ooooobpooooo
948 0 19850 17-29

A VECTORIZED LU DECOMPOSITION ALGORITHM FOR
LARGE SCALE CIRCUIT SIMULATION

Fujio Yamamoto and Sakae Takahashi
IWAE+H =1 =S
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185

Abstract
A new LU decomposition algorithm that is well-suited for a
vector processor with the indirectly indexed vector feature is
presented. Application of this algorithm to large scale circuit
simulation has reduced the simulation‘ time by an order of

magnitude.

- Introduction

Conventional circuit simulators such as SPICE2[1] have been
widely wused because of their general applicability and high
accuracy. Much efforts have been made to successfully improve
their performance on géneral—purpose computers, as typified by
the code generation scheme(2]. Rapid growth in circuit
integration in this VLSI era, however, requires a circuit
simulator with much highér performance. |

One approach to this target is the relaxation method such as
those adopted in RELAX2[3], SPLICE1[4] and New MOTIS[5]. One
problem with this approach lies in deterioration of simulation
accuracy that comes out explicit when applied to anélog circuits,
and research works afe still under way to overcome or ﬁitigate
this weak point.

Another approach 1is to accelerate a conventional simulator,

while preserving its wide applicability and high accuracy, by the

use of a vector processor such as CRAY-1, Fujitsu VP or Hitachi

S-810. = The point here is to develop a new computational
algorithm for circuit simulation that is well-suited for
vectorized processing. In his comprehensive position paper[6],

Calahan stated that matrix computation that becomes more dominant
in larger scale simulation, is hard to vectorize efficiently, due
to high sparsity and randomness inherent in circuit matrices.
Afterwards, he[7] and others[8] presented the vector processing
schemes that are effective only for éircuits consisting of
repeated sub—circuits with the same topology.

This paper presents a new algorithm of sparse matrix
computation that is well-suited for a vector processor with
indirectly 1indexed vector feature, and is effective for general
circuits that do not necessarily explicate topological
regularity. As a matter of fact, this algorithm is based on the
parallelism latent in high sparsity and irregularity of circuit
matrices, the very nature that has been regarded as the major

obstacle against vector acceleration.

Towards Acceleration gf Conventional Simulators

One of our VLSI circuits (benchmark A in Table 1) that is
modeled with 2,132 MOS transistors,takes 4.2 hours to simulate on
our high-end scalar processor. Nearly 90% of the total time is
spent for matrix computation,of which over 90% is for the LU
decomposition process. Characteristics of a circuit matrix
stated above make it difficult to apply those solution methods
that are commonly wused for PDE problems,such as the iterative
method or various band matrix schemes. Consequently, traditional

LU decomposition enhanced with fill-in minimization

o
w

pre-processing has been widely adopted.

The code generation schemel[2], though based on the direct
method as'well, provides with much higher performance. The large
memory capacity required by this scheme, however, prevents it
from freely wused for VLSI chip simulation. We gave it up to
apply this to our benchmark A due to memory shortage, since it
required the code memory capacity of 22MB, the amount much larger
than what was available.

On the other hand, the traditional LU decomposition process,
as it stands; can be vectorized rather easily and naturally on a
vector processor equipped with the indirectly indexed vector
feature. For example, vyou can easily vectorize each set of
divide-operations and update-operations that are related to each
diagonal element. Such a "naive" vectorization, however, will
not give you much, since high sparsity of a circuit matrix cuts
the vector length quite short. Worse yet, the relatively simple
and short sequence of floating-point operations that is peculiar
to LU decomposition 1§op, is apt to lower the utilization ratio
of vector arithmetic hardware. Another vectorized LU
decomposition algorithm that aims at overcoming these flaws will

be given in following.

OQutline of the Algorithm

The vectorized LU decomposition algorithm proposed here
preprocesses a given matrix in the following three steps, thereby
examining the potentiality for parallel processing and preparing

for vectorization.

(1) Segment the whole matrix into a number of "blocks", so that,

in each block, a set of divide-operations (Aji=Aji/Aii) and a
set of update-operations (Ajk=Ajk-Aji¥Aik) can be vectorized
respectively. Fig.1 illustrates a primitive example of this
segmentation. As shown, each block consists of some
consecutive columns and the corresponding rows. Each block
boundary 1is uniquely determined as the trade-off between two
requirements. Vector acceleration requires the vector
length,and so the block size,be as large as possible.
Meanwhile, computational integrity requires that each block
does not include an element which is written by the vector
operations of that block, except those that are, after
written, not referred by these opérations. This step ends
with building index 1lists for vector operations of each

block.v

(2) Detect those matrix elements for which two or more
update-operations will be undertaken while processing a
block. Such an element is located at Ajk when there are two
or more pairs of non;zero Aji and Aik for common values of j
and k, as shown by solid circles in Fig.1. These "singular”
elements should be set aside 1in the course of vectorized
update-operations stated in (1), to avoid unexpected résults
caused by concurrent updates. Instead, these elements are
grouped according to the number of update-operations taken,
So that another vector operation of the form of
(Ajk:Ajk-Aji*Aik-Aji'*Ai'k-..,) can be applied, later in
execution, to each group having many multiple-update elements
enough to justify vectorization. A list of operand address

is appended to each of multiple-update elements (Ajk).

ro

(2) Determine the point along the diagonal whereb the
computational method for a regular dense matrix should be
adopted to decompose the remaining lower-right corner. The
vector operations mentioned in (1) and (2) assume the
indirectly indexed vector feature that enables the usage of a
non-linear index for a sparse matrix. The lower-right corner
of a matrix, however, tends to get dense due to the preceding
update-operations. This 1implies the advantage of switching
to the ordinary vector operation with linear index for a
dense matrix. This step fixes the point along the diagonal
where the remaining 1lower-right corner reaches certain
sparsity 1level and so can be advantageously regarded as a
dense matrix. Block generation mentioned in (1) is stopped

at this point.

These preparation steps are followed by execution of actual
decomposition, where, as shown in Fig.1, one divide-operation,
one update-operation for normal elements,and éome number
(possibly zero) of update-operations for multiple-update
elements, are taken in order, in the vector mode, for each block.
Vectorized execution of the last type of operation in the form
stated in (2) improves the wutilization of vector arithmetic
hardware effectively.

After all the blocks undergo these types of operation, the
lower-right corner yet undecomposed is processed by a high-speed
decomposition method for a dense matrix. The main loop in this
method contains the floating-point operations four times more

- than the normal update-loop, hence keeping the vector arithmetic

efficiency much higher.

Results

Tablel illustrates some of the performance results measured on
our supercomputer S-STO. Here, the original version (which is
based on UCB's SPICE2) and the code generation version are
execdted in the scalar mode, while the new version that
incorporates the algorithm just given is executed in the vector
mode. As for benchmark A that has the largest integration, the
new version 1is 76 times faster in matrix computation and 8.9
times faster in total, as compared with the original. Moreover;
it exhibits the superiority to the code generation by a factor of
4,6 1in matrix computation, or 1.8 in total, with only half the
memory occupation.

In the case of other benchmark having mediumscale, the ratio
of the new to the original is 1.3-2.4 in the total time, but that

to the code generation stays around 0.7-1.1.

Analysis of Benchmark A

The results with most favorable benchmark aro analyzed in
three ways, as shown in Fig.2.

Fig.2(a) tells vyou how the amount of update/divide operation
and the number of the vector operation activations accumulate as
the LU decomposition using non-linear indices proceeds.
(Decomposition of the 1ower-right corner is not included here.)
You can see the new algorithm makes the average vector length,
which 1is 1implied by ratio of two amounts indicated, about 20

times 1longer than the "naive" vectorization such as the one

.entioned earlier. In this case, the naive vectorization was
realized by a small modification on the original version that
1imits the scope of vectorization to each column or each row.

Fig.2(b) illustrates the effect of switching, in the course of
decomposition process, to the dense matrix method. X-axis
represents the size of the lower-right corner that is regarded as
dense, while the right-hand Y-axis indicates the amount of
operation needed to decompose the corner. The solid curve and
the dashed 1line correspond to the sparse matrix method and the
dense matrix one, respectively. The former uses indirect indices
for non-zero elements, but the 1latter operates on all the
elements regardless of their values. Also plotted in the figure,
against the left-hand Y-axis, is the time it takes to process the
whole matrix for one iteration.

Notice that the optimal point of switching is located somewhat
before the point where the remain}ng corner gets completely
dense., In this example, the maximum performance is attained when
the switching takes place at the point where the amount of
operation as a dense submatrix roughly doubles that as a sparse
one. The performance value at this optimal point is 1.3 times
greater than when no switching is sdopted, and 1.2 times greater
than when switching takes place at the completely dense point.

How several factors contribute to the performance effect that
matrix computation itself 1is accelerated 76 times by the new
algorithm, 1is summarized in Fig.2(¢). As shown, the effect of
removing iterative address search for non-zero elements from the
inner execution 1loop and substituting for it the address lists

that are generated once in preprocessing and used repeatedly in

execution, 1is almost one order of magnitude. There are also the
effect of replacing scalar operations with vectorized ones both
for sparse and dense submatrices, and that of decreasing load and
store operations for multiple-update elements. Contributions of
vector elongation represented in Fig.2(a) and dynamic switching

in Fig.2(b) are included in these two factors in Fig.2(c).

Matrix characteristics vs performance effect

Table2 summarizes major characteristics of the matrices used
to model benchmark circuits.

First, take a look at the third row. The value in each column
indicates the ratio of the total number of circuit components to
the matrix size, which roughly represents the average number of
cbmponents connected to one circuit node. Benchmark D, the least
favorable one, has the value of only 0.67, which differs much
from 3.76 of benchmark A which exhibits the highest acceleratiorn.
The low value of benchmark D is due to its bipolar transistor
model which holds several internal nodes.

As implied earlier in the description of step(2), a circuit
matrix first undergoes node renumbering based on Markowitz's
scheme prior to the three-step preprocessing. The small number
of components per node with benchmark D should suggest féwer
fill-ins after renumbering. Actually, the fill-in ratio in
table2 is only 49% with D, much lower than 117% of A. |

Markowitz's scheme generally results in higher density at the
right hand side, the lower side and the lower-right corner of a
matrix. However, the low value of the fill-in ratio weaken this
tendency. This comes into sight when we examine the distribution

of non-zero elements,which is shown also in Table2. You can. see

\‘;‘1

»r

penchmark D has the distribution that 1is more balanced than
others. This implies it has pretty many non-zeros near the
diagonal, that makes our block segmentation feature hash the
whole matrix into many small blocks, thus falling down the
resultant performance. The average size of a block, which is
measured by the number of columns per block, is dnly 1.8 with D,
much smaller than others as indicated in the table.

In the case of our benchmark D,worse yet, the size of the
lower-right corner to which the dense matrix method is applied is

very small, so that the effect of dynamic switching is quite low.

Conclusion

A new LU decomposition algorithm that effectively brings out
high performance of é vector processor, and its effects on
large-scale circuit simulation, have been presented. It has been
observed that this algorithm contribute to the total acceleration
of conventional <circuit simulatior by one order of magnitude at
the maximum.

On the other hand, it has turned out that some circuits are
unamenable to significant acceleration by this algorithm. It is
our temporal <conclusion that a circuit matrix which holds many
non-zeros along the diagonal after the fill-in minimization

process should not conform to this algorithm.

Acknowledgment

The skillful méthod to decompose the dense submatrix that
makes a significant part of the algorithm presented in this
paper, 1is attributed to Mr.Yasunori Ushiro. Dr .Kiyoo Itoo,

Dr.Hisashi Horikoshi and Dr.Hideki Fukuda have supported this

work eagerly. The authors are much grateful especially to these

persons among many others.

References
[1]L.W.Nagel ,"SPICE2~ A Computer Program to simulate
Semiconductor Circuits", MEMO NO.ERL-M520,University of

California,Berkeley, 1975
[2]F.G.Gustavson,et al, "Symbolic generation of an Optimal Crout
Algorithm for Sparse Systems of Linear Equations",

Proc.Symposium on Sparse Matrices, pp.1-10,1968

[3]J.White,Sangiovanni-Vicentelli,"RELAX2:A Modified Waveform
Relaxation Approach to the Simulation of MOS Digital

Circuits", Proc. ISCAS'83, pp.756-759, 1983

[4]R.A.Saleh,A.R.Newton,"Iterated Timing Analysis in SPLICE1",

Proc.ICCAD'83, pp.139-140, 1983

[5]C.F.Chen,P.Subramanian,"The Second Generation MOTiS Timing
Simulator-An Efficient and Accurate Approach for General MOS

Circuits", Proc. ISCAS'84,pp.538-542, 1984

[6]D.A.Calahan, "Vector processors-models and Applications",

Trans. on CAS No.9, pp.715-726,1979

[71D.A.Calahan,"Multi-Level Vectorized Sparse Solution of LSI

Circuits",Proc.ICCC'80, pp.976-979, 1980

[8]A.Vladimirescu,D.0.Pederson, "Circuit Simulation on Vector

Processors", Proc.ICCC'82, pp172-175, 1982

1 K (PREPROCESSING)
N §°(') — (1) Matrix Segmentation
®g.] o o *(2) Detection of Wultiple-Updates
ooge 8 F(ID Dense Part Detection
88— i
18—30% &8 of o° (EXECUTION)
838 9 o°cB
3 B o For | Vectorized Execution of (a)
o8 1 coch | Vectorized Execution of (b)
Block 12 -3 -~ 10 Block [Execution of Multiple Updates
T e tector or Sealar o)
= Process Dense Part by Linear
JK- gk Ty ik (D) + Index Vector

Fig.1 Principle of the New LU Decomposition Method

Table | Comparison of Simulation Time(CPU Time in Seconds on S810)

Benchmark ldentifier A B C D
Circuit Size | 2132 231 791 471
(Number of Transistors) MOST| MOST| MOST BJT
Conventional | Total D 14950 764 | 1137 1061
Method Matrix Only | 13026 498 654 585
Code Total 2 3000 3a1| s27| 586
Generation Matrix Only 790 75 85 140
New Total Y 1674 314 554|836
Method Matrix Only 172 15 95 369

Main Memory Occupation: 1)6MB, 2)22MB, 3)12MB

L o)
<O

Steps (Up to optimal switching point)

105 1 5 101*
—‘ﬂ’ - ~
‘V'

3 | 2
5 " Conventional 5
N * A
2 g
"5 10% {10° .g
& Activations 2
g (Except for Multiple—) =

L i o]

3 New Mothod ~ \Update Operations . ki
: 2 5
= ’_.‘9 - =

.-—"’q.—.-‘-
s rav=e=p°7" 4 " L A A "
700 1100 1508
LU Decomposition Step
¢a) Comparison of Vector Operation Activations
1611~))
P regarded QOperations as Dense MWatrix
5 as dense i 1
8 /
g g 7
) 3
] a
S 108
=
f g
g B
: i
a.
s
é Optimal switching point -g
2 15% . 0% 2
£ Completely Dense Point
=
102 107 X
Size of the Matrix regarded as Dense
(b) Effect of Switching to Dense Matrix Method
10r .7 Decrease of address calculation

o bk] of non-zeros

o]

§ =

- P 6.1 Acceleration by Vector

S F — against Scalar

[+ 5 o

I

2 .

g I

u 1.3 Decrease of Load /
1t [—'1 Store operations etc.

(c) Factors contribute to 76-fold Acceleration

Fig.2 Analysis of Benchmark A

/2

Table 2 Characteristics of Circuit Matrices

Benchmark Identifier A B C D
Matrix Size 1611 369 | 985 | 1883
Fill-in Ratio (%) 117 62 52 49
Total NUmber of circuit 3.76 | 3.02| 1.98| 0.67
Components /Matrix Size
Number of Columns /Block 5.8 7.8 3.5 1.8
Distribution of | Region X 5.2 6.0 5.8 15.9
Non-Zeros (%)
0.5 Region Y | 16.0(20.5| 25.9(18.3
N\ Y
0.8
2 Region z 57.4| 45.6| 36.4| 31.5

ro

