ooooboooao
o470 19850 112-127

112

Global Storage Allocation in

Attribute Evaluation

Takuya Katayama

Hisashi Sasaki

Department of Computer Science
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku

Tokyo 152, Japan

113

1. Introduction

Global storage allocation for attributes in an attribute
grammar evaluator is discussed and an algorithm for determining
if a given set of attribute occurences can share a common global
storage is obtained. It is widely known that the key problem to
be overcome for generating production quality compilers from
attribute grammars is to find a proper way of allocating storages
to attribute instances in derivation trees. In the most
primitive case, a separate storage location is allocated to each
attribute instance. This storage allocation strategy is,
however, far from desired as each storage is used only once
during the whole process of attribute evaluations. Several
people considered the problem of economical use of storages in
attribute evaluation. Saarinen [3] classified attribute
occurrence into significant and nonsignificant ones and stored
significant ones in a stack. Katayama [2] proposed to store
every attribute instance in a stack.

A great economy in space and time could be expected by
allocating a global storage to attribute instances. As semantic
rules of attribute grammars are purely applicative,
straightforward implementation is time and space-consuming by
that it may involve costly copy operations of big data values
such as symbol tables. To treat big attribute values
efficiently, we have to do two things. First, find a set of
attribute instances which could be allocated a common storage
location. Second, change the way of accessing the data from by-
value to by-update, i.e., update the data instead of changing the

whole values. Farrow [1] showed the usefulness of these issues

114

in his evaluator.

In this paper, we consider the problem of determining if a
given set of attribute occurences could share a common storage
location. Sethi [4] consider the problem of storage
globalization for finite dags and introduced the concept of
pebble game. Though his method is effective for a given finite
dag, it cannot be directly applied to attribute evaluation where
we have to deal with dags of attribute dependency of indefinite
size. He also made a proposal for attribute grammars [5], it is
not enough.

We propose here an algorithm for testing attribute
globalization., In general, storage allocation strategy for
attributes is largély dependent on the structure of attribute
evaluator. The evaluator we are considering is constructed on
the principle of -assigning a procedure. to each pair of
nonterminal symbol and its synthesized attribute and translating
the attribute grammar into a set of procedures [2]. The
evaluator is recursive in nature and the problem of testing
attribute globalization is reduced to the problem of production
rule level, which is solved by a modified version of Sethi's

algorithm for finite dags.

2. Definitions
An attribute grammar is a context free grammar G augmented
with semantic rules. Formally it is defined by
(G, A, F)
where

(1) ¢ = (VN,VT,P,S) is a context free grammar with Vy a set of

115

nonterminal symbols, Vo a set of terminal symbols, P a set of
production rules and S the initial symbol. In the following we
assume without loss of generality that the initial symbol S never
appears in the right side of any production rule.
When

p: Xp * woxlwl...wn_lxnwn
is a production rule in p where wiev.r* and X;€Vy, we refer the
occurrence of the nonterminal symbol X, by X(p,k) and n by n(p).
Then, the rule p is expressed as

p: X(p,0)

wOX(p,l)wl...w lX(p,n(p))wn(p).

n(p)-
(2) Ais a set of attributes. Each XEVN has a subset A[LX] of A.
An element of A[X] is called an attribute of X. A[X] is a
disjoint union of the set INH[X] of inherited attributes and the
set SYN[X] of synhesized attributes.

When p is a production rule we say that p has an attribute
occurrence a.X(p,k) if a€A[X(p,k)] and 0<k<n(p).
(3) Fis a set of semantic functions. A semantic function fp,v
is associated with every attribute occurrence v = a.X(p,k) such
that aeSYN[X(p,0)] or acINH[X(p,k)] for 1<k<n(p). It specifies
how to compute the value of v from values of other attribute

occurrences of the rule p. We denote the set of these attribute

occurrences by D

pav® It is called a dependency set of fp,v'
If Dp,v = {vysecesv] then fp,v is a mapping
domain(al)X...Xdomain(a;n)"‘:-* domain(a)
where v; = ai.X(p,ki) and domain(a) is a value domain of the

attribute a in general. We express this fact by an equation

fp’v(Vl ’ooatvm)o

Now we define several dependency relations among attributes
and related concepts.
(1) Let p be a production rule. A dependency graph DGp for the
production rule p, which gives dependency relationship ambng
attribute occurrences of p, is defined by

DG, = (v, DEP)

P
where the vertex set DVp is the set of all attribute occurrences
of p and the edge set DEP is the set of dependency pairs for p.
Formally

v, = {a.X(p,k) | 0<k<n(p) and aeA[X(p,k)]}

DE, = {(vl,vZ)lvler,vz}.
(2) When a derivation tree T is given, a dependency graph DG[T]
for the derivation tree T which represents dependencies among
attributes of nodes in T is defined. DGLT] is obtained by
pasting DGp's together according to the syntactic structure of T.
Let p be the production rule applid at the root of T and T, the
k-th subtree of T. DG[T] is recursively constructed from DGP’
DG[TIJ, cees DG[Tn(p)] in the following way.

DGLT] = (DVy, DEg)

where
- n(p)
DVp = DV'p U UR=§/DVIT,]
= t n(p)
DEp = DE', U up=f /DELT]
and DG'p = (DV'p, DE'p) is the graph obtained from DGp by

replacing every attribute occurrence a.X(p,k) in the production
rule p by the corresponging attribute instance a.X(p,k).r(k) in
the tree T, where r(k) is the root node of T,. We assume r(0)
denotes the root of T.

DV'p = {a.X(p.k).r(k)la.X(p,k)eDVp}

1i¢

DE', = {(a.X(p,k).r(k),b.x(p,3)r(iN |
(a.x(p,k),b'.x(p,j))eDEp}

(3) When r(0) is the root node labeled by XeVy of a derivation
tree T and seSYN[X], we define DG[s.X,T], a subgraph of DG[T], by
removing vertices and edges which are not located on any path
leading to s.X.r(0).
(4) Let T be a derivation tree with the root labeled by XeVy.
DG[T] determines I0 graph IO[X,T] of X with respect to T. It
gives how synthesized attributes of X depend on other attributes
of X through the derivation tree T. That is,

10[X,T]1 = (A[X1, EfglTD)
where an edge (a,s) € EIO[T]CA[X]XSYN[X] exists 1ff DG[T] has a
path from v, to vg, where v, and v, are vertices for attributes a
and s of the root X of T respectively, and this means that the
attrbute a is reqired to evaluate the synthesized attribute s.

For general attribute grammars, X may have finitely many IO

graphs 10}, ..., IOy where 10,=(A[X],E;). Superposing these
IOk's results in the superposed I0 graph

10[X] = (A[X], E;q)s where Eqy=ul_;E,.

(5) For a production rule p, its augmented dependency graph is

defined by
* _ * *
DGp = (DVP’ DEP)
where
* _
DVp = DVp, |
DE; = DE, U {(a.X(p,k),b.X(p,k)) | (a,b) is an edge of

10[X(p,k)] for 1<k<n(p)}.
DG; represents dependency relations among attribute

occurrences of p, which is given partly by semantic functions and

partly by derivation trees.

*

(6) An attribute grémmar is said absolutely non circular iff DGp

contains no cycle for any production rule p.

3. An Attribute Grammar Evaluator

Here we briefly sketch an attribute grammar evaluator which
we consider in this paper [2]. Let X be a nonterminal symbol of
an absolutely noncircular attribute grammar G and s a synthesized
attributes of X. We associate a procedure

RX.s(ul’ cees u s T3 v)

with each pair (X,s), where Ups eees Uy (abbreviated by 3) are
parameters corresponding to the inherited attributes in I =
{il(i,s)el0[X]} and v is a parameter for s. T is a parameter for
derivation tree. Prameters to the left (right) of ;™ are input
(output) parameters. This procedure is intended to evaluate the
synthesized attributes s when supplied with the values of
inherited attributes in I and a derivation tree T.

The procedure RX’S(a,T;V) is constructed in the following
manner. First we introduce variable symbols for attribute
occurences. However, for the sake of convenience, the same
symbols are used for attribute occurences and variables which
correspond to them. We consider they are local variables of the
procedure. Ry ¢ is of the following form:

procedure RX,S(K;V)
case production(T) of

Pyt le,s

Pp* Hpé,s

s o0

115

end
end
where U, v and T are reference parameters. pPjs Pgs ... are
productions with left side symbol X. The procedure RX.s
determines the production rule p applied at the root of T and it

perform a sequence R of statements to compute the values of

PsS
attribute occurences in p.

The sequence H is constructed in the following steps

PsS
where we put X=X

(1) Construct the augmented dependency graph DG;.

(2) Remove from DG; vertices and edges which are not located
on any path leading to s.XO. Denote the resulting graph by

DG [s] = (V,E).
(3) To each attribute occurences
x € V' = V-{i.X,|ieINH[X]}
assign a statement st[x] for evaluating x as follows.

Case 1: If x = i.X, for some ieINH[X,] and k=1, ... ,n or X
= s.X0(=v) for the attribute seSYN[XOJ, then st[x] is the
assignment statement

X « fp.x(zl’ e s 2.)
where fp,x is the semantic function for x and Dp,x = {zl, cee 8
zr} is the dependency set for f.

Case 2: If x = t.X, for some teSYﬁ[Xk] and k = 1, .. D

then st[x] is the procedure call statement
call RXk,t(wl' e sWps Ty x)

where Wis eees Wy are attribute occurences on which t.Xk is

dependent. T, is the k-th subtree of T.

~
!‘1::

(4) Let X1s Xgs eee s Xy be element in V' which are listed
according to the topological ordering determined by E, i.e., if

(xa,xb)eE then a<b. Then H, . is the sequence of statements
s

~

P
st[xl], st[xz], cee 3 st[xN].

So far we have only considered construction of a procedure
for a paticular nonterminal. The construction of evaluator over
the entire G is:

(1) We first construct the procedure Rs,s for the initial
symbol S and its synthesized attribute s by the algorithm we have

stated. The body of RS, may contain calls of other procedures

S
Rx.;S and they are constructed in the same way;
(2) Repeat this process until no more new procedure appears;
(3) Arrange these procedures and add statements to input the
values of inherited attributes of S to call the procedure RS,s
and to output the values of S completes the construction of the
evaluator for G. Note that, when a derivation tree 1is evaluated

by this evaluator, the value of every attribute instance is

stored in the stack of activation records or procedure calls,

4, Pebbling for Attribute Grammar

Sethi introduced pebbling for dags as a model for computation
using global storages [4]. It is essentially to serialize
computations so that values in global storages may not be
erroneously lost. Let D=(V,E) be a finite dag whose nodes are
labeled by storage locations in a set L. ‘We denote the storage
allocation function by

g s V->+1L,

i.e., g(v) is the storage allocated to a node v. Pebbling for D

121

is a sequence
Vis Vos eees Vg
of elements Vs eees Vg of V such that the following conditions
are satisfied.
(1) if (vi.vj)eE then i<j.
(2) for each i =1, ..., n, if there exists j such that i<j
and (vi,vj)eE, then there is not k satisfying i<k<j and
g(v) = g(v;).
Sethi gave an algorithm for deciding if there exists a pebbling
for a given (D,g,L).
Now consider the pebbling for attribute grammars. Let T be
a derivation tree of an attribute grammar G. We consider to
assign global storage to each attribute instance in DG[T], the
dependency graph of attribute instances in T, and to find a
pebbling for (DG[TJ,g,L). The storage allocation function g is
g DVT - L
where DV is the nodes of DG[T]. DVy is considered as a subset
of AvaXnode(T). where node(T) is the set of nodes of the
derivation tree T. 1In this formulation, a storage allocated to
an attribute occurence a.X of a rule p may depend on a particular
node it is applied and the same attribute occurence may be
assigned different storages at different nodes of T. This is not
desirable to us, as we are going to perform attribute evaluation
by the evaluator stated in the previous section and its structure
is independent of specific derivation trees. What we require
about our storage allocation function is that it allocates a
fixed storage to each attribute occurence where it appears in T.

So, we consider g as

[

o
:\

gt A X Vg +L

and pebbling is to be performed under g* for each T.
g* t A X Vy % node(T) =+ L
where

g¥(a,X,v) = g(a,X) for any venode(T).
That is, every node of DG[T] with nonterminal symbol X and its
attribute a€A[X] is given a common storage location g(a,X). A
pebbling for (DG[T],g*,L) defines an order of evaluating
attribute instances in T using global storages L. This pebbling,
however, 1is not enough for our purpose as we are interested in a

particular class of evaluators which imposes another restriction

on the order in which attribute instances are evaluated.

5.7Recursive Pebbling

Here we formulate a pebbling for attribute grammars which
takes the structure of our attribute evaluator into
consideration. Let T be a derivation tree. In the pebbling for
(DG[T)sg*,L) considered in the privious section, attribute
instances are evaluated in an order specified omnly by (1)
dependency relation DG[T] and (2) legal use of global storage.
However, the order is also restricted by the recursive nature of
the evaluator. Let X be a nonterminal symbol and s a synthesized
attribute of X. Consider to evaluate an instance of s in DG[TI.
The evaluator calls a procedure Rx,s in which it selects a
production rule p with left hand symbol X and executes a sequénce
of statements, They are either to evaluate an inherited
attribute i of right hand symbol Y or to evaluate a synthesized

attribute t of a right hand symbol Z. When t is to be evaluated,

10

the corresponding procedure RZ,t is called.

From the above description of the evaluator, we can see what
restriction should be posed on the order of attribute evluation.
That is, when the evaluator begins to evaluate an instance of
attribute t, it is tied down to the task until it is finisfed.
During the task, any other attribute instance cannot be evaluated
unless it is necessary for evaluating t. This suggests the

following definition.

[Definition] Recursive Pebbling
Let T be a derivation tree with root node labeled by XeVy

X, eVys wievT* be a production rule

and p:XrwoX wiKge X W,

applied there. For seSYN[X], consider the dependency graph
DG{s.X.T] a subgraph of DG[T] specialized for s.X and pebbling

C[s.X,T] for (DG[s.X,Tl,g*,L). Suppose r.X;, t.Xis ... are

J’
synthesized attribute occurences of p on which s.X is dependent

in DGY, and T;» T:

P 3’
.o €Vy. Let C[r.X;,T;1, C[t.X-,Tj]. ... be pebblings for

ees are subtrees of T with root nodes Xi’

Xj. j

(DG[r.Xi,Ti],g,L), (DG[t.Xj,Tj],g,L), vee « Then, C[s.X,T] is a
recursive pebbling iff
(1) ¢[s.X,T] is a pebbling for (DG[s.X,Tl,g*,L) in the

sence of Sethi,

(2) clr.Xx;,7;1, C[t.Xj,Tj]....are recursive pebblings,
and,

(3) c[s.X,T] contains C[r.X;,T;1, C[t.Xj,Tj], oo @S
subsequences.

The next definition gives the condition that evalvation of

attributes can be performed by our evaluator using storages L and

11

124

a storage allocation function g. Note that attribute occurences
which are not specified by g is allocated a storage in the stack

of activation records of procedure calls.

[Definition] (g,L)-evaluatability of attribute grammars
Let G be an attribute grammar. G ié(g,L)-evaluatable iff
the following (1) and (2) are satisfied for any XeVys seSYN[X]
and a derivation tree with root X.
(1) there exists a recursive pebbling for (pG[s.%,T1,g*,L),
and
(2) C[s.X,T]' is independent of T, where C[s.X,T]' is
obtained from C[s.X,T] by replacing (a) subsequences
Clr.X;,T;1, C[t.X‘,Tj], ..« by single symbols r.X;,

J

t.X:s ... and (b) any other element a.Xy;.v by a.X;.

j’
The condition (2) in the above states that the order in Vhich the

attributes of the root node of T and its immediate descendant

nodes are evaluated is independent of pebblings for subtrees T;.

6. An Algorithm for testing (g,L)-evaluatability

When an attribute grammar G is given, there are, in general,
infinitely many derivation trees and we cannot test its (g,L)-
evaluatability by directly resorting to its definition. We can,
however, test it production-rule-wise as stated blow. For each

production rule PiXrw X wiXg.oX W define an extended

nl
dependency graph DG;
o _ o °
DG, = (DVP, DEP)
where
o) ~
DVP - DVP U {[S.Xk]]k—‘l....,‘n, SESYN[Xk]}

12

DE, = DE, U {(iXys[s.8 1) [k=1,u0sn, (i45)€I00X, 1}

u {([s.Xy Jos.X) [k=1,0000n, seSYNLK 1},
The special symbol [s.Xk] is introduced to represent a
computation for s in the subtree Ty with root node X;.

Now consider a pebbling on DG;. The storage assignment
function g specifies a storage allocated to each node in DVP.
For the node ES.Xk]. we allocate a set of storages which may be
used in the possible computations in derivation trees Ty which
follow X,. In general, multiple storages may be used in Ty, so
we have to allocate a subset USE[s.X,] of L to [s.% 1. Defime

°

g DVS —>-2L.

g’ (v)

n

{g(v)} if veDv,

USE[s.X,] if v=[s.X, 1.

There is an iteration algorithm for determinig USE[s.Xk]. The
pebbling for (DGS,g",L) is‘\/.k;iefined similarly as the wusual
pebbling except that (1) multiple storage locations may be
allocated to a single node and (2) there is an additional
requirement that some nodes are placed adjacent in this case. We
call it an extended pebbling. It is defined as a sequence

Vis Vs eees Vo

of nodes Vs eees Vo of DG; such that

o

P

(2) for each i=1, .eep n, if there exists j such that

(1) if (vi,vj)eDE then i<]j

i<j and (vi,vj)eDE; then there is not k satisfying
i<k<j and go(vk)ngc’(vi)#d
(3) if v;=[s.X,] then v;, =5.X;.
The condition (3) in the above is introduced to state the

property of our evaluator that it is tied down to computation of

13

an attribute until it is completed. We can prove the next lemma.,
[Lemmal

A modified version of Sethi's algorithm can determine if
there exists an extended pebbling for (DG;,go,LL

Now we give the main result of our paper. It states that
(gsL)-evaluatability ofam.attribﬁte grammar can be reduced to
extended pebblings of dependency graphs of production rules.
[Theorem]

For an attribute grammar G, a set L of storages‘and a
storage allocation function g:AXV+L, G is (gsL)-evaluatable iff
there is an extended pebbling for (DG;,go,L) for any production

rule p.

7. Conclusion

Global storage allocation in attribute evaluation is studied
and a decision algorithm is given to test whether, for a given
attribute gramﬁar G, it is possible to construct an attribute
grammar evaluator for G which stores values of attribure

instances in storages L under storage allocation function g.

References

[1] Farrow,R., LINGUIST-86 Yet Another Translator Writing
System Based on Attribute Grammars. Proceeding of the
SIGPLAN'82 symposium on compiler construction, 160-171, June
1982.

[2] Ratayama,T., Translation of Attribute Grammar into
Procedures, ACM Transaction on Programming Languages and

Ststems, Vol.6, No3, July 1984,

14

127

{3] Saarinen,M., On Constructing efficient evaluators for
attribute grammars. Lecture Notes in Computer Science, 62,
Springer-Verlag, 1978, 382-396.

[4] Sethi,R., Pebble games for studing storage sharing.
Theoritical Computer Science Vol.l19, No.l, 69-84, July 1982,

[5]Sethi,R., The glogal storage needs of a subcomputation.
Eleventh Annual ACH Symposium on Principle of Programming

Languages, 148-157, January 1984,

15

