Global Storage Allocation in
Attribute Evaluation

Takuya Katayama
Hisashi Sasaki

Department of Computer Science
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku
Tokyo 152, Japan
1. Introduction

Global storage allocation for attributes in an attribute grammar evaluator is discussed and an algorithm for determining if a given set of attribute occurrences can share a common global storage is obtained. It is widely known that the key problem to be overcome for generating production quality compilers from attribute grammars is to find a proper way of allocating storages to attribute instances in derivation trees. In the most primitive case, a separate storage location is allocated to each attribute instance. This storage allocation strategy is, however, far from desired as each storage is used only once during the whole process of attribute evaluations. Several people considered the problem of economical use of storages in attribute evaluation. Saarinen [3] classified attribute occurrence into significant and nonsignificant ones and stored significant ones in a stack. Katayama [2] proposed to store every attribute instance in a stack.

A great economy in space and time could be expected by allocating a global storage to attribute instances. As semantic rules of attribute grammars are purely applicative, straightforward implementation is time and space-consuming by that it may involve costly copy operations of big data values such as symbol tables. To treat big attribute values efficiently, we have to do two things. First, find a set of attribute instances which could be allocated a common storage location. Second, change the way of accessing the data from by-value to by-update, i.e., update the data instead of changing the whole values. Farrow [1] showed the usefulness of these issues
in his evaluator.

In this paper, we consider the problem of determining if a given set of attribute occurrences could share a common storage location. Sethi [4] consider the problem of storage globalization for finite dags and introduced the concept of pebble game. Though his method is effective for a given finite dag, it cannot be directly applied to attribute evaluation where we have to deal with dags of attribute dependency of indefinite size. He also made a proposal for attribute grammars [5], it is not enough.

We propose here an algorithm for testing attribute globalization. In general, storage allocation strategy for attributes is largely dependent on the structure of attribute evaluator. The evaluator we are considering is constructed on the principle of assigning a procedure to each pair of nonterminal symbol and its synthesized attribute and translating the attribute grammar into a set of procedures [2]. The evaluator is recursive in nature and the problem of testing attribute globalization is reduced to the problem of production rule level, which is solved by a modified version of Sethi's algorithm for finite dags.

2. Definitions

An attribute grammar is a context free grammar G augmented with semantic rules. Formally it is defined by

\[(G, A, F)\]

where

\[(1) \ G = (V_N, V_T, P, S) \text{ is a context free grammar with } V_N \text{ a set of} \]

2
nonterminal symbols, $V_T$ a set of terminal symbols, $P$ a set of production rules and $S$ the initial symbol. In the following we assume without loss of generality that the initial symbol $S$ never appears in the right side of any production rule.

When

$$ p: X_0 \rightarrow w_0X_1w_1\ldots w_{n-1}X_nw_n $$

is a production rule in $p$ where $w_i \in V_T^*$ and $X_i \in V_N$, we refer the occurrence of the nonterminal symbol $X_k$ by $X(p,k)$ and $n$ by $n(p)$. Then, the rule $p$ is expressed as

$$ p: X(p,0) \rightarrow w_0X(p,1)w_1\ldots w_{n(p)-1}X(p,n(p))w_n(p). $$


When $p$ is a production rule we say that $p$ has an attribute occurrence $a.X(p,k)$ if $a \in A[X(p,k)]$ and $0 \leq k \leq n(p)$.

(3) $F$ is a set of semantic functions. A semantic function $f_{p,v}$ is associated with every attribute occurrence $v = a.X(p,k)$ such that $a \in SYN[X(p,0)]$ or $a \in INH[X(p,k)]$ for $1 \leq k \leq n(p)$. It specifies how to compute the value of $v$ from values of other attribute occurrences of the rule $p$. We denote the set of these attribute occurrences by $D_{p,v}$. It is called a dependency set of $f_{p,v}$.

If $D_{p,v} = \{v_1, \ldots, v_m\}$ then $f_{p,v}$ is a mapping

$$ \text{domain}(a_1)\times\ldots\times\text{domain}(a_m) \rightarrow \text{domain}(a) $$

where $v_i = a_i.X(p,k_i)$ and $\text{domain}(a)$ is a value domain of the attribute $a$ in general. We express this fact by an equation

$$ v = f_{p,v}(v_1, \ldots, v_m). $$
Now we define several dependency relations among attributes and related concepts.

(1) Let \( p \) be a production rule. A dependency graph \( \text{DG}_p \) for the production rule \( p \), which gives dependency relationship among attribute occurrences of \( p \), is defined by

\[
\text{DG}_p = (\text{DV}_p, \text{DE}_p)
\]

where the vertex set \( \text{DV}_p \) is the set of all attribute occurrences of \( p \) and the edge set \( \text{DE}_p \) is the set of dependency pairs for \( p \).

Formally

\[
\text{DV}_p = \{a.X(p,k) | 0 \leq k \leq n(p) \text{ and } a \in A(X(p,k))\}
\]

\[
\text{DE}_p = \{(v_1,v_2) | v_1 \in \text{DP}_p, v_2\}.
\]

(2) When a derivation tree \( T \) is given, a dependency graph \( \text{DG}[T] \) for the derivation tree \( T \) which represents dependencies among attributes of nodes in \( T \) is defined. \( \text{DG}[T] \) is obtained by pasting \( \text{DG}_p \)'s together according to the syntactic structure of \( T \).

Let \( p \) be the production rule applid at the root of \( T \) and \( T_k \) the \( k \)-th subtree of \( T \). \( \text{DG}[T] \) is recursively constructed from \( \text{DG}_p \), \( \text{DG}[T_1], \ldots, \text{DG}[T_{n(p)}] \) in the following way.

\[
\text{DG}[T] = (\text{DV}_T, \text{DE}_T)
\]

where

\[
\text{DV}_T = \text{DV}'_p \cup \bigcup_{k=1}^{n(p)} \text{DV}[T_k]
\]

\[
\text{DE}_T = \text{DE}'_p \cup \bigcup_{k=1}^{n(p)} \text{DE}[T_k]
\]

and \( \text{DG}'_p = (\text{DV}'_p, \text{DE}'_p) \) is the graph obtained from \( \text{DG}_p \) by replacing every attribute occurrence \( a.X(p,k) \) in the production rule \( p \) by the corresponding attribute instance \( a.X(p,k).r(k) \) in the tree \( T \), where \( r(k) \) is the root node of \( T_k \). We assume \( r(0) \) denotes the root of \( T \).

\[
\text{DV}'_p = \{a.X(p,k).r(k) | a.X(p,k) \in \text{DV}_p\}
\]
\[ \text{DE}_p^* = \{(a.X(p,k), b.X(p,j), r(j)) \mid (a.X(p,k), b.X(p,j)) \in \text{DE}_p\} \]

3. When \( r(0) \) is the root node labeled by \( X \in \mathcal{V}_N \) of a derivation tree \( T \) and \( s \in \text{SYN}[X] \), we define \( \text{DG}[s.X,T] \), a subgraph of \( \text{DG}[T] \), by removing vertices and edges which are not located on any path leading to \( s.X.r(0) \).

4. Let \( T \) be a derivation tree with the root labeled by \( X \in \mathcal{V}_N \). \( \text{DG}[T] \) determines IO graph \( \text{IO}[X,T] \) of \( X \) with respect to \( T \). It gives how synthesized attributes of \( X \) depend on other attributes of \( X \) through the derivation tree \( T \). That is,

\[ \text{IO}[X,T] = (A[X], E_{\text{IO}[T]}) \]

where an edge \((a,s) \in E_{\text{IO}[T]} = A[X] \times \text{SYN}[X]\) exists iff \( \text{DG}[T] \) has a path from \( v_a \) to \( v_s \), where \( v_a \) and \( v_s \) are vertices for attributes \( a \) and \( s \) of the root \( X \) of \( T \) respectively, and this means that the attribute \( a \) is required to evaluate the synthesized attribute \( s \).

For general attribute grammars, \( X \) may have finitely many IO graphs \( \text{IO}_1, \ldots, \text{IO}_N \) where \( \text{IO}_k = (A[X], E_k) \). Superposing these \( \text{IO}_k \)'s results in the superposed IO graph

\[ \text{IO}[X] = (A[X], E_{\text{IO}}), \text{ where } E_{\text{IO}} = \bigcup_{k=1}^{N} E_k. \]

5. For a production rule \( p \), its augmented dependency graph is defined by

\[ \text{DG}_p^* = (\text{DV}_p^*, \text{DE}_p^*) \]

where

\[ \text{DV}_p^* = \text{DV}_p, \]

\[ \text{DE}_p^* = \text{DE}_p \cup \{(a.X(p,k), b.X(p,k)) \mid (a,b) \text{ is an edge of } \text{IO}[X(p,k)] \text{ for } 1 \leq k \leq n(p)\}. \]

\( \text{DG}_p^* \) represents dependency relations among attribute occurrences of \( p \), which is given partly by semantic functions and
partly by derivation trees.

(6) An attribute grammar is said absolutely non circular iff $D_{G_p}^*$ contains no cycle for any production rule $p$.

3. An Attribute Grammar Evaluator

Here we briefly sketch an attribute grammar evaluator which we consider in this paper [2]. Let $X$ be a nonterminal symbol of an absolutely noncircular attribute grammar $G$ and $s$ a synthesized attributes of $X$. We associate a procedure

$$R_{X,s}(u_1, \ldots, u_m, T; v)$$

with each pair $(X,s)$, where $u_1, \ldots, u_m$ (abbreviated by $\vec{u}$) are parameters corresponding to the inherited attributes in $I = \{i | (i,s) \in O[X]\}$ and $v$ is a parameter for $s$. $T$ is a parameter for derivation tree. Parameters to the left (right) of ";" are input (output) parameters. This procedure is intended to evaluate the synthesized attributes $s$ when supplied with the values of inherited attributes in $I$ and a derivation tree $T$.

The procedure $R_{X,s}(\vec{u}; T; v)$ is constructed in the following manner. First we introduce variable symbols for attribute occurrences. However, for the sake of convenience, the same symbols are used for attribute occurrences and variables which correspond to them. We consider they are local variables of the procedure. $R_{X,s}$ is of the following form:

```plaintext
doxygen
procedure R_{X,s}(\vec{u}; v)

case production(T) of

P_1: H_{p_1,s}
P_2: H_{p_2,s}

...  
```


where \( \mathbf{J} \), \( \nu \) and \( T \) are reference parameters. \( p_1, p_2, \ldots \) are productions with left side symbol \( X \). The procedure \( R_{X,s} \) determines the production rule \( p \) applied at the root of \( T \) and it perform a sequence \( H_{p,s} \) of statements to compute the values of attribute occurrences in \( p \).

The sequence \( H_{p,s} \) is constructed in the following steps where we put \( X_0 = X \).

1. Construct the augmented dependency graph \( DG_p^* \).
2. Remove from \( DG_p^* \) vertices and edges which are not located on any path leading to \( s.X_0 \). Denote the resulting graph by \( DG_p^*[s] = (V,E) \).
3. To each attribute occurrences \( x \in V' = V - \{i.X_0 | i \in \text{INH}[X_0]\} \) assign a statement \( st[x] \) for evaluating \( x \) as follows.

**Case 1:** If \( x = i.X_k \) for some \( i \in \text{INH}[X_k] \) and \( k = 1, \ldots, n \) or \( x = s.X_0(=v) \) for the attribute \( s \in \text{SYN}[X_0] \), then \( st[x] \) is the assignment statement

\[
x + f_{p,x}(z_1, \ldots, z_r)
\]

where \( f_{p,x} \) is the semantic function for \( x \) and \( D_{p,x} = \{z_1, \ldots, z_r\} \) is the dependency set for \( f \).

**Case 2:** If \( x = t.X_k \) for some \( t \in \text{SYN}[X_k] \) and \( k = 1, \ldots, n \)
then \( st[x] \) is the procedure call statement

\[
call R_{X_k,t}(w_1, \ldots, w_h, T_k; x)
\]

where \( w_1, \ldots, w_h \) are attribute occurrences on which \( t.X_k \) is dependent. \( T_k \) is the \( k \)-th subtree of \( T \).
4. Pebbling for Attribute Grammar

Sethi introduced pebbling for dags as a model for computation using global storages [4]. It is essentially to serialize computations so that values in global storages may not be erroneously lost. Let $D=(V,E)$ be a finite dag whose nodes are labeled by storage locations in a set $L$. We denote the storage allocation function by

$$g : V \rightarrow L,$$

i.e., $g(v)$ is the storage allocated to a node $v$. Pebbling for $D$
is a sequence
\[ v_1, v_2, \ldots, v_n \]
of elements \( v_1, \ldots, v_n \) of \( V \) such that the following conditions are satisfied.

1. if \( (v_i, v_j) \in E \) then \( i < j \).
2. for each \( i = 1, \ldots, n \), if there exists \( j \) such that \( i < j \)
   and \( (v_i, v_j) \in E \), then there is not \( k \) satisfying \( i < k < j \) and
   \( g(v_k) = g(v_i) \).

Sethi gave an algorithm for deciding if there exists a pebbling for a given \( (D, g, L) \).

Now consider the pebbling for attribute grammars. Let \( T \) be a derivation tree of an attribute grammar \( G \). We consider to assign global storage to each attribute instance in \( DG[T] \), the dependency graph of attribute instances in \( T \), and to find a pebbling for \( (DG[T], g, L) \). The storage allocation function \( g \) is
\[ g : DV_T \rightarrow L \]
where \( DV_T \) is the nodes of \( DG[T] \). \( DV_T \) is considered as a subset of \( A \times V_N \times \text{node}(T) \), where \( \text{node}(T) \) is the set of nodes of the derivation tree \( T \). In this formulation, a storage allocated to an attribute occurrence \( a.X \) of a rule \( p \) may depend on a particular node it is applied and the same attribute occurrence may be assigned different storages at different nodes of \( T \). This is not desirable to us, as we are going to perform attribute evaluation by the evaluator stated in the previous section and its structure is independent of specific derivation trees. What we require about our storage allocation function is that it allocates a fixed storage to each attribute occurrence where it appears in \( T \).

So, we consider \( g \) as
\[ g : A \times V_N \rightarrow L \]
and pebbling is to be performed under \( g^* \) for each \( T \).
\[ g^* : A \times V_N \times \text{node}(T) \rightarrow L \]
where
\[ g^*(a, X, v) = g(a, X) \text{ for any } v \in \text{node}(T). \]
That is, every node of \( DG[T] \) with nonterminal symbol \( X \) and its attribute \( a \in A[X] \) is given a common storage location \( g(a, X) \). A pebbling for \( (DG[T], g^*, L) \) defines an order of evaluating attribute instances in \( T \) using global storages \( L \). This pebbling, however, is not enough for our purpose as we are interested in a particular class of evaluators which imposes another restriction on the order in which attribute instances are evaluated.

5. Recursive Pebbling

Here we formulate a pebbling for attribute grammars which takes the structure of our attribute evaluator into consideration. Let \( T \) be a derivation tree. In the pebbling for \( (DG[T], g^*, L) \) considered in the previous section, attribute instances are evaluated in an order specified only by (1) dependency relation \( DG[T] \) and (2) legal use of global storage. However, the order is also restricted by the recursive nature of the evaluator. Let \( X \) be a nonterminal symbol and \( s \) a synthesized attribute of \( X \). Consider to evaluate an instance of \( s \) in \( DG[T] \). The evaluator calls a procedure \( R_{X,s} \) in which it selects a production rule \( p \) with left hand symbol \( X \) and executes a sequence of statements. They are either to evaluate an inherited attribute \( i \) of right hand symbol \( Y \) or to evaluate a synthesized attribute \( t \) of a right hand symbol \( Z \). When \( t \) is to be evaluated,
the corresponding procedure \( R_{Z,t} \) is called.

From the above description of the evaluator, we can see what restriction should be posed on the order of attribute evaluation. That is, when the evaluator begins to evaluate an instance of attribute \( t \), it is tied down to the task until it is finished. During the task, any other attribute instance cannot be evaluated unless it is necessary for evaluating \( t \). This suggests the following definition.

[Definition] Recursive Pebbling

Let \( T \) be a derivation tree with root node labeled by \( X \in V_N \) and \( p : X \rightarrow w_0 X_1 w_1 X_2 \ldots X_n w_n^* \), \( X_i \in V_N \), \( w_i \in V_T \) be a production rule applied there. For \( s \in \text{SYN}[X] \), consider the dependency graph \( DG[s,X,T] \) a subgraph of \( DG[T] \) specialized for \( s.X \) and pebbling \( C[s,X,T] \) for \( (DG[s,X,T], g^*, L) \). Suppose \( r.X_i, t.X_j, \ldots \) are synthesized attribute occurrences of \( p \) on which \( s.X \) is dependent in \( DG_p^* \), and \( T_i, T_j, \ldots \) are subtrees of \( T \) with root nodes \( X_i, X_j, \ldots \in V_N \). Let \( C[r.X_i,T_i], C[t.X_j,T_j], \ldots \) be pebblings for \( (DG[r.X_i,T_i], g, L), (DG[t.X_j,T_j], g, L), \ldots \). Then, \( C[s,X,T] \) is a recursive pebbling iff

1. \( C[s,X,T] \) is a pebbling for \( (DG[s,X,T], g^*, L) \) in the sense of Sethi.

2. \( C[r.X_i,T_i], C[t.X_j,T_j], \ldots \) are recursive pebblings, and

3. \( C[s,X,T] \) contains \( C[r.X_i,T_i], C[t.X_j,T_j], \ldots \) as subsequences.

The next definition gives the condition that evaluation of attributes can be performed by our evaluator using storages \( L \) and
a storage allocation function g. Note that attribute occurrences which are not specified by g is allocated a storage in the stack of activation records of procedure calls.

[Definition] \((g,L)\)-evaluatability of attribute grammars

Let \(G\) be an attribute grammar. \(G\) is \((g,L)\)-evaluatable iff the following (1) and (2) are satisfied for any \(X \in V_N\), \(s \in \text{SYN}[X]\) and a derivation tree with root \(X\).

(1) there exists a recursive pebbling for \((DG[s.X,T],g^*,L)\), and

(2) \(C[s.X,T]'\) is independent of \(T\), where \(C[s.X,T]'\) is obtained from \(C[s.X,T]\) by replacing (a) subsequences \(C[r.X_i,T_i]\), \(C[t.X_j,T_j]\), \(\ldots\) by single symbols \(r.X_i\), \(t.X_j\), \(\ldots\) and (b) any other element \(a.X_k.v\) by \(a.X_k\).

The condition (2) in the above states that the order in which the attributes of the root node of \(T\) and its immediate descendant nodes are evaluated is independent of pebblings for subtrees \(T_i\).

6. An Algorithm for testing \((g,L)\)-evaluatability

When an attribute grammar \(G\) is given, there are, in general, infinitely many derivation trees and we cannot test its \((g,L)\)-evaluatability by directly resorting to its definition. We can, however, test it production-rule-wise as stated below. For each production rule \(p:X \rightarrow \omega_0X_1\omega_1X_2\ldots X_n\omega_n\), define an extended dependency graph \(DG_p^o\)

\[ DG_p^o = (DV_p^o, DE_p^o) \]

where

\[ DV_p^o = DV_p \cup \{ [s.X_k] | k = 1, \ldots, n, s \in \text{SYN}[X_k] \} \]
\[ DE_p^\circ = DE_p \cup \{(i,X_k,[s.X_k]) \mid k=1,\ldots,n, (i,s) \in IO(X_k)\} \]
\[ \cup \{([s.X_k],s.X_k) \mid k=1,\ldots,n, s \in SYN(X_k)\}. \]

The special symbol \([s.X_k]\) is introduced to represent a computation for \(s\) in the subtree \(T_k\) with root node \(X_k\).

Now consider a pebbling on \(DG_p^\circ\). The storage assignment function \(g\) specifies a storage allocated to each node in \(DV_p\).

For the node \([s.X_k]\), we allocate a set of storages which may be used in the possible computations in derivation trees \(T_k\) which follow \(X_k\). In general, multiple storages may be used in \(T_k\), so we have to allocate a subset \(USE[s.X_k]\) of \(L\) to \([s.X_k]\). Define \(g^\circ : DV_p^\circ \rightarrow 2^L,\)
\[ g^\circ(v) = \{g(v)\} \quad \text{if} \quad v \in DV_p \]
\[ = USE[s.X_k] \quad \text{if} \quad v = [s.X_k]. \]

There is an iteration algorithm for determining \(USE[s.X_k]\). The pebbling for \((DG_p^\circ,g^\circ,L)\) is defined similarly as the usual pebbling except that (1) multiple storage locations may be allocated to a single node and (2) there is an additional requirement that some nodes are placed adjacent in this case. We call it an extended pebbling. It is defined as a sequence

\[ v_1, v_2, \ldots, v_n \]

of nodes \(v_1, \ldots, v_n\) of \(DG_p^\circ\) such that

(1) if \((v_i,v_j) \in DE_p^\circ\) then \(i < j\)

(2) for each \(i=1, \ldots, n\), if there exists \(j\) such that

\(i < j\) and \((v_i,v_j) \in DE_p^\circ\) then there is not \(k\) satisfying

\(i < k < j\) and \(g^\circ(v_k) \cap g^\circ(v_i) \neq \emptyset\)

(3) if \(v_i = [s.X_k]\) then \(v_{i+1} = s.X_k\).

The condition (3) in the above is introduced to state the property of our evaluator that it is tied down to computation of
an attribute until it is completed. We can prove the next lemma. [Lemma]

A modified version of Sethi's algorithm can determine if there exists an extended pebbling for \((DG_p^o, g^o, L)\).

Now we give the main result of our paper. It states that \((g, L)\)-evaluatability of an attribute grammar can be reduced to extended peblings of dependency graphs of production rules. [Theorem]

For an attribute grammar \(G\), a set \(L\) of storages and a storage allocation function \(g: \mathcal{A} \times \mathcal{V}_n \rightarrow L\), \(G\) is \((g, L)\)-evaluatable iff there is an extended pebbling for \((DG_p^o, g^o, L)\) for any production rule \(p\).

7. Conclusion

Global storage allocation in attribute evaluation is studied and a decision algorithm is given to test whether, for a given attribute grammar \(G\), it is possible to construct an attribute grammar evaluator for \(G\) which stores values of attribute instances in storages \(L\) under storage allocation function \(g\).

References


