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A Computer-Algebraic Problem on Two-dimensional
Linear Recurring Arrays - Cycle Representatives

of Two-dimensional Cyclic Codes

BrEE = K Shojiro SAKATA
(2 45 12 54 7'\) Toyohashi Univ. of Tech.
ABSTRACT

Most problems on two-dimensional (2-D) linear recurring
arrays are also important from the standpoint of computer |
algebra, one of which is treated in this paper. In partic-
ular this problem has a close connection with Buchberger's
algorithm. A method of finding cycle representatives of
2-D cyclic codes defined by primary ideals in the bivariate
polynomial ring.is presented. This is based also on a two-
dimensional generalization of Kurudjukov's result on cyclic
codes defined by non-squarefree parity check polynomials.
Our result is useful for determining the weight distribution
of any 2-D cyclic code and exhibits an example suitable for

applying a formula manipulating system.



45
I. INTRODUCTION

The two-dimensional (2-D) cyclic codes‘are a general-
ization of the important class of one-dimensional (1-D)
cyclic codes [1-5]. A 'cycle' of a 2-D cyclic code is
the collection of codewords which are cyclic shifts of
a codeword, as in the case of a 1-D cyclic code. If we
can find the cycle representatives, we can immediately
determine the weight distribution of the coée. The prob-
lem bf finding the cycle representatives of 2-D cyclic
codes remains open except in the case of irreducible (IR)
2-D cyclic codes; an IR 2-D cyclic code is equivalent to
(a repetition of) an IR 1-D Cyclic code [4,5]. For 1-D
cyclic codes, this problem has been solved [6-101].

In the present paper, we present a method of finding
the cycle representatives of any quasi-irreducible (QIR)
2-D cyclic code by extending Kurdjukov's result [10] on
quasi-irreducible (i.e., non-squarefree) 1-D cyclic codes.
This also implies that we. can find the cycle representa-
tives of any 2-D cyciic code'by combining its QIR compo-
nents with the aid of Seguin's method [8].v In the‘follow—
ing discussions, with no loss of generality we confine
ourselves to the binary case where the symbol field 1is

the binary Galois field GF(2).
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II. PRELIMINARIES ON 2-D CYCLIC CODES AND GROBNER BASIS

Let R 5 Flz,y] be the ring of bivariate polynomials

]
A A m n
= GF(2) and Im . (x ' +1,y +1) be the

3

ideal generated by 41 and yn+l. A binary 2-D cyclic

over the field F

code C of area mxn is an ideal I = I/Im " in the factor

3

ring Rm " 4 R/I [3,5], where I is an ideal in R such

3 m,n

that I D Im . On the other hand, we may define a 2-D

£

cyclic code C = I by the parity check ideal J = J/Im "
3

(J'Dlﬁ n) in Rm n (or J in R) such that I-J = 0 (the zero

3 3

idel in Rm n) and denote it by Cj (or CJ).

3

The elements (codewords) u of C are either referred

to as bivariate polynomials u(x,y) = L ,. . 2 'u..xlyJ
. (2,5)eZ i1J
m,n
(modulo I ) or as 2-D mxn arrays (u..), (% j)eZ2 where
m,n M ! m,n’
22 is the set of pairs (7,J) of integers 7 modulo m and

B

J modulo n, i.e. the subscripts 7 and j are to be inter-

preted respectively modulo m and n. The multiplication

by a polynomial f(x,y) = Z(k Z)&:22 szmkyl amounts to
! m, n
send u = lugy) to flmwu = g gy ep?  Frati-k,j-1

B

).

In particular, cyclic shifts zx-u and y-u of a codeword u
of ¢ are also codewords of ¢. From now on we regard each

codeword as a doubly periodic (DP) array by considering

cyclic shifts.
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A DP array u is characterized by a fundamental period

+wa,l )

(FP) parallelogram AlXAZ = {(m1211+m2221, “1Z12 2los
2 . . 3 .
eZm)n l Oiwlrw2<l} with side vectors Al_(zll'zlz) and 1,

=(l5y+%5,) such that any period vector ! of u can

be represented as an integral linear combination I klél

+k2£2 of Ll and 22, kl,kzez [4]. The 'period' of u is

-1 /A
the area |£1x£21 - ldet({lll 112}) of a FP parallelogram
21 "22
I;xl,. In genéral Z; is covered with a network of con-

gruent parallelograms obtained by shifting cyclically

a FP parallelogram thréugh kl£l+k2£2’ kl,kzsz.
Let d £ dim CJ be the dimension of the code CJ (as
a linear subspace). Then, there exists a set of integer

pairs {(Kl,xl),...,(KM,AM)} associated with an 'independ-

end point (IP) set' of J

_oM=1, . . . . 2
a(Jg) = Ljs=l{(z,g) | 0c<i<x_ q0 Oj<r ) C 2o

which satisfies the following conditions (5]:

(1) Kl:O<K2<-..<KM%m, n;)\l>)\2>'..>)\M:0;
(2) J has a normal basis {f(l) (M) (%

(x,y) -, f 'y}

composed of the generator pélynomials f(S)(x,y)

with the 'quasi-degree' Deg f(s) = (KS,XS), les<M;

i

(3) 4(J) has the cardinality |a(J) | d;
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(4) any non-zero polynomial of the form

s
%4

f(xry) = Z(‘L,J)EA(J)fY,Jx Y

is not an element of J.

The above normal basis is nothing but the Grobner basis [11]
of J, which can be obtained from any basis of J by a construc-
tive method [5]. Although the algorithm is  found to be
equivalent to Buchberger'é algorithm [11], the former which
originated in a problem of encoding any 2-D cyclic code was
devised independently and applied to construct some new 2-D
cyclic codes [5]. The idea behind the algorithm is as follows.
Suppose that, for each (zZ,j) € A(J), an arbitrary value is
assigned to the component Us; of a codeword in CJ. From these
values uij’ (2,7) e A(J), we can determine the other compo-
nents Ugg (k,7) ¢ A(J) by applying succesively a series of
polynomials in {f(l), ceny f(M)}. The set {f(l), ey f(M)}
is a GroObner basis of J if and only if Upgr (k,1) £ A(J), is

determined uniquely, i.e. independently of any combination

and any order of the polynomials used in determining Ug 7

IIT. QIR 2-D CYCLIC CODES CQ
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A guasi-irreducible (QIR) 2-D cyclic code ¢ is defined

\

by a primary ideal 4. The code (ideal 1in Fm n) CQ has

3

a minimal subideal ¢ i1.e. an irreducible (IR) 2-D cyclic

P’
code. The IR code ¢_ is defined by the (maximal) prime
ideal P associated with the primary ideal ¢ such that P D
Q D P’ for a certain integer o. There exists a pair of
irreducible (over F) polynomials f = f(z) and h = h(zx,y)
which generaterP, i.e. P= (f, h). Let dl A degxf and d2
1y degyh, where degxg (degyg) is the degree of a polynomial
g = glx,y) with respect to x (y). The IR code CP has an
IP set A(P) = {(Z,4) | O<i<dy, 0;j<d2}. Thus, the dimen-
sion of CP is equal to d A [a(P)| = dld2 [4]. Let  be
the least integer satisfying 2T;c. Then, from the inclu-

sion

T 2'5 T
0> P> o (2, W),

it follows that the QIR code (¢ = CQ is a subcode of the

. . . A T A
QIR code CQ defined by the primary ideal Q{ = (f2 , R
T
The latter code CQ can be constructed by interleaving
T
the codewords of the IR code (...

p

For an array (codeword) y of a 2-D cvclic code C o

we define the characteristic ideal of y by I(w) = {feR |
f-u = (C)}. 1In like manner we have the characteristic
ideal of a collection of arrays U oe el such that
I(ul,...,uK) = {feFR lf-ul = (0), ..., fruy, = (0) 1}
_ K
= ﬂ.q:lf(ug).

._.6_



Dualistically, for an ideal < (2-D cyclic code ') there
exlsts a finite set {ul, e uL§ of 'representative arrays
(codewords) ' such that J = 7'(u,, ..., w,), 1.e. ¢, = ¥ L F-u

1 L J s=1
{5].

Let H(Q) be the multiplicative gfoup of invertible
elements in the factor ring r/@ and {xiyj} be the subgroup
of #(@) consisting of all powers xiyj of z and y. A major

point of the present problem is to find the representatives

of cosets in the factor group H(Q)/{xlyJ}. In particular,

if the parity check ideal J (2-D cyclic code CJ)»has
a‘single representative array (codeword) u, then for
a complete set {gl, ieey gM} of coset representatives of
H(J)/{xiyj} {gq-u, s gy-u} is a complete set of cycle
representatives which are contained in CJ, but not in any

proper subcode of CJ.

IV. CYCLE REPRESENTATIVES OF CQ
T

In this section we consider the QIR 2-D cyclic code CQ
T

T T
defined by the parity check ideal QT = (f2 ’ h2 ). The

QIR code ¢ has a single representative array u. For

QT

example, we can determine such an array ueCQ by
T

1, (Z,7) = («=-1,x-1);
(1)

v 0, (i,5)e 6(Q)-{(x=1,2-1)},
where « = dlzT, yo= a?22T and 8(Q ) = {((i,7) | Ost<k, 0<j<ir)
(5]
The primary ideal QT has a unique minimal primary super-
) A T T_ T_ T
1deal QT' = (f2 . f2 lhz l, h2 ) which belongs to the same

wn



prime ideal 7P = (f, h). Correspondingly, ., , is the

Q
maximal subcode of CQ , where the difference between the
T
dimensions of these codes is

dim CQT - dim CQT, = d (= dim CP).
Hence the cardinality of the difference set CQ - CQ , 1s
T T
equal to
2‘[ 21:_ 21_
The period of any element. in CO - CQ . is équal to p22r'

. T T
where p is the period of a non-zero element in Cpe Thus,

the number of cycles in CQ - CQ , is

T T
2+ 2t 4y
where s = |T(P)| = (2d—l)/p is the cardinality of the set
T(P) of coset representatives in H(?)/{xiyJ}.  Let

a polyncmial o = a(xz,y) denote a primitive element of the
extension field GF(2d), which is isomorphic to R/P, then
T(P) = {ao, al,’w-Q, as_l}.

For a non-zero array u in CP, let ilxiz be a FP paral-

lelogram of u with il = (il, jl) and 22 = (iz, jz), where

1, J
p = [det([il jl})l. Then, there exist unique polynomials
1“2 72
ayr bys oeq, a,, by, and ¢, such that
T, J
x ly Ly 1 = alf + blh + clfh,

z Ty + 1 = sz + b2h + cth



ot
T

(degyjl, degya2 < dz; degxpl; degxpz <o

b

In fact, we can take jl=0, il>i2;0 [(5]. Thus, bl=cl=O,

al#O, bZ#O. For any integer o, we define So

to be the set of polynomials g with degrg < 2G_ldl and

o-1
degyg < 2 dz. Let

-1 o-1 o-1 . o-1
-8 20 a2 ~ A, 2 _ A, 2
al:al ’ a2:a2 ’ bl: (—0), b2:b2
20 20
modulo (f~ , " ), (5)

and SOl (502)‘be the set of polynomials in S0 which do not

Pl Sl P2 82 Pl Sl rz 82
Y r oy

(x "y ), where =z "y A ) is a non-

contain =z
zero term of the polynomial &l (52). Then we have the

following theorem, which is proved in the Appendix.

Theorem 1: A complete set of coset representatives

in H(QT)/{xiyj} is given by

2 2 2.2 ..
t (L+fky+hLy+fhm) ) (L4 Tk th "Ly + £ my)

-1 -1 -1 ,1-1
(1+F%  k +n% 1 +f%2  w? Tamy, (6)
T T T
where teT(P), (k ,1 ,m )YeL AS x5 xS (o=1,...,1); a com-
o’ 6’0o o= o0l 62 "o
plete set of cycle representatives 1in CQ - CQ , 1s obtain-

T T

ed by multiplying the representative array u (1) of CQ
T

by polynomials (6).



V. CYCLE REPRESENTATIVES OF ANY OIR CODE

Now we will show that Theorem 1 is also useful for
obtaining the coset representatives of H(Q)/{xiyj}, where
¢ is any primary ideal belonging to the same prime ideal
P = (f(), h(z,y)) such that P> @ D> @ = (f2, #?).

Let I be an ideal in R and A(I) be an independent point set
of I. We represent each element (coset) of the factor ring

R/I by a polynomial of the form

. i,9
glzy) = Ig iyea(n9i® ¥ -

Let I' be a subideal of I. By virtue of the isomorphism

e

R/I (R/I'Y/(I/I'), we can select the coset representa-
tives of R/I out of those of R/I', To be precise, we have
only to pick up the elements g with the quasi-degree Deg g
eA(I), since A(I) C A(I')Y. Thus, in view of dikaR/I) =
|a(1)|, the set of elements of R/I is identical with the set

of elements of R/I' satisfying Deg g e 4(I).

Furthermore,- let g be an invertible element of R/I'

satisfying Deg g €A(I). Then there exists a polynomial

g such that g-g_l = 1 mod I' and Deg g-l e A(I'). Since

-1 ~-1 -1 1

I'c I, g'é 1 mod I, where ¢ =g mod I and Deg g

H

€ A(I). Therefore g is invertible as an element of F/I.

Consequently, we have the following lemma.

Lemma 2: Let I and /' be ideals in F and { D I'.



The invertible elements of rR/1 are given by the invertible

elements g of R/I' satisfying Deg g ¢ A(I), i.e. H(I) =

{geH(I') | Deg g ¢ A(I)}.

The following theorem is an immediate consequence of

Theorem 1 and Lemma 2.

Theorem 3: Let @ be a primary ideal belonging to
T T
a prime ideal P = (f, h) and P D @ DO QT = (f2 ’ h2 ).
The coset representatives of H(Q)/{xzyJ} can be selected

among the elements (6) whose quasi-degrees are contained

in A (Q).

To find the cycle representatives of CQ, we need
a collection of representative arrays {ul, ey uN} of @

which satisfies the following conditions:

: -y : : _AN ]

(1) CQ = Us=lCI(us)’ in particular ¢ ﬂsle(uS),

(2) there does not exist any array v such that I(us)
2 I(w) 2 Q.

To obtain such a collection of arrays {ul, et uN} for

c we may begin with the set of representative arrays

Ql
{u(l), u(M—l)} defined by

.

1, (i,5) = (x_,,=1,2_-1),
= { s+l s (L<s<M-1) (7)

0, (2,3) e a(@) = (e ,y-1.a -1},

O

_ M_l . 3 ! . . - . _
where A (Q)= US:l{(z,U) , 051<<S+l, 0\J<)S} is an independ

end point set of § [5)]. Then, we continue to select linear

- 11 -



(L) (1) (M=1) (M-1)
7 U

combinations u = g u - e satisfying the

condition (2) until the condition (1) is fulfilled.
Each array U has a largest FP parallelogram among the

arrays in ¢ and IS = I(us) has a unique minimal super-

I(u )
s
ideal IS' which is a primary ideal belonging to P. Thus

we obtain the cycle representatives in CQ - LngCI }
s

Lgil(CI - CI ,) by multiplying the arrays U, by the poly-
s s

nomials mentioned in Theorem 3.

Example 1l: Let P = (f, h), where f = x+l1, h = yz+y+l-
Then dl = l’ d2 = 2' d= 1.2 = 2' (LllJl)x(tzlJz) = (llo)
x(0,3) is a FP parallelogram and the period of Cp is p = 3.

Thus s = (29-1)/p = 3/3=1 and 7(P) = {1}, « = zx.

From

z+l = 1-f,

y3+l = (y+1) -k,
it follows that a; = 1, a, = o, bl =0, b2 = y+1, ey = cy = 0.
For @ = (fz, hz), Q' = (f2, fh, h2), the period of every
element of Co = Con is equal to.3°2% = 12. Let s, = {g |
and Ll = Sllxslzxsl' The total number of cycles is equal
to IT(P)I'ZBd—2 = 16 (= |L,]|). The cycle representatives

are shown in Fig. 1. On the other hand, the primary ideal

.. . ’ 2
@' has five minimal superideals Il = (fz, hy, I2 = (f7, h+f)
2
= (x2+l, y2+y+x), I3 = (f, h2), Iy = (f2, h+y f) = (x +1,
g eayl), T = (F2, he(u+1) ) = (2241, yltzu+a), i.e.

- 12 -



(g}
<l

c., = U.EICI . The cycle representatives in . -
Q 7= i i i

(1<z<5) and their FP parallelograms are shown in Fig. 2.

In particular, the 2x6 code CI has the code parameters
2 ‘

(n, k, d) = (12,4,6) and the weight enumerator A(z) = 1+
1226+328, where n = code length, k = dimension, d = mini-
mum distance and the coefficient Ai of A(z) = Zi:OAizl

is the number of codewords having weight 7. This code

has the largest minimum distance d=6 among the linear codes

with the parameters (n, k) = (12,4) [5].

Example 2: Let P = (f, h) and @ = (f2, h) , where f =
x2+x+l, h = y+x+l. The cycle representatives of the 6x6

code (¢, and their FP parallelograms are shown in Fig. 3.

Q
The left array is in CQ - Cp and the right array in Cp-

Thus this code ¢, is an optimal linear code with the para-

Q
_ 18

meters (36,4,18) and the weight enumerator A(z) = 1+12z

+3224 [5].

vI. CONCLUSION

We have presented a method of finding the cycle repre-
sentatives of any quasi-irreducible two-dimensional cyclic
code by extending Kurdjukov's result on one-dimensional
(ordinary) cyclic codes. This result is useful for deter-

mining the weight enumerator of any two-dimensional cyclic

code.

- 13 -
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APPENDIX

Simplified proof of Theorem 1: The total number of
2lements written by (6) is

T T

3.22007 D g0

[T(P)| 1 {Lil = |y} n 2
=1 =1 21
~-1) -2
which is ecual to the number of cycles (3). For the remain-

ing part of the proof, we can show inductively by an argu-
ment close to Kurdjukov's that distinct elements of (6)
belong to different cosets. In the course, we remark that
the representative array u« has a FP parallelogram 2TEIX2T£2.
Furthermore we need the following lemmna. ‘

Lemma: A maximal subset S of the Cartesian

product SOXSO which satisfies the following condition is

- 15 -
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