solve the

Hamiltonian of the abovementioned harmonic motion system. In

REDUCE(3.0) the Hamiltonian equations of motion can be written as follows:

$x=DF(H,p)$ (16)

$- 5arrow$
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$p-DF$(H. x)-SUB ( $x= \frac{p}{m}.DF$ (D. $x$ )) (17)

where $DF()$ is the dif\ddagger erentiate operator of the REDUCE(3.0). If we are to

find the algebra expressions for Runge-Kutta method we need to define two

algebra parameters HH and TT which are the step of time interval for

numerical analysis and the total time of system evolution respectively. The

program of this system writing in REDUCE(3.0) is given in List 1. With

reference to List 1 we have RUNGEKUTTA $($ ... $)$ which is a procedure for

Runge-Kutta algorithms, and the SUB $($ ... $)$ in this procedure is a REDUCE(3.0)

system function which is to substitute the algebra value of all the arguments of

SUB $($ ... $)$ to the last argument of SUB $($ ... $)$ which are given by either (16) or

(17). Using algebra program we can generate the FORTRAN code captured in

List 2.

5. Applications of Hamiltonian Formalism to Josephson Junction Circuitry

Here and in the subsequent illustration, $x_{i}$ and $x_{\iota}$ will be used to denote

fiux and phase at some points $i$ of the circuit respectively, $\Phi_{0}$ is the unit

quantum fiux of superconductivity, $I_{m}$ is the maximum supercurrent of a

Josephson junction, and define

$x_{i}=2 \pi\frac{X_{i}}{\Phi_{0}}$ (18)

$I_{m}= \frac{\Phi_{0}}{2\pi L_{j}}$ (19)

$\Phi z$

$E_{j}= \frac{0}{4\pi^{2}L_{j}}$
(20)

$L_{t}=A_{i}L_{j}$ (21)

$\tau=\sqrt{}\overline{CL_{j}}$ (22)

To illustrate the application of the above formalisms to the Josephson

junction clrcuit, we will derive the Hamiltonian equations of motion for Fig. 2

$arrow 6arrow$
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System.

Fi$g.2$

For reason of simplicity in our illustration at here and the next example we

assume $D=0$ . Thus the potential energy and kinetic energy of the system are,

$u=\frac{(X_{1}-X_{2})^{2}}{2L}-\frac{\Phi_{0}I_{m}}{2\pi}\cos(\frac{2\pi(X_{2}-X_{3})}{\Phi_{0}})+\cos(\frac{2\pi X_{3}}{\Phi_{0}})$

$=E_{j} \frac{(x_{1}-x_{2})^{2}}{A}-\cos(x_{2}-x_{3})-\cos x_{3}$ (23)

$K=\frac{c}{2}(X_{2}-X_{3})^{2}+\frac{C}{2}x_{3}^{2}$

$= \frac{E_{j}\tau^{2}}{2}((x_{2}-x_{3})^{2}+x_{3^{2)}}$ (24)

In the Hamiltonian approach, unless the kinetic energy is explicitly given

in term of canonical momentum, we need to solve a set of linear equations

derived from (2) in order to get the canonical form. According to (2) we get,

$\frac{\partial L}{\partial x_{2}}=\tau^{2}E_{j}(x_{2}-x_{3})=p_{2}$ (25)

$\frac{\partial L}{\partial x_{3}}=\tau^{2}E_{j}(2x_{3}-x_{2})=p_{3}$ (26)

Solving the above simultaneous equations for $x_{2}$ and $x_{3}$ to be in term of $p_{2}$ and

$p_{3}$ , and substitute into (24) we obtain,

$K_{p}=\frac{p_{2^{2}}+(h^{+}p_{3})^{2}}{2E_{j}\tau^{2}}$ (27)

According to (4) and (5) the equations of motion are obtainable as follow,

$\frac{dx_{2}}{dt}=-\frac{2p_{2}+p_{3}}{2E_{j}\tau^{2}}$ (28)

$\frac{dx_{3}}{dt}=-\frac{p_{3}}{2E_{j}\tau^{2}}$ (29)

$- 7-$
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$\frac{dp_{z}}{dt}=E_{j}(\frac{x_{2}-x_{1}}{A}-\sin(x_{2}-x_{3}))$ (30)

$\frac{dp_{3}}{dt}=E_{j}(\sin(x_{3}-x_{2})+\sin x_{3})$ (31)

This example shows that the equations of motion in the Hamiltonian

approach is a set of simultaneous first order differential equations, which are

readily solved by numerical method, such as the Runge-Kutta method.

In the following we would like to consider a circuit which illustrate the

possible of implicit extraneous variables being introduced into a system, and it

can be easily shown that if Lagrangian formalism is adopted for writing the

equations of motion, then the equations of motion of this circuit can not retain

the same form as the previous example thus posing problem in writing

standardized algorithms for the system, however we shall show in the following

that for the Hamiltonian formalism, standard form of equations of motion is

retained.

Fig. 3

The kinetic energy and the potential energy of the system show in Fig. 3 can be

written as follow,

$u=E_{j}(\frac{(x_{1}-x_{2})^{2}}{2A_{1}}+\frac{(x_{3}-x_{4})^{2}}{2A_{2}}-\cos(x_{2}-x_{3}))$ (32)

$K=\frac{E_{j}\cdot\tau^{2}}{2}(x_{2}-x_{3})^{2}$ (33)

In the Hamiltonian approach, the canonical variables can be obtained by (2) as

follo $w$ ,

$p_{2}= \frac{\partial L}{\partial x_{2}}=E_{j}\tau^{2}(x_{2}-x_{3})$ (34)

-8-
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$p_{3}= \frac{\partial L}{\partial x_{3}}=E_{j}\tau^{2}(x_{3}-x_{2})$ (35)

eliminating either one of the variables of canonical momentum (e.g. $p_{3}$ ), we

obtain the kinetic energy in term of only one canonical momentum as follow,

$K_{p}=\frac{p_{z^{2}}}{2E_{j}\tau^{z}}$ (36)

and the Hamiltonian equation of motion is derivable by (4) and (5) as follow,

$\frac{\text{\’{a}} p_{2}}{dt}=E_{j}(\frac{x_{2}-x_{1}}{A_{1}}+\sin(x_{2}-x_{3}))$ (37)

$\frac{dp_{3}}{dt}=E_{j}(\frac{x_{3}-x_{4}}{A_{2}}+\sin(x_{3}-x_{2}))$ (38)

$\frac{dx_{2}}{dt}=\frac{dx_{3}}{dt}=\frac{p_{2}}{E_{j}\tau^{2}}$ (39)

The equations of motion still retain the standard form, and consistent

computer algebra algorithms can be applied to this problem in the same way as

the first example. For this reason and the reason that first order difTerential

equations are indigenous to the Hamiltonian formalism, and are readily be

solved by Runge-Kutta method, therefore Hamiltonian formulation is adopted

to develop algorithms for automatic circuitry code generator.

6. Design of a Circuit Simulation Code Generator Based on Computer

Algebra

In section 4, we have shown the basic principles underlying our approach,

however to develop a sophisticated generator which is user friendly we need

something additional. Fig.4 gives a slightly more complicated circuit of five

DCFPs connected via some delay line. This is a majority logic circuit, which

operates on the principle that the output logic state will be decided by the

majority input states, for example, if inputs Sl is low and S2 and S3 are high

then the logic output at DCFP4 should be high. In order to simulate the circuit

-9-
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behavior, the user of the generator has only to input the specifcations of the

circuit instead of writing a REDUCE(3.0) program which is presumably more

complicated than the example given in List 1. In short, he only has to write

essentially the following:

D CFP (1 , CK1) ,

D $L$ (1, $X1$ , X4) 1

D CFP (2, CK 1);
D $L$ (2, X2, X4) ,

D CFP (3, CK1);
D $L$ (3, X3,X4) ;
D CFP (4, CK2) ,

D $L$ (4, X4, $0$ );

DCFP $(p. CK_{n})$ is the specifications of DCFP; and the first argument is to

designate the $p^{-}th$ DCFP number and the second argument is to specify the

phase of clock being used to drive the DCFP. $DL( i, x_{j}, x_{k} )$ is the

specifications of the delay line, and the first argument is an integer designating

the $x^{-}$ th delay line, the second and the third arguments are interfacing flux

variables at the two ends of the delay line. Essentially, the above specifications

will be sufficient to generate FORTRAN code to simulate the circuit operation

$arrow 10-$
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of Fig. 4. Looking at the above specifications it is clear that the specifications is

simple and in addition the specifications provides a good correspondence to

the graphical drawing of the circuit configuration. Therefore the specifications

itself not only serves as specifications but also a good documentation for the

circuit diagram.

Fi $S\cdot-\sim$

The DCFP $(p , CK_{\mathfrak{n}})$ and $DL(t, x_{j}, x_{k})$ are nothing but sub-Hamiltonians of

DCFPs (without leakage inductance) and delay lines respectively and can be

easily written down by referring to Fig. 5 as follow,

$U_{DCFP}=\frac{\Phi_{0}I_{m}}{2\pi}\cos x_{e}\cos x_{j}$ (40)

$U_{DL}=\frac{(X_{j}-Y_{1})^{2}}{Lt}+\sum_{i=0}^{n-1}\frac{(Y_{\mathfrak{i}}-Y_{i+1})^{2}}{2Lt}+\frac{(Y_{n}-X_{k})^{2}}{2Lt}$ (41)

$IY_{DCFP}=\frac{C}{2}(X_{j}-X_{e})^{2}+\frac{C}{2}(x_{j}+x_{e})^{2}$ (42)

$K_{DL}=\sum_{t=\downarrow}^{m}\frac{C}{2}Y_{t}^{2}$ (43)

$D_{DC\overline{r}P}=\frac{1}{2R}(X_{j}-X_{e})^{2}+\frac{1}{2R}(X_{j}+X_{e})$ (44)

$D_{DL}=\sum_{\mathfrak{i}\Rightarrow 1}^{m}\frac{1}{2Rt}Y_{i}^{2}$ (45)

$H_{DCFP}=K_{DCFP}+U_{Dc_{fP}^{\neg}}$ (46)

and
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$H_{DL}=K_{DL}+U_{DL}$ (47)

The above expressions can be converted into computer algebra algorithms

writing in REDUCE(3.0) statements. The number of code lines of FORTRAN

program generated from the above specifications are presumably many times

the specification statements. Therefore a user who needs only to write the

specifications, a considerable saving of time and efTort are obvious. If we are to

write FORTRAN code for every circuit confguration to be simulated, then let

alone the enormous work for coding and the various changes we have to make

for every circuit configurations , the chances to make error will be very high for

a complicated circuit configuration.

The system has already been implemented in one of the REDUCE(3.0)

system for actual circuit simulation and design. The detail of the

implementation and application of the system can be found in $reference^{3}$ As we

have mentioned earlier that system is extensible, if a user intends to

incorporate a new logic function into the CSCG then he has only to write a

similar sub-Hamiltonian of his own and coded in REDUCE(3.0) statements as

a procedure and added to the CSCG.

7. Conclusion

From what have been discussed we conclude that the simplicity and

extensibility of the system and the ability of the system to handle complicated

circuit dynamics are the direct consequences of the Hamiltonian formalism,

which enable the total system to be partitioned into sub-Hamiltonian, and

equally importance is the power of computer algebra system such as

REDUCE (30). The generator can also be extended to include mechanics

-12-
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,

systems since in many mechanics systems it is possible to specify systems by

Hamiltonian.
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30 $J$

List 1

1 $j$

2 /.

3 /. I N PUT
4 /.

5 :
6
7 $K$ $:=$ $1/(2*M)*P**2i$
8 $\cup$ $:=KO/2*Q**2$ ;
9 $D$ $:=$ $B/2*QDOT**2$ ;

$1O$ $H$ $:=K$ $+\cup j$

11
12 :
13 /.

14 /. $RUNGE-KUTTA$ METHOD
15 /.

16 :
17
18 PROC EDUR E R UNGEKUTTA ( $F1$ , $F2$ , $P$ , $Q$ , TT) ;
19 BEGIN
20 SCALAR Kll, Kl 2, K21 $*$ $K22$ K31 , $K32$ . K41 , $K42$ ;
21
22 $K11$ $:=HH*F1$ ;
23 K12 $:=HH*F2$ ;
24 KZ1 $:=HH*SUB$ (TT$=TT+HH/2$ , $P=P+K11/2$ , $O=O+K12/2$ , Fl):

Z5 KZ2 $:=HH*SUB$ (TT$=TT+HH/2$ , $P=P+K11/2$ . $O=O+K12/2$ , F2) $j$

Z6 K31 $.=HH*SUB$ (TT$=TT+HH/2$ , $P=P+K21/2$ , $Q=Q+K22/2$ , Fl) ;
27 K32 $:=HH*SUB$ (TT$=TT+HH/2$ , $P=P+K21/2$ , $O=O+K22/2$ , F2) $j$

Z8 K41 $:=HH*SUB$ $(TT=TT+HH . P=P+K31 , Q=O+K32 . F1)$ ;
29 K42 $:arrowarrow HH*SUB$ (TT$=TT+HH$ , $P=P+K31$ , $Q=Q+K32$ , F2) ;
30 PN $:=$ $P$ $+$ (Kll $+2*K21$ $+2*K31$ $+K41$ ) $/6$ ;
31QN $:=$ $Q$ $+$ (K12 $+2*K22$ $+2*K32$ $+K42$ ) $/6$ ;
32 END;

33
34 ;
35 /.

36 /. HAMILTONIAN CALCULATION
37 /.

38 :
39
$4O$ $D$ I FP $:=-DFtH,$ $O$ ) $-SUB$ (QDOT$=P/M$ . DF $tD$ , QDOT)) ;
41 OIFQ $:=$ $DFtHP$ ):

42
43 RUNGE}\langle $UTTA$ (DIFP $\cdot$ $OIFO$ $p$ , $Q$ , $TT$ );

44
45 ;
46 $\gamma$.
47 /.

48 $\gamma$. FORTRAN PROGRAM OUTPUT
49 /.

5 $O\gamma$.
51 :
52 OFF $ECHO*$

53 ON FORT\yen

54 OUT OUTFILE;

55
56 WR I T $E$ ” PROGRAM RUNGE”:
57 WRITE $*$ $j$

58 WRITE $’*$ INPUT “ ;
59 WRITE $*$ :
60 WRITE ” IMPLIC IT REAL ( $K$ , $Mt”$ :
61 WRITE ” WRITE $(6, *)$ ’ INITIAL VALUE OF $p$ $j$

62 WRITE ” READ $(5, *)$ $P$ ;
63 WR I TE ” WRITE $(6, *)$ ’ $P=$ ” $P’ i$

64 WRITE $|$ $WRITEt6,$ $*$ ) ’ INITIAL VALUE OF $Q$ $j$

65 WRITE ” READ $(5, *)$ $Q$ $j$

66 WRITE WRITE $(6*)$ ’ $Q=$ $Q$ $j$

67 WR I TE ” WR I TE $t6,$ $*$ ) ’ VALUE OF $M$ “ ;
68 WRITE ” R EAD $(5\cdot*)$ $M$ ’ ;
69 WRITE ” $llR$ ITE $(6 \cdot*)$ ’ $M=$ ” $M$ ;
70 WRITE ” $WR$ I $TEt6,$ $*$ ) ’ VALUE OF KO”’ $j$

71 WRITE ’. $R$ EAD $(5\cdot*)$ $KO$ ’ ;
72 WR I TE ” WR I TE $t6’*$ ) ’ KO $=$ ’ KO” ;
73 WRITE ” $WRITEt6’*$ ) ’ VALUE OF $B$ :
74 WRITE ” R EAD $t5’*$ ) $B$ ’ ;
75 WRITE ” $WRITEt6’*$ ) ’ $B$ $=$ $\prime B$ :
76 WRITE ’. WRITE $(6*)$ ’STEP SIZE OF $T”i$
77 WRITE ” R EAD $(5, *)$ HH“ :
78 WR I TE ’ WR I TE $(6,$ $*)$ ’ STEP S I ZE OF $T$ $=$ ” HH” ;
79 WR I TE ’ WR I TE $(6\cdot*)$ ’ FI NAL VALUE OF $T$ $7$ ;
$8O$ WRITE ’. $READt5’*$ ) TF“ ;
81 WRITE ” WRITE $(6, *)$ ’ FINAL VALUE OF $T$ $=$ , TF“ ;

$-14-$



List 1
301

82 WR I TE $”*$ ;
83 WRITE $*$ INITIALIZATION’ ;
84 WRITE $*$ :
85 WRITE ” TT $=O’ j$
66 WR I TE WR I TE $(9,$ $*)$ ’ $H=$ $\prime H’$ ’ ;
87 WR ITE ” WRITE $(9, *)$ ’ $0$ $=$ $D$

$||\cdot$ , :
88 WRITE “ $WRITEt99O1$ ) $M\cdot KOB’ i$

89 WRITE ” $9O1$ FORMAT( $M$ $=$ $E20.1O/$ KO $=$ ’ $E2O$ . $1O/$ ’ $B$ $=$ $E2O$ $1O$ ) $j$

$9O$ WR ITE WR ITE (9 910) $TT$ , $Q,$ $p$ “;

91 WRITE ’. $91O$ $FORMAT( , 3E2O. 1O)$ $i$

92 WRITE $*$ :
93 WRITE $*$ LOOP”i
94 WRITE ’ $*$ $j$

95 WR ITE ” 1 OO CONTINUE’ ;
96 WRITE ” $PN=$ , PN;

97 WRITE ” $Q=$ , QN $i$

98 WR I TE ” $Parrow-$ $PN’j$

99 WRITE ” TT $=$ TT $+$ $HH$ ;
1 $0O$ WR ITE ” WR ITE $t9\prime 91O$ ) TT , $Q$ , $P’$ ;
$1O1$ WRITE ” IF ( TT . LT. TF ) GO TO $1OO$ ;

1OZ WRITE ’ $*$ ;
$1O3$ WRITE “STOP ;
104 WRITE ” END” ;
105 SHUT;
$1O6$ OFF FOR $T$ ;
$1O7$ ENO:

List 2

1PROGRAM RUNGE
2 $*$

3 $*$ I NPUT
4 $*$

5IMPLICZT REAL(K, M)

6WRITE $(6’*)$ ’ INITIAL VALUE OF $P$

7READ $(5, *)$ $P$

8WRITE$(6, *)$ ’ $P\overline{\sim}$ $P$

9WR$ITEt6’*$ ) ’ INITIAL VALUE OF $Q$

1OREAD $t5,$ $*$ ) $Q$

11WRITE $(6’*)$ ’ $Q$ $=$ $Q$

12WRITE$(6, *)$ ’ VALUE OF $M’$

13READ $(5\cdot*)$ $M$

14WRI T $Et6*$ ) ’ $M=$ ” $M$

15WRITE $(6, *)$ ’ VALUE OF KO’
16REAP $(5\cdot*)$ KO
47 WRITE $(6 \cdot*)$ ’ KO $=$ ” KO
18WRITE $(6, *)$ ’ VALUE OF $B’$

19READ $(5\cdot*)$ $B$

20 WRITE $(6*)$ ’ $B$ $=$ $B$

Zl WRITE $(6, *)$ ’ STEP SIZE OF $T$

22 R EAD $tS\cdot*$ ) HH
23 $WRITEC6,$ $*$ ) ’ STEP SIZE OF $T$ $=$ ”HH
2‘ $WRITEt6*$ ) ’ FINAL VALUE OF $T$ ?’
25 R EAD $t5,$ $*$ ) TF
26 WRITE $(6, *)$ t FINAL VALUE OF $T=$ ”TF
27 $*$

28 $*$ INI TIALI ZATI ON
29 $*$

30 TT $=O$
31 $WRITEt9’*$ ) ’ $H=$ $(KO*M*Q**2+P**2)/(Z.*M)$
32 $WRITEt9’*$ ) ’ $D$ $=$ (B*QDOT**2)/2. ’

33 WR I T $E(9,901)$ M, KO, B
34 90} FORMAT ( ’ $M$ $arrowarrow$ ’

$t$ E20. 10/ ’ KO $=$ ” E20. 1 $O/$ ’ $B$ $=$ ” $E20.10$ )

35 WR I T $E(9,910)$ $TT,$ $Q,$ $p$

36 $91O$ $FORMAT( \prime 3E20.1O)$
37 $*$

38 $*$ $L$ OO $P$

39 $*$

40 100 CONTINUE
41 $PN=(B**4*HH**4*p+B**3*HH**4*KO*M*Q-4$ . $*B**3*HH**3*M*P-$
42 $3$ . $*B**2*HH**4*KO*M*P-4$ . $*B**2*HH**3*KO*M**2*Q+12$ . $*B**2*HH**$
$43$ . $2*M**2*P-2$ . $*B*HH**4*K0**2*M**2*Q+S$ . $*B*HH**3*KO*M**2*P+12$ .
44 . $*B*HH**2*KO*M**3*Qarrow 24$ . $*B*HH*M**3*P+HH**4*KO**2*M**2*p+4$ . $*$

$45$ $HH**3*KO**2*M**3*Qarrow 12$ . $*HH**2*KO*M**3*parrow 24$ . $*HH*KO*M**4*O+$
46 $24$ . $*M**4*P$ ) $/(24$ . $*M**4)$
47 $Q=(arrow B**3*HH**4*Parrow B**2*HH**4*KO*M*O+4$ . $*B**2*HH**3*M*P+$
48 $2$ . $*8*HH**4*KO*M*P+4$ . $*B*HH**3*KO*M**2*Q-12$ . $*B*HH**2*M**2*P+$
$49$ . $HH**4*KO**2*M**2*Q-4$ . $*HH**3*KO*M**2*p-12$ . $*HH**2*KO*M**3*Q$
$50$ . $+24$ . $*HH*M**3*P+24$ . $*M**4*Q$ ) $/(24$ . $*M**4)$
51 $P$ $=$ PN
52 TT $=$ TT $+$ HH
53 WR I TE $t9\prime 91O$ ) TT , Q. $P$

54 IF \langle TT . LT. TF ) GO TO $1OO$

55 $*$

56 S TOP
57 END

–15–
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$H$ . (KC $rMnQrn2\sim Frr2$ ) $/(2. -\aleph)$

$D$ $arrowarrow$ ( $B\cdot O$ DO TNN2 )/2

$\aleph$ $z$ O. 1 DOO 0000 $O$ $\inarrow O1$

K $O$ $\underline{arrow}$ O. 1 $OOOOOOOO$ $E\sim O1$

3 $\approx$ O. $2OOOOOOOO$ $\Xi\sim O1$

$–6\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} 9--\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$一一 $-0 \ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} D\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\frac{\ovalbox{\tt\small REJECT}}{}-\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ . $r$

. $Q$

$t\dagger*(\aleph O\cdot\aleph\cdot Q\cdot\cdot 2-P\cdot\cdot 2)J(2\cdot\aleph)$

$D\epsilon$ (3ロフ $0\tau\cdot\cdot a/z$ .
$r$ . $0$ . :oooooooo $E*01$

$K0$ $\underline{arrow}$ O. 1 $OOOOOO00$ $\simeq*O1$

$z$ . $0$ . soooooooo $E*OO$
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