goooboooogn
O 5470 19850 287-302

Circuit Simulation Code Generation

by Computer Algebra

K F Loe™™ ™' (E 70 AR)
N. Ohsa.,wa" (T\ :% %E,
R R

&t

\

)
~)

o

wF

E Goto’" ™ C

ABSTRACT

R87

A simulation program generator, which generates circuitry

code for circuit simulation with input of circuit specification, is

developed based on computer algebra algorithms and Hamiltonian

formalism. The generator is easy to use and extensible to include

new logic function.

1. Introduction

In the process of developing a computer hardware, circuit simulation is
essential, since it provide the hardware designer with many usefﬁl information
prior to the actual hardware design. Basically there are two possible ways to
perform'circuit simulations with software programming. The most primitive
method is for the user to code his own program based on some ﬁfst principles

of circuit design. Howevér,v this method is not only time consuming, but also

*1 University of Tokyo, Faculty of Science, Dept. of Information Science,
*2 The Institute of Physical and Chemical Research, Information Science Lab.,
*3 National University of Singapore, Dept. of Computer Science.

288

much error prone for a complicated system. The other method is to use some
software packages of circuit simulation available in the market. While it may
be convenience to do so for a conventional circuit desigh, it would be difficult
to modify the program to ‘suit some particular applications which are not
available in the simulator packages. For example, if we are to apply the
conventional circuit simulator to the problems of Josephson junction circuitry,
probably many changes may have to be made to the circuit simulator since in
the superconductivity domain different principles of circuii operation are
applied.

In the following we propose a third method which is to design an circuit
simulation code generator (CSCG) for circuit simulation. CSCG is not only
easy to use, but also extensible to allow the incorporation of new logic
functions into it as. will be detailed in the following. One of the limitation of
this approach is that the system must be able to formulate using Hamiltonian
formalism. However the approach is particular superior in the application to
the DCFP! , which is a kind of Josephson junction device intended for building
very high speed future computer system. Since writing down the Hamiltonian
or Lagrangian for a complicated circuit of DCFP would be easier than using the
conventional circuit analysis method, thus this tool is particularly suitable for

DCFP logic design.

In fact, the generator is built up from some modularity of sub-
Hamiltonians and the total Hamiltonian of the system need to be simulated is
the sum of many of these sub-Hamiltonians. Owing to the modularity of the
Hamiltonian, the system is extensible, therefore an innovative user can design
his own new logic component. To incorporate a new logic component into the
system, the user only has to write the Qoding of the sub-Hamiltonian which

corresponds to the new logic component he intended to design . In the other

284

hand, for a user to use the generator would be very much easier, he only has to
input the specifications of the circuit and FORTRAN code can be automatically
generated from the circuit specifications. Hamiltonian and the computer
algebra based on REDUCE(I},O)2 are essential in our design of the generator.
In the following the principles of Lagrangian and Hamiltonian formalism would
be illustrated using a simple example and the applications of REDUCE(3.0)

system will be given to illustrate the u‘nderlying principle.

2. Formalism of Lagrangian and Hamiltonian

A circuit which consists of superconductive inductances and Josephson
junctions with flux inputs and outputs can be easily specified by writing down
the potential energy U, the kinetic energy K and the dissipating function D.
the Lagrangian is given by the difference of the kinvetic energy and the potential
energy, the Hamiltonian is given by the sum of kinetic eriergy, which must be
written in term of canonical momentum p, and the potential energy. The
Lagrangian and the Hamiltonian of the system are as follow,

L=K-U and H=K,+U | (1)
where K=K, (p,.p,.....p,) and p, is the canonical momentum related to the

Lagrangian formalism by,

dL :
P = — (2)
dz,

Given the Lagrangian we can derive a set of simultaneous linear equations

from (2). Solving these equations we get, z=f (p,.p,.....p,) and substitute

‘”?) we obtain K, and (a—P—) where k=1, .., n.

oz, oz,

this inte K and (

In some systems equation (2) may have extraneous variables which are

linearly dependent on other variables, thus posing sihgularity problem to the

-3 -

290

method of linear equations solving. REDUCE(3.0) provides a linear equations
solving facility which will return a message for the set of equations having

singularity problem.

The Lagrangian form of equations of motion is given byf,

d, oL L 3D
a - - (3)

dt 3z, dz, . az,

The Hamiltonian form of equations of motion is given by,

dz, v

d: = ZH (@)
Dr

dp, aH 8D

ko — S5

dt EA (8z, s , (5)

3. A Simple Example of Lagrangian and Hamiltonian Formalism

We will derive the Lagrangian and the Hamiltonian equations of motion

for a simple example to show the overview of this method.

m ‘_gi.
\

T jiiirerint]

Fig.1
Fig.1 shows a harmonic oscillator with 2 denotes the coordinate and p
denotes the canonical momentum. Also mass of the particle is m, the
restitutional force is —kz, the friction is —gz. The potential energy U, kinetic

energy K and dissipating function D are respectively given as follow,

2 (6)

c
Il

2 (7)

~
l
|y ® e

291

— B :
2 S (®)
the Lagrangian L is

L=K-—U
m.e k
5 & 27-2 . (9)

T | (10)

S S |

Kp 277110 (11)
oD '

(—) = ‘ﬁ—P (12)
dzx P m

Therefore,

H= Kp + U
-1 * : '
= 2mp2 * 3 b (13)

According to (4) and (5) the equations of motion are

dz _ 1

it mt ‘ (14)
ap _k _ 8

dt ZI mp (15)

4. Computer Algebra Algorithms for Runge-Kutta method

In this section, we will show how to use computer algebra based on
REDUCE(3.0) to write the algorithm for Runge-Kutta method to solve the
Hamiltonian of the abovementioned harmonic motion system. In

REDUCE(3.0) the Hamiltonian equations of motion can be written as follows:

#:=DF(H,p) ‘ (16)

j)t=——DF(H,:z:)—SUB(i=—£L—,DF(D,i)) (17)
where DF() is the differentiate operator of the REDUCE(3.0). If we are to
find the algebra expressions for Runge-Kutta method we need to define two
algebra parameters HH and TT which are the step of time interval fqr
numerical analysis and the total time of system evolution respectively. The
program of this system writing in REDUCE(3.0) is given in List 1. With
reference to List 1 we have RUNGEKUTTA(...) which is a procedufe vfor
Runge-Kutta algorithms, and the SUB(...) in this procedure is a REDUCE(3.0)
system function which is to substitute the algebra value of all the arguments of
SUB(...) to the last argument of SUB(...) which are given by either (16) or
(17). Using algebra program we can generate the FORTRAN code captured in

List 2.

9. Applications of Hamiltonian Formalism to Josephson Junction Circuitry

Here and in the subsequent illustration, X, and z will be used to denote
flux and phase at some points i of the circuitl respectively, ¢, is the unit

quantum flux of superconductivity, 1

m

is the maximum supercurrent of a

Josephson junction,.and define

X;
T, =2m 3, (18)
5 ,
In= 507 (19)
'nLj
éoz
E = 20
J 47r2Lj ()
L, = 4L, (21)
7 = V/CL, (22)

To illustrate the application of the above formalisms to the Josephson

junction circuit, we will derive the Hamiltonian equations of motion for Fig. 2

System.v

293

AL, X2 L) x

T]
X X L
l

I T] 77777

Fig.2

For reason of simplicity in our illustration at here and the next example we

assume D=0. Thus the potential energy and kinetic energy of the system are,

2w X,

2m (X X3) } + cos()
0

q’OIm
cos(
®,
. (23)

2m

(Xi— X,)°
U= 1 2 _
2L

(z,—1x,)?
y — cos(z;— z3) — cosz,

Il

J

c,. C .
?(XQ_X3)2 + 'Z—Xaz
(24)

=~
I

ET®(]
A (z,— z4)%+ z32

2
In the Hamiltonian approach, unless the kinetic energy is explicitly given

in term of canonical momentum, we need to solve a set of linear equations

derived from (2) in order to get the canonical form. According to (2) we get,
(25)

aL 5 . .

— =T E(z—z3) = p,

dz,
aL . .

— = 72E;(Rzy— 3,) = pg (26)

GEX
Solving the above simultaneous equations for z, and z, to be in term of p, and

p;, and substitute into (24) we obtain,
(27)

p22+ (P2+ P3)2

K ==
P RE;T?
According to (4) and (5) the equations of motion are obtainable as follow,

dz, _ 2Pyt pg (28)
dt RE,T?

d

s P (29)
di 2Ej'rz

294

dp. T~ T

jd—tz- = E(g 1 sin{ z,— z,)) ’ (30)
4 .

% = E;(sin(23— x,) + sinz,) : ' (31)

- This example shows that the equations of motion in the Hamiltonian
approach is a set of simultaneous first order differential equations, which are

readily solved by numerical method, such as the Runge-Kutta method.

In the following we would like to consider a circuit which illustrate the
possible of implicit extraneous variables being introduced into a system, and it
can be easilyy shown that if Lagrangian formalism is adopted for writing the
equations of motion, then the equations of motion of this circuit can not retain
the same form as the previous example thus posing problem in writing
standardized algorithms for the system, however we shall show in the following
that for the Hamiltdnian formalism, standard form of equations of motion is

retained.

AlL; Xo L X3 Asly
—_— T e R

[

; x
| |

//;4///////////////

Fig.3
The kinetic energy and the potential energy of the system show in Fig. 3 can be

written as follow,

(52 (=2,

0= e L o =)
E~2

K = ’ZT (2 2,)° (33)

In the Hamiltonian approach, the canonical variables can be obtained by (2) as

follow,

= B) | (34)

295

L . ,
Py = —— = E;7%(25— 1,) ‘ (35)
N
eliminating either one of the variables of canonical momentum (e.g. Py), We
obtain the kinetic energy in term of only one canonical momentum as follow,

Pzz : ‘
P2ETR ()

and the Hamiltonian equation of motion is derivable by (4) and (5) as follow,

dp. ,— T :
——d—:* = E(2.4 Ly sin(z,— z3)) (37)
1 ;
dpy T, . ‘
= j(a, + sin(z3— z,)) (38)
dz, . dz, P :
dt dt E.2 , (39)

The equations of motion still retain the standard form, and consistent
computer algebra algorithms can be abplied to this problem in the same way as
the first example. For this reason and the reason that first order differential
equations are indigenous to the Hamiltonian formalism, and are readily be
solved by Runge-Kutta method, therefore Hamiltonian formulation is adopted

to develop algorithms for automatic circuitry code generator.

6. Design of a Circuit Simulation Code Generator Based on Computer

Algebra

In section 4, we have shown the basic principles underlying our approach,
however to develop a sophisticated generator which is user friendly we need
something additional. Fig.4 gives a slightly more complicated circuit of five
DCFPs connected via some delay line. This is a majority logic circuit, which
operates on the principle that the output logic state will be decided by the
majority input states, fér example, if inputs S1 is low and S2 and S3 are high

then the logic output at DCFP4 should be high. In order to simulate the circuit

290

behavior, the user of the generator has only to input the specifications of the
circuit instead of writing a REDUCE(3.0) program which is presumably more
complicated than the example given in List 1. In short, he only has to write

essentially the following:

DCFP(1,CK1);
DL(1,X1,X4);
DCFP(2,CK1);
DL(2,X2,X4);
DCFP(3,CK1);
DL(3,X3,X4);
DCFP(4,CK2);
DL(4,X4.,0);

DCFP(», CK,) is the specifications of DCFP; and the first argument is to
designate the p-th DCFP ﬁumber and the second argument is to specify the
phase of clock being used to drive the DCFP. DL(1, X X,) is the
specifications of the delay line, and the first argument is an integer designating
the i-th delay line, the second and the third arguments are interfacing flux

variables at the two ends of the delay line. Essentially, the above specifications

will be sufficient to generate FORTRAN code to simulate the circuit operation

- 10 -

Lo

-

of Fig. 4. Looking at the above specifications it is clear that the specifications is

simple and in addition ,

the specifications provides a good correspondence to

the graphical drawing of the circuit configuration. Therefore the specifications

itself not only serves as specifications but also a good documentation for the

circuit diagram.

Ve

- T T T

' Xe [|
nonno J

B . T Sy

\ L,

- = - -

CFP module -~ - -~ - - — = — — -

- e ar e wm s wm wm e

Fig.s

The DCFP(p . ck,) and DL(i, X;, X,) are nothing but sub-Hamiltonians of

DCFPs (without leakage inductance) and delay lines respectively and can be

easily written down by referring to Fig. 5 as follow,

and

@41, ‘
Upcrp = ——z—ﬂ—cosrecosxj
X—Y))? i (Y—7,,)? Y,— X,)?
U,, = Skt + T —= " (J
Lt =0 2Lt 2Lt

) C - . C . .
Kpcpp = ?(,\rj—)(e)2 + ?(Xﬁxe)z

mC o,
KDinzlgn
P
DDCFF’: E(Xj——Xe) + E‘&;(Xj‘FXe)
moy .
D, = ¢ 2
bL i=1 th ¢

- 11 -

(40)
(41)
(42)
(43)
(44)

(45) .
(486)

298

Hp, =Kp, +Up, (47)

The above expressions can be converted into computer algebra algorithms
writing in REDUCE(3.0) statements. The number of code lines of FORTRAN
program generated from the above specifications are presumably many times
the specification statements. Therefore a user who needs only to write the
specifications, a considerable saving of time and effort are obvious. If we are to
write FORTRAN code for every circuit configuration to be simulated, then let
alone the enormous work for coding and the various changes we ﬁave to make
for every circuit configurations , the chances to make error will be‘ very high for

a complicated circuit configuration.

The system has already been implemented in one of the REDUCE(3.0)
system for actual circuit simulation and design. The detail of the
implementation and application of the system can be found in reference3 As we
have mentioned earlier that system 1is extensible, if a user intends to
incorporate a new logic function into the CSCG then he has only to write a
similar sub-Hamiltonian of his own and coded in REDUCE(3.0) statements as

a procedure and added to the CSCG.

7. Conclusion

From what have been discussed we conclude that the simplicity and
extensibility of the system and the ability of the system to handle complicated
circuit dynamics are the direct consequences of the Hamiltonian formalism,
which enable the total system to be partitioned into sub-Hamiltonian, and
equally importance is the power of computer algebra system such as

REDUCE(3.0). The generator can also be extended to include mechanics

- 12 -

295

systems since in many mechanics systems it is possible to specify systems by

Hamiltonian.

References

1. K.‘ F. Loe and E. Goto, Analysis of Fluz Input Output Josephson Pair Device,
RIKEN Symposium on Josephson Junction Electronic, March 1984.

2. Anthony C. Hearn, REDUCE User's Manual version 3.0, The Rand
Corporation, Santa Monica, CA., April 1983,

3. N. Ohsawa, K. F. Loe, and E. Goto, Implementation and Applications of
Circuit Stmulation Code Generator, RIKEN (IPCR) Information Science

Lab., August 1984. Preprint

-13-

309

NVONOCUPUWUN -

e NN NN .

4

% INPUT

%

;

K 3= 1/7(2%M)XP%XX2;
U i= KO/2%Q%x%2;

D = B/2XQDOTXx%x2;
H = K + U

RUNGE-KUTTA METHOQOD

- NN N .

PROCEDURE RUNGEKUTTA(F1, F2, P, Q, TT);
BEGIN ’

SCALAR K11, K12, K21, K22, K31, K32, Ké&1
K11 := HHXF1;
K12 := HHXF2;
K21 = HHXSUB(TT=TT+HH/2, P=P+K11/2,
K22 = HHXSUB(TT=TT+HH/2, P=P+K11/2,
K31 = HHXSUB(TT=TT+HH/2, P=P+K21/2,
K32 := HH¥SUB(TT=TT+HH/2, P=P+K21/2,
K41 := HHXSUB(TT=TT+HH , P=P+K31 ’
K&2 1= HHXSUB(TT=TT+HH , P=P+K31 ’
PN (= P + (K11 + 2%K21 + 2%K31 + Ké&1
QN = Q@ + (K12 + 2%K22 + 2%K32 + Ké2

END;

HAMILTONIAN CALCULATION

e 3NN v

DIFP := -DF(H,Q)=-SUB(QDOT=P/M,DF(D,QDOT)};
DIFQ := DF(H,P);

RUNGEKUTTA(DIFP, DIFQ., P, Q, TT):

FORTRAN PROGRAM OUTPUT

OFF ECHO¥
ON FORT¥
QUT CUTFILE:;

WRITE * PROGRAM RUNGE";
WRITE "x";
WRITE "X INPUT™;

WRITE "x";

WRITE » IMPLICIT REAL(K,M)";

WRITE * WRITE(6,%) ' INITIAL VALUE OF
WRITE * READ(5,%) P";)

WRITE » WRITE(6,%) ' P = ',P";

WRITE * WRITE(6,%) * INITIAL VALUE OF
WRITE * READ(5,%) Q*;

WRITE WRITE(6,%) ' Q@ = *,Q";

WRITE * WRITE(&6,%) ' VALUE OF M'";
WRITE * READ(S,%) M":;

WRITE " WRITE(6,%) ' M = ' ,M";

WRITE WRITE(6,%) ' VALUE OF KO'";
WRITE " READ(5,%) KO";

WRITE * WRITE(6,%) * KO = *,KO";
WRITE * WRITE(&6,%) ' VALUE QF B'";
WRITE " READ(5,%) B";

WRITE » WRITE(6,%) ' B = ',B";

WRITE * WRITE(6,%) ' STEP SIZE OF T'"
WRITE * READ(5,%) HH";

WRITE * WRITE(6,%) ' STEP SIZE OF T =
WRITE * WRITE(6,%) * FINAL VALUE OF T
WRITE * READ(S,X%) TF";

WRITE * WRITE(6,%) * FINAL VALUE OF T

» K&2;

Q=Q+K12/2,
Q=Q+K12/2,
Q=qQ+K22s2,
Q=Q+K22s2,
Q=q+K32 ,
Q=Q@+K32 ,
Y76;

Y/76;

pre;

Q'";

* yHH";
e,

= *',TF";

F1):
F2}):
F1);
F2):
F1);
F2);

NNV PUN =

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

List 1 201
0'*";
"% INITIALIZATION":
"*";
" TT 3 o";
* WRITE(9,%) * H = ",H,"'";
" WRITE(9,%) ' D = ",D,"'";
" WRITE(9.,901) M,KO0,B";
" 901 FORMAT(' M = *,E20.10/°' KO = ',E20.10/*' B = ',E20.10)";
e WRITE(9,910) TT.,Q,P";
* 910 FORMAT(*' *',3E20.10)";
wior s
"X LOOP";

g

WRITE " 100 CONTINUE";

WRITE
WRITE
WRITE
WRITE
WRITE

" PN=",PN;
" Q=" ,aN;

v P = PN";

" TT = TT + HH";

" WRITE(9,910) TT,Q.,P";

WRITE " IF ¢ TT .LT. TF) GO TO 100";
WRITE "x*;

WRITE * STOP™;

WRITE " END™;

SHUT;

OFF FORT;

END;

X
¥ INPUT
X

¥ % ¢

PROGRAM RUNGE

IMPLICIT REAL(K,M)

WRITE(é,%) * INITIAL VALUE OF P*
READ(S,%x) P

WRITE(é6,%) * P = *,pP

WRITE(6,%) * INITIAL VALUE OF Q'
READ(5,%) Q

WRITE(6,%) * Q@ = *,Q

WRITE(6,X) * VALUE OF M*
READ(5,%) M

WRITE(6,%) * M = *',M

WRITE(&,%) ' VALUE OF KoO°'
READ(5,%) KO

WRITE(6,%) * KO = ',KO
WRITE(6,%) ' VALUE OF B'
READ(5.,%) B

WRITE(6,%) ' B = ',B

WRITE(&6,%) ' STEP SIZE OF T°*
READ(5,%) HH

WRITE(6,%) ' STEP SIZE OF T = *',HH
WRITE(6,%) * FINAL VALUE OF T 7°*
READ(5,%) TF

WRITE(6,%) ' FINAL VALUE OF T = ',TF

INITIALIZATION

901

910

TT =0

WRITE(9,%) * H (KOXMXQXK2+PXXK2) /7 (2.%M) *

WRITE(9.,%) ' D (BXQDOTX%2)/2,*

WRITE(9,901) M,KO0,B

FORMAT(' M = *',E20,10/' KO = ',E20.10/"' B = ',E20.10)
WRITE(9?.,910) TT.Q,P

FORMAT(' ',3E20.10)

wnu

LoopP

100

CONTINUE

PN= (BXK4KHHXK4KP+BRXIKHHR KL XKOKXMKQ~4 . KBRKSKHHXXIKMKP—
3. XBXX2XHHKKLKKOXMKP—4 . KBXK2KHHKKSKKOXMKAK2KQ+12 , KBXX2KHHKX
2XMEK2KP—2 , kBXHHXKSGKKOXKZKMAK2XQ+8 . KBXHHXKIKKOKMKK2KP+12.
XBXHHXK2KKOKXMEKIKQ=26 . KBXHHKMAKIKP+HHA KL KK OKK2KMKK2KP +4 , %
HHXXIKKOKK2KMKKXIKQA=12 . XHHEXK2KKOKMKKIKP =24 . KHHXKOXM¥K4XQ +
24 XMXKGKP) / (26, XMXX4)

Q= (~BKXIKHHXXLKP—BXK2KHHKKLXKOKMRQ+4 , KBRK2XHHKXIKMKP +
2. XBXHHXX4KXKOKMAP+4 . XBXHHXXIKKOKMAK2XQ=12 . XBXHHAKZKMKK2KP +
HHXX4XKOXK2KXMXK2XQ=4 . KHHHXKSKKOXMKK2KP~12 . KHHKX K2 XK OXMXXI*Q
+26 . KHHXMXX3XP+24 . XMXK4XQ) / (264 . KM¥X4)

P = PN

TT = TT + HH

WRITE(9,910) TT,Q,P
IF ¢ TT .LT. TF) GO TO 100

sSTOP
END
— 15—

QoRP

QOoRP

H x (KOwMuQuu2ePum2)/ (2,mM)

D = (BmQDOTww2)/2.

M o= 0.100000000 E+G1
Ko = 0.100000000 E+O1
B = 0.200000000 E+O1
———— —_—— : P
¢« Q
[=1
.
[—]
[7=1
e
=1
o~
N
g_\ ——
=1\ —
o
[7=]
=
0
o
<
‘o.00 z.00 ' 4.00 @ 8.00 8.00 10.00
TIME
H 2 (KOuMuOuw2ePum)/ (2 .mM)
D = (BwGDOTmMm2)/2.
M o= 0.100000000 E+01
®o = 0.100000000 E+O1
B = 0.S0000000C E+00
—— — — — — —— — ———— —{— — —— s P
-
o
]
=
[7=]
=y
=
o8
=1
[—1
o~
<
1
(~3
Lv-]
=
[
_
herd
T 1 T i L 1) Ll |8 1
0.00 2.00 4.00 6.00 8.00 10.00
TIME

