ooooboooao
9470 19850 35-57

NANO-2 : High-level Parallel Programming Language

for Multiprocessor System HYPHEN

Keijiro ARAKI, Itsujiro ARITA¥® and Masaki HIRABARU

= K B - K, B B A K K, A

Department of Computer Science and Communication Engineering
Kyushu University

Hakozaki, Higashi-ku, Fukuoka 812, JAPAN

(* Current affiliation : Department of Computer Science
Kyushu Institute of Technology,

Tobata-ku, Kitakyushu 804, JAPAN)

ABSTRACT

This paper describes the design principles and the features
of the high-level parallel programming language Nano—2. Nano=2
has been designed to facilitate the construction of parallel
programs which run on the highly parallel processing system
Hyphen, A Nano-2 program consists of machine dependent programs
called SPPs (Self-synchronizing Parallel Programs) and abstract
parallel constructs called processés. Nano-2 is also intended to
support the reliable programming process by compiler checks and

by the information explicitly expressed in the program text.

1. Introduction

The evolution of computer technology has made possible thed
construction of various kinds of multiprocessor systems, Hyphen
c-1609) is such a multiprocessor system, which consists of
sixteen microprocessors, and was constructed in 1982, It is a
general purpose parallel processing system, whose component
processors are connected by the hierarchical exchanging network.
The Hyphen C-16 system is regarded as a memory shared multi-
processor, and has firmware instructions such as 'parallel
branch,' 'exchange task,' 'lock' and 'unlock' for parallel
execution,

We aim to construct an integrated software system on the
Hyphen system, to accumulate experience in parallel programming
in a real parallel environment, and to learn about parallel or
distributed processing. We design a Hyphen-oriented parallel
programming language we call Nano-2 and implement its compiler
since programming languages are the bases for computer software.

Nano-2 has been designed to facilitate the construction of
parallel programs which run on the Hyphen system. We did not
intend merely to add mechanisms for inter-process communication
and synchronization to an existing language such as Pascal or C,
but decided to désign a new parallel programming language to
support structured programming, information hiding, readability,
etc., A Nano-2 program consists of three kinds of constructs,
i.e., process, segment and task. Segments and tasks are used to

describe parallel programs dependent on the Hyphen system. A

37

process encapsulates machine dependent programs consisting of
segments and tasks, and serves as an abstract construct which is
executed in parallel with other processes.

Nano-2 draws much on Euclid[8] for its features.
Especially, import/export declarations are used to control the
visibility of names explicitly as in Euclid., Those declarations
are expected to be helpful for understanding programs.

Concurrent Euclidl6] is a programming language based on
Euclid, and supports monitors for concurrency. It is intended
for writing system software such as operating systems and
compilers. Although Nano-2 is also based on Euclid, it is
intended for writing distributed programs which run on the
multiprocessor system Hyphen. |

In this paper we describe design principles and main
features of the Hyphen oriented high-level parallel programming
language Nano-2., In section 2 we give an overview of the Hyphen
system. In section 3 we discuss the design principles of the
language Nano-=2. In section 4 we briefly describe the program
structures and parallel features of Nano-2. Iﬁ section 5 we
present an example 6f'a parallel program wriﬁten in Nano-2.

Concluding remarks are given in section 6.

2« Overview of Hyphen System

Hyphen c-16[91 is a prototype machine consisting of sixteen
microprocessors. Fig.l shows its system configuration. Enclosed

by the dotted line is the hierarchical exchanging network, where

processor hierarchical
module network

.....................

Fig.1 System Configuration of Hyphen C-16

small circles are bidirectional bus switches. The network is a
binary tree on which processor modulés are connected as leaves
(large circles in Fig.1). Though the Hyphen system has a
hierarchical structure, all the processor modules are uniformly
terminal nodes. Each processor module consists of a processor
unit and a memory unit, and has its own address which specifies
the module uniquely in the Hyphen system. Table 1 shows the

detail of a processor module of the current Hyphen C-16 system.

Table 1. Processor Module

CPU ! Z-80A (clock LMHz)
Memory H ROM L4KB
! RAM 12KB.
Communication | Serial 1/0 2 channels
Interface ! Parallel I/0 1 channel

- - - A o Y - . N 4 = v - -

A processor unit can access a memory on another processor
module via the exchanging network by specifying the address of
the memory which is uniquely determined by means of the address
of its processor module. Although the memories are distributed
among the processor modules, they form a single memory space as a
whole., Therefore the Hyphen system is thought of as a memory
shared multiprocessor system. |

A procéssor unit executes instructions fetched from its own
memory unit, whereas it can access memories of the other modules,
A processor unit can activate a program running on another
processor module by a 'parallel branch' instruction. Each
processor module has a FIFO (First In First Out) queue, where the
entry address of the activated program is placed. When the
activated processor module executes an 'exchange task!
instruction, it ceases to execute the current program, and then
removes the head element from the FIFO queue and starts to
execute the new program specified by the removed address; If the

FIFO queue is empty, the processor module waits for an entry

40

address newly activated by a 'parallel branch' instruction which
another module executes,

We can describe a parallel program which runs on the Hyphen
system with such instructions as 'parallel branch' and 'exchange
task.! These instructions on the FIFO queue are used for
synchronization between processor modules. Arital2] proposed the
notion of SPP(Self-synchronizing Parallel Program) to describe a
parallel program by means of the synchronization mechanism with
the FIFO queue,

Fig.2 shows a simple example of SPP which calculates the sum
of 1 through 4 in parallel. Two processor modules P1 and P2 are
used for this calculation., Processor module P1 calculates a
subtotal of 1 and 2, and finally makes the grand total.
Processor module P2 calculates the other subtotal of 3 and 4.

The subtotals are to be calculated in parallel on P1 and P2. See

X =1+ 2 Y :=3 + 4
S:=X+Y
processor P1 processor P2

Fig.2 Simple Example of SPP which calculates
the sum of 1, 2, 3 and 4 in parallel

41

also Fig.5 in reading the following explanation of Fig.2. The
reader is referred to Arital2] for the detailed explanations and
notations of SPP.

First of all, P1 executes a 'parallel branch'! instruction to
P2 and continues on to add 1 and 2. P1 executes an 'exchange
task' instruction after finishing this addition. P2 is activated
by P1 and calculates the subtotal of 3 and 4 in parallel with the
addition of 1 and 2 on P1, After finishing the calculation, P2
executes 'parallel branch' to P1. If P1 has already finished the
addition of 1 and 2, P1 starts to execute the aésignment
statement S:=X+Y on being activated by the 'parallel branch' from
P2. If P1 has not yet finished the addition, the request for the
activation of S:=X+Y is placed in P1's FIFO queue and its
execution is deferred until the execution of 'exchange task?!
after finishing the addition of 1 and 2.

Here we must remark the SPP shown in Fig.2 specifies the
allocation of program pieces on the processor modules. The
program pieces on the same column are allocated to the same
processor module.

Since the Hyphen system has a recurrent structure connected
by communication lines and switches as shown in Fig.1, it
provides a great extensibility and flexibility. A processor unit
in the Hyphen system is a general purpose microprocessor (the
current system Hyphen C-16 uses Z-80A processors). Thus we can

of course implement other synchronizing algorithms without using

FIFO queues.

42

3. Design Principles of Nano-=2

We have designed Nano-2 to write parallel programs which run?
on the Hyphen system. We took the following considerations into
account in designing Nano-2.

(1) Nano-2 is a Hyphen oriented parallel programming language.
We intended to be able to describe SPPs in Nano-2., Thus Nano—2
contains machine dependent features concerning 'parallel branch,!
'exchange task' and 'lock/unlock.! Nano-2 does not support
generalized parallel or concurrent features such as monitors[5]
and rendezvous[11]. We build up those features by using machine
dependent parallel operations in Nano-2.

(2) Nano-2 is a high-level programming language, though it
contains machine dependent features. Isolation or encapsulation
of machine dependencies is effective for software maintenance,
In Nano-2, a process serves as an abstract construct which is
invoked and run in parallel with the invoker. A process itself
is also a parallel construct consisting of SPPs and some‘bthér
processes. Thus a Nano—2.program is structured hierarchically,
but does not have Pascal-like nesting block structures. of
course Nano-2 provides some of structured statements and data
types other high-level languages provide,

(3) Nano—2 inherits explicit control over name visibility from
the programming language Euclid[8]. Names must be explicitly
imported (or exported) via import (or export) declarations. This
kind of information expressed explicitly in the program text is

valuable for understanding and maintenance of the program[”97].

(4) Nano-2 supports reliable programming. The compiler will do
very stringent checks of types, visibility, and accessibility.

These checks help to eliminate many common programming

errors[7'103-
(5) We can separately compile some kinds of program components,
Libraries of software components improve software productivity.
Although Nano-2 draws much on Euclid, we did not take
account of verification of Nano-2 programs. Neither did we take

account of ease of implementing a compiler, though we began to

design and implement a Nano-2 compiler.

4, Language Features of Nano-2
4,1 Program structure and scope

A Nano-2 program consists of one or more processes. A
process is an abstract parallel construct and consists of SPPs
and other processes. Thus a Nano-2 program is naturally
structured hierarchically.

SPPs are machine dependent parallel programs, and they are
described in terms of tasks and segments in Nano-2. SPPs which
Derform some function are enclosed into a process as an abstract
construct, Only entries of the process can be seen from outside.

Fig.3 shows the hierarchical structure of a Nano-2 program
. ctonsisting of two processes P and R. Process P consists of two
Processes (Q1 and Q2) and two segments (S1 and S2). Segment S1

1s made of two tasks (T1 and T2), while segment S2 is made of

44

process P

process Q1 e o »

process Q2 .« o .

segment S1

task T1

[task 12 |

sSegment S2

task T3

task T4

task T5

process R o o o

Fig.3 Hierarchical Structure of a Nano-2 Program

three (T3, T4 and TS5). SPPs described in section 2 are
represented in terms of segments and tasks. A segment is a ﬁnit
for allocation, i.e., all the tasks included in the segment must
be allocated on the same processor module, A task specifies a
sequence of statements that are executed continuously. Once a
proceésor module starts to execute one of its tasks, it continues
to execute the task until it reaches the end of the task or
executes an exit statement. Then the processor module executes
an 'exchange task' instruction to start another task.

We may‘write a Nano-2 program for the SPP shown in Fig.2 as

Fig.4, whose structure is shown in Fig.5.

process add1234;
exports entry S12.T12;

segment S12;
imports S34;
exports entry T12;
var X, S : integer;

task T12;
imports S34, T1234, var X;
begin
parado S34,T34(T1234);
X =14+ 2;
end T12;

task T1234;
imports S34, X, var S;
begin
S := X + S34.Y;
end T1234;

end S12;

segment S3U4;
exports entry T34, Y;
var Y : integer;

task T34(entry e);
imports var Y;
begin
Y := 3 + U
parado e;
end T34;

end S34;
end add1234;

Fig.4 Nano-2 Program for SPP in Fig.2

task T12

(parallel branch)

X =1+ 2 I
task T34

(exchange task)

Y :=3 + 4

(parallel branch)

Task T1234 ,
segment S3U

S:=X4+Y

segment S1234

process add1234

Fig.5 Program Structure of SPP in Fig.l

A Nano-2 program also specifies the static configuration of
the program components on the Hyphen system. No processes,
segments or tasks are dynamically created during the execution of
a Nano-2 program,

A construct in Nano-2 has a closed scope. Visibility of
names 1s controlled explicitly almost in the same way as in
Euclid. A name is visible in the scope in which it is declared.
If it is to be visible in contained scopes then it must be
explicitly imported into those scopes via an import declaration.
Names declared in a construct are visible outside of the
construct if and only if they are explicitly expprted from the

construct into the enclosing construct by an export declaration,

4i

We require a Nano-2 programmer to express thoroughly the
jnterface between constructs via import/export declarations. An
export declaration corresponds to the service specification
offered to others. An import declaration shows the dependence on
others outside. These declarations help greatly in understanding
a program, and are thought of as documents expressed in the
program text.

The behavior of parallel programs could be much harder to
understand than that of sequential programs. Programming in an
unrestricted manner will make parallel programs more and more
complicated. In Nano-2, parallel programs are constructed of
processes, segments and tasks, interfaces among which must be
expressed in terms of import/export declarations explicitly.
Such a constrained programming manner is expected to be effective
to make programs reliable and easy to understand,

Finally, the textual order of constructs contained in the
same construct does not affect the scope or visibility of the
contained constructs. Therefore in Nano-2 the equivalence holds
between the two program structures shown in Fig.6, while it does

not in Pascal.

proo A prooc A
proc B proc C = proc C proc B
proc D proo E proc F proc G proc H proc H prooc G proc E proo F proc D

Fig.6 Equivalent Hierarchical Structures

48

4,2 Entity and allocation

Tasks in the same segment are allocated on a single
processor module in the Hyphen system. Data, procedures and
functions which are declared in a segment or are imported from
the enclosing process to the segment are allocated on the same
processor module as the tasks contained in the segment.

Procedures, functions, variables, and tasks within a segment
have their own entities. Procedures, functions and data declared
directly in a process are not yet allocated on processor modules,
thus do not have their entities. They may be considered as the
templates for the entities allocated on processor modules. The
entities for them are allocated when they are imported into some
segments., This facility is prepared in order to describe a
procedure or fungéion which is used commonly and independently on
more than two processor modules. As examples, we mention library
procedures/functions and predefined procedures/ functions. Each

of them is defined somewhere only once, and its object code is

loaded on every processor module that uses it.

4,3 Interaction between parallel constructs

Processes may have parameters and are invoked in two ways
(see Fig.7). Fig.7(a) shows the case in which a return from the
invoked process is required. This can be thought of as a remote

procedure calll3] with parallel execution between the caller and

the called. This may also be thought of as fork-join with

Invoker Invoked Invoker Invoked

\ \

invoke invoke -~“‘j3)

L]

return
YV Ny
(a) call-return scheme (b) no-return scheme
(paracall is used for (parado is used for
this invocation.) this invocation.)

Fig.7 Control Flow in Process Invocation

parameters, On the other hand Fig.7(b) shows the case in which
no return is required. The invoking process and the invoked
process may execute in parallel, and they need not worry about
the return. This can be thought of as a fork statement with
parameters.

The invocation of another process is realized by means of
the 'parallel branch' instruction as described in section 2.
Thus the entry adaress of the invoked process is queued. The
execution is deferred until the entry address is removed from the
FIFO queue. The return from the invoked process is realized in
the same way as the invocation. A task invocation within an SPP

1s treated in just the same way as a process invocation.

Parameters of process invocation are used for inter-process
communication as in the remote procedure call. A task in an SPP
may also have parameters, which are used for inter-task
communication. Besides, a task can communicate with other tasks

via shared variables allocated on certain segments.

5. Example

As an example Fig.8 shows a Nano-2 program for 'Dining
Philosophers.' The program consists of six processes: five for
philosophers and one for the dining room. Fig.9 shows the
schematic structure of this program. There are five segments
"s1" ... "s5" in the "Dining_room" process. Each of them works
as a waiter who 1is devoted to only one guest., A philosopher who
wants to eat spaghetti requests two forks of the "manager"
segment in the "Dining_room" process via the "req" entry of one
of the waiter segments "si" ... "s5", The philosopher who
requests is blocked until the two forks are available. The
"start" task activates the waiting philosopher, and then he/she
starts to eat. After eating spaghetti for a while, the
philosopher releases the forks and then starts to think.

The "Dining_room" process interacts with the philosophers
only via the parameters in process calls, and is thus a server
process independent of the users (i.e., philosophers).

The reader may wonder why the part (A) in the program is
needed. Suppose a philosopher requests the forks again soon

after he/she releases them. If none of his/her neighboring

Fig.8 Nano-2 Program for Dining

process Dining room;
exports entry sl.req(entry r),
entry s2.req(entry r),
entry s3.req(entry r),
entry si.req(entry r),
entry s5.req(entry r),
entry release.e(i:1..5);

segment release;
imports manager;
exports entry ezi:1..5);

task e(i:1..5);
imports manager;
begin
parado manager.rel(i);
end e;

end release;

segment s1;
imports manager;
exports entry req(entry r),
entry start;

task req(entry r);
imports manager;
exports entry r;
begin
parado manager.request(1);
end req;

task start;
imports req;
begin
return req.r;
end start;

end s1;
segment s2;

end s5;

Philosophers

51

5%

segment manager;
imports st, s2, s3, sl, s5;
exports entry rel(i:1..5),
entry request(i:1..5);

var fork : array 1..5 of boolean

:= (true, true, true, true, true);
var waiting : array 1..5 of boolean

:= (false, false, false, false, false);
const left : array 1..5 of 1..5

= (5, 1, 2, 3, b);
const right : array 1..5 of 1..5

:= (24 3, B, 5, 1);

procedure start_eating(i:1..5);
imports st1, s2, s3, sl, s5;
begin
if 1 = 1 then parado si.start;

elseif i = 2 then parado s2.start;
elseif i = 3 then parado s3.start;
elseif i = U then parado si.start;
elseif i = 5 then parado s5.start;
end 1if;

end start_eating;

task rel(i:1..5);
imports var fork,
var waiting,
left, right,
start_eating;
begin
if fork(left(i))
and waiting(left(i))
then fork(left(i)) := false;
waiting(left(1i)) := false;
start_eating(left(i));
else fork(i) := true;
end if;
if fork(right(right(i)))
and waiting%right(i))
then fork(right(right(i))) := false;
waiting right%i)) := false;
start_eating(right(1));
else fork(right(i)) :=true;
end if;
if fork(1i) and fork(right(i))
and waiting(i)

(A)—mm then fork(i) := false;
fork(right(i)) := false;
walting(i) := false;
start_eating(i);

end if;
end rel;

Fig.8 Nano-2 Program for Dining Philosophers (Continued)

task request(i:1..5);

imports var fork
var'waiting,
right,
start_eating;
begin
if fork(i) and fork(right(i))
then fork(i) := false;
fork(right(i)) := false;
start_eating(i);
else wating(i) := true;
end if;
end request;

end manager;

end Dining_ room;

process philosopheri;
imports Dining_ room;
exports s.init;

segment s;
imports Dining room;

task init;

imports Dining room,
eat_and_think;
begin
I_am thinking;
(B) -—--- paracall
Dining room.si.req(eat_and_think);

end init;

task eat_and_think;
imports Dining room;
begin

I _am eating;
(C) ---- parado Dining room.release.e(1);

I _am thinking;
paracall

. Dining_room.s1.req(eat_and_think);
end eat_and_think;
end s;

end philosophert;

process philosopher?2;

end pﬁilosopherS;

Fig.8 Nano-2 Program for Dining Philosopfers (Continued)

54

Dining_room

release

philosophers
(starts to think)

rel .
requestw

philosopher1
(thinking)

philosophery
(thinking)

philosopher?2 philosopher3
(starts to eat) (waiting)

Fig.9 Program Structure for Dining Philosophers
(This figuar shows a snapshot at a particular moment,)

philosophers wants to eat spaghetti, then he/she may use the
forks and-eat spaghetti immediaﬁely. Thefe isrno\problemvin case
the "manager" segment deals with the request éfter the release,
But there is no guarantee that the above case always occurs. As
the segments in the "Dining_room" process may be allocated on
different processor modules, the "manager" segment may deal with
the release after the request.

When a philosopher requests two forks, he/she must wait for
some reply from the dining room until the forks are aVailable for
his/her use. Thus a call—returﬁ scheme is used (see (B) in
Fig.8). On the other hand, when a philosobher release the forks,
he/she need not wait for any reply from the dining room. Thus a

no-return scheme is used (see (C) in Fig.8).

6. Conclusion

We have described Nano-2: Hyphen oriented high—levei
parallel programming language. We regard the parallel computer
Hyphen and the language Nano-2 as mere tools for investigation of
parallel programming or distributed processing. We have a
primary object in Studying parallelism from the practical
viewpoint.

In this paper we have e*plained only the conceptions of
Nano-2, It was considered most how to make a compromiée between
the ﬁachine dependency. and the abstréction of the language. We
need to investigate Qhether our design is proper for our aim by

writing programs in various fields. Of course there may be

50

better decisions in designing the language. There will be some
revisions of the language Nano-2.

We may regard Nano-2 as a system implementation language,
We implement in Nano-2 and provide some basic facilities for a
particular application. Mechanisms for coroutines, monitors,
pipelining, data abstraction, and so on can be implemented in
Nano-2 by means of operations on FIFO queues.

A compiler for Nano-2 has begun to be implemented. After
producing it, we will gain the experience in using Nano-2 on the
Hyphen C-16 system. The experience would be valuable not only in

revising Nano-2 but in learning parallel programming.

Acknowledgements

We wish to express our gratitude to Prof. T.H. Merrett of
McGill University for many helpful suggestions made in the

improvement of the manuscrapt.

[1] Ada Programming Language (ANSI/MIL-STD-1815A4), United States
Government, Department of Defense, Ada Joint Program Office,
1983.

[2] Arita,I.: On a Parallel Program with Synchronizing Mechanism
Using FIFO Queue (I) : Self Synchronizing Parallel Progranm,
Trans. IPSJ, Vol.24, No.2, pp.221-229, 1983, (in Japanese)

[3] Brinch Hansen,P.: Distributed Processes: A Concurrent

97

Programming Concept, Commun, ACM, Vol.21, No.11, pp.934-941,
1978,

[4] des Rivieres,J. and Spencer,H.: Readability and Writability
in Euclid, SIGPLAN Notices, Vol.13, No.3, pp.49-56, 1978.

(5] Hoare,C.A.,R.: Monitors: An Operating System Structuring
Concept, Commun, ACM,.V01.17, No.10, pp.549-557, 1974,

[6] Holt,R.: Concurrent Euclid, the UNIX System, and TUNIS,
Addison-Wesley, 1983,

{7)] Horning,J.J.: A Case Studykin Language Design: EUclid,

_ Lecture Notes in Computer Science, Vol.69, pp.125-132, 1979,

[8] Lampson,B.W., Horning,J.J., London,R.L., Mitchell,J.G. and
Popek,G.L.: Report on the Programming Language Euclid,
SIGPLAN Notices, Vol.12, No.2, 1977.

[9] Sueyoshi,T., Saisho,K. and Arita,I.: HYPHEN C-16 --- A
Prototype of Hierarchical Highly Parallel Processing System,
Trans. IPSJ, Vol.25, No.5, 1984, (in Japanese)

[10] Wirth,N.: The Programming Language Pascal, Acta Informatica,

Vol.1, pp.35-63, 1971.

