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Abstract

The intergable Hamiltonian systems with certain classes of
perturbations such as higher order corrections are discussed. It
is shown especially that the integrable systems with first order
corrections in the dispersive nonlinear wave equations can be
transformed into the higher order integrable systems at the same

order.

1. Introduction

In many cases, integrable systems apvearing in the physical
problems are just the approximated equations of the original physical
systems in an appropriate asymptotic sense. Among these systems
there are linearized equations for certain nonlinear problems (of
finite or infinite degrees of freedom), the Korteweg-de Vries (Kd4V)
equation and the nonlinear Schrddinger (NLS) equation describing
weakly and strongly dispersive nonlinear wave phenomena, respectively,
in the leading order approximations [1]. (Both KdV and NLS equations
are known as the completely integrable Hamiltonian systems by means

of the method of inverse scattering transformation {2}). Those
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integrable systems are valid for certain time length determined
from the physical settings (e.g. the order of nonlinearity and/or
the smoothness of the initial conditions). For the problem related
to large time behavior of the solutions (such as the stability of
the critical points), one needs to study the effects of the higher
order terms which are neglected in the derivation of the integrable
systems. For finite dimensional systems, this problem has been
studied extensively [3], and the several methods for analyzing

the problems have been developed. A most successful one is the
Birkhoff normal form theory in which the perturbed Hamiltonian
systems can be transformed into the integrable normal forms by
successive canonical transformations under the non-resonant condition
in the sense of formal power series [3].

In recent years, there has been several discussions related
to the probiem for infinite dimensional systems, such as the higher
order corrections of the KAV and the NLS equations [4,5,6].
Especially, ref.[5,6] conjectured that the KAV and NLS equations
with first order corrections as the perturbations can be approxi-
mated by the integrable systems in the same order.

The main purpose in this paper is to study the integrability
of such perturbed Hamiltonian systems (i.e. the integrable systems
with certain classes of perturbations such as the higher order
corrections). In the sections 2 and 3, we describe the type of
perturbations considered here, and give several ohysical examples
which will be discussed throughout this paper. The examples are
a) N-uncoupled harmonic oscillators (a well-known classical example
[3]1), b) the linearized KAV equation (a example of linear dispersive

wave equation), and c¢) the KdV equation. In the section 4, we try
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to find the integrals for the perturbed systems for studying their
integrability. Particularly, in the case of the linearized K4V
equation, we show by use‘of an algebra of the differential
polynomials that the perturbed equation actually possesses an
infinitely many integrals up to second order. It is however
difficult to find all of the integrals of the perturbed equation,
in general. But for certain classes of perturbations such as our
case, the perturbed equations for given order can be characterized
by only few integrals. So that if we found several (not necessary
to be all) integrals of the perturbed equation, one can show that
the equation is actually integrable up to the same order. This is
the main result in this paper. In order to show this, we first
define, in the section 5, a normal form corresponding to the
perturbed equation on a constant surface determined by some
integrals of the unperturbed system. The normal form can be given
in an integrable form, if we found enough integrals to characterize
the perturbed equation. Then, in the section 6, we construct a map
(é canonical transformation) between the perturbed equation and
the corresponding normal form, and show that our examples a)-c)
are integrable up to first order correction. In this paper, we
mainly consider the first order problem, but the higher order

problems can be studied in the same way discussed here. -

2. Integrable systems with perturbations

We consider the following form of evolution equation as a
perturbed integrable system of dynamical variable u(t) on certain

smooth manifold M, with the small parameter ¢,
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de) = 2 ule) = x@w)ze) = x O (rexP @yeen (1)

which is also written in a Hamiltonian form, i.e. there exist a
skew-symmetric Hamiltonian operator 3 and a Hamiltonian HeC (M)

such that X(u;e) is the Hamiltonian vector field given by
X(uie) = f(u;e)VH[uz;e] . (2)
Here, 8and H are also given in the power series of ¢,

§luie) = 3(0)(u) + € }(l)(u) + oo,
(3)

I

H[u; €] H(O)[u] + eH(l)[u] + e,

and, VH, the gradient of H is defined in the usual way, i.e. for

any vector field Y,

' . d
(Y.VH) [u] := lim H[u+8Y] . (4)
550 ds

The poisson bracket generated by } for functions F, Gec” (M) is

given by

{FIG} [ul := 1lim

Fluts § VG] = (VF- § VG) [ul . (5)
§+0

4
ds
Recall that } is a Hamiltonian operator if (5) forms a Lie algebra

on Cm(M) (i.e. the skew-symmetric bilinear form {-,¢} satisfies

the Jacobi identity). The unperturbed equation ﬁzx(o)= 3(O)VH<O)

(i.e. (1) with e€=0) is an integrable Hamiltonian system in the

usual sense: 3J a set of Iéo)[u]é;cw(M) for v€ T, (where the number

0

of elements in the index set FO is equal to the degree of freedom

of the system), such that
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=0 for ‘vv er

Ia) X(0>-VI£0)

0 14

0 0 0 0 0 0) 4
Ib) {Ié ),Ié (0 VIé )-}( )VIé =0 for "v,u€rl, , (1)

Ic) {VI(O)} are independent .
v veFO
(In the case of infinite dimensional system, one needs more careful
definition. See examples below).

(

For the perturbations X l)(u), consisting of the polynomials
or the differential polynomials in u, we define the degree of

X(R)(u), say Deg (X(l)(u)), in the form,

(

peg (x*) (W)= (#(w) in x™*))peg(u)

+ (#6 in x*)yepeg(ay (6)

where #(u) and #(ax) denote the number of u's and the number of
derivatives 3/9x, respectively. Namely, Deg(X(l)) indicates the
scales of nonlinearity and smoothness of the vector field. Here
Deg(u) and Deg(ax) are determined from the self-similar property
of the unperturbed equation based on the scaling of the physical

setting. In this lecture, we consider the perturbations satisfying,

Xa) for each %, Deg(X(z)(u)) is fixed,

(2+1)

Xb) Deg (X (w)) = peg(x®) (w)) + Deg(u) , )

(2+1) (2

Xc) #{(u) in X )+l .

In

#(u) in X

It should be noted that these conditions (X) (i.e. the ordering

of X(Q)'

s) are naturally appeared in the method of asymptotic
expansions used in the derivation of the equation (1) from the

original physical problem [5,6].
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3. Examples of the perturbed systems

Here we give three examples of the verturbed equations which

will be studied throughout this paper.

3a. N-uncoupled harmonic oscillators [3].

Our first example is a classical example of the weakly coupled

N (0) _ 4(0) gy (0)

nonlinear oscillators on M=R The unperturbed system X

is the N-uncoupled harmonic oscillators, i.e. in terms of canonical

coordinates (xl,--~,xN,yl,---,yN)=u.eRZN,

N
(0) 1 (0) ,.2,.2
H [ul] = 5 ) w, (Xv+yv) . (7)
v=1
Here the Hamiltonian operator }(0) is given by 2Nx2N antisymmetric
matrix
(0) 0 1
(9 = , I = NxN identity matrix. (8)
-I 0

The perturbations are given by

where H(z) is a homogeneous polynomial of degree +2,
N m, n
H(R)[u] : Cmnxmyn , with men = I xvvyvv ;
|m|+|n|=2+2 v=1
m| = m +°--+ m ez’ (10)
1 My - v ‘

(), . . . (L) . _

Here Deg (X ) is given by #(u) in X i.e. Deg(u)=1, so that

Deg(X(z))=2+l. (We sometimes say Deg(H(Q)[u])=2+2)e
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3b. A linear dispersive wave (the linearized K4V equation).

The second example is a dispersive wave equation where the

unperturbed equation is the linearized KAV equation, i.e.

(0) o
X (u) 35 Upps (11)

Ce

= u

This example may be considered as an infinite dimensional analogue
of the previous example. The space M considered here for u is

M=C| (R) defined by
C (R) := {u(x,*)|u(x) € C (R) and, for any m,nez+ ,
]x[m-lazul -0, as x| + «} .

The first order perturbation satisfying the conditions (X) with
the choice of degrees Deg(u)=2 and Deg(ax)=l (same as the case

of the KdV equation) is given by

(1) (1)
+ ay ‘uu, + az~‘uu, (12)

x ) = 2V

Usx

which can be put into a Hamiltonian form,
X(l)(u) — ﬁ(O)VH(l) + 9(1)VH(O) , (13)

where the Hamiltonian structure is given by

}(O) =3, j(l) = {1) i + b(l)(a Larud ),
oo (14)
H(O)[u] = - % I ui dx , H(l)[u] = b(l)[ uui dx .
Here the sets of constants {aél)}z -1 and {b(l)}z _y are isomorphic,
and b{l)=a{l), bél)=(2a£l) (1) )/3, )—(a(l) 2a (l) )/6. Note

that the Hamiltonian structure is not unique, and in fact there

is another choice given by



~(0) _ .3 ~(1) _ _(1).5 (1) ,.3 3
3 = BX ’ 3 = cl Bx + 5 (Bxu+u8X) ’

(147)

ﬁ(o)[u] = % Juz dx , ﬁ(l)[u] = cél)JuB dx ,

(L)__(1) (1) _ (L) __ (1) (1) _,_,. (1), _(1)
where cy i=agv, ey -—(3a2 aj’ /3, C3 = ( 2a2 +ag )/6. It
should be also noted that the Hamiltonian operator for the infinite
dimensional non-canonical systems (e.g. this example) generally
depend on the coordinates on M unlike the finite dimensional case

where the Darboux theorem holds (i.e. the symplectic structure is

locally constant).

3c. The KAV equation.

Let the KdV equation be in the following form,

ﬁ.= X(O)(u) = 6uuX tu, for ue Cj(R) ' (15)
where x(0)= Q(O)VH(O), and
(0) _ (0) _ (", 3 _1 2
= ax , H [u] = [_m (u” - 7~ux) dx . (16)

In this case, the degrees of the perturbations are Deg(X(l))=22+5
with the choice of Deg(u)=2, Deg(ax)=l, based on the self-similarity
of the KAV equation (i.e. if u(x,t) is a solution of (15), then
V(x,t)=62u($x,63t) is also a solution). Thus, X(l)(u) satisfying

Deg(X(l))=7 with the conditions (X) is

X(l)(u) = al(l)uSx + az(l)uu3X + aél)uxu2X + aél)uzuX

where the Hamiltonian structure is given by

(1)

(1) _ 3 (1)
(u) = by 9, + b, (Bxu+uax) ’

J
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J

(1)

) udy ax . (18)

H(l)[u] = [ (bél)uui + b

Here the relations between the two sets of constants {aél)}§=l
(1) .4 . (1)__ (1) (1) _ (1) (1) __(1)
and {b2 }£=l are given by bl =a;"", b, —(6al +2a, ag )/3,
(l)_loa(l)+5a(l)

b(l)=(30a(l)+aél)42aél))/6, bél)=('30a1 2 3

(1)
3 ] ta, Y/12.

4. 1Integrals of the perturbed equations

The existence of the integrals for given equation is a key
to its integrability. In this section, we look for the integrals

for the perturbed equation (1) in the following formal power series,

(

Iv[uze] = Ivo)[u] + elgl)[u] + e+  for some v e&rT (19)

O 14

where {Iéo)[u]} are the integrals for the unperturbed equation

\)ePO

satisfying (I). Let us define Tn’ a subset of the index set FO;

If for each ve]%ﬁZFO there exist Iéz)[u} in (19), for 1<2<n,

satisfying X-VIv=O(€n+l), or equivalently,

¥ (2mm) oo (m)

) X -vi™ =0, for ve€r and 1< <n, (20)
m=0

(i.e. Iv[u;e] for vé.Fn is the integrals of (1) up to order e™) .

Note that 1’0’2 I’lg '-gfng --QI‘OO, and if I‘n=I'O, then the perturbed

system (1) is integrable up to e?. We call the system "nearly

integrable". The main purpose in this section is to find Fn

(i.e. find Iéz)[u] by solving (20)). With this purpose, we study

three examples presented in the previous section.

4a. N-uncoupled harmonic oscillators.

(2)

The equation for Iv

[u] in this case can be expressed by
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2-1
1) o x(0) g (V) y X(z—m)-VIET) , (21)

L
X(O) v v m=0

where L (0) is the Lie derivative with respect to X(0)=‘9(O)VH(O),
X

and given by

N
(0) 3 3
L = w (x, =— = ¥, =) . (22)
< (0) 221 2 2 3y, 2 3%,

In terms of the action-angle variables defined by p£=(xi+yz)/2,

62=arctan (Xg/Yg)r 2=1,+++,N, eq.(21) can be written in

N
(2) (0) o (2) ()
L I = ) — I =G , (23)
X(O) v 91 L sex V v
where Gég) is of the right hand side of (21). For the case %=1,
from X(l)= (O)VH(l), and choosing Iéo)=pv, we have
LI == 5-utt . (24)
X V
Here H(l) in terms of (p,8) is given by
H(l)[u]~= ) c_x'y® = ) C (D)el(r_s).e » (25)

|r|+|s|=3 TS |r|+|s|=3 FS

N
~ Ak . .
where Crs=Csr (complex conjugate), and (r-s)-6= £ (r2°sz)82'

N
Thus, if (r-5) v 0= ) (rg-sg)méo)#o for |r|+]|s
2=1

case), the particular solution of Iél) can be obtained by
R r -s ey .
1ty = ) ¢, (o vV ellrms)et (26)
lr]+]s|=3 (r-s) *w

(0).

Moreover, one can prove that if {wjl }lil are rationally indevendent

(i.e. for ré:ZN, if r°m(o)=0 then r=0), then the solution I&f) of
(23) exists for any 2>1 and v €T, (i.e. w=F0)° (In the resonant
case, {Iv[u;e]}vzl do not exist in general). This is a consequence
of the Birkhoff theorem for the normal form expansion of (1) (see

[3] and the following sections).

- 10 -
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4b. The linearized KdV equation.

(2)

v in this case is given by the following

The equation for I

form similar to (23),

(2) J” (0) 3 (%) (2)
L I = dk w — I =G ’ (27)
X(O) v 0 k aek V v
where w(0)=k3 (the linear dispersion relation), and the action-angle

k
variables (p,6) may be defined by

~ 2
a(k ~
P = _u.k_)}__ , ek = arg u(k) , for k 2 0 . (28)

Here U(k) is the Fourier component of u(x),

a(k) = 1 J u(x)e_lkx dx , for k=20,

/2T (29)

2 [ vko (k) cos(kx+8k) dk .
0

u(x) -

Let Iéo)[u] be the integrals for (11l) given by

(0) =0Vt 2 e 1 e
Iv+l[u] = 5 J_w Uy dx , for v=0,1, . (30)

Then Gél)(p,e) in (27) can be written by

(1) (7 (1) :
G\ (p,0) = J J o ) (k,p)sin(p, +6,_ -6 ) dk.dk, , (31)
v o) o Vv kl k2 kl+k2 1772

- where ®(l)(k,p)=®(l)(k ,kq,0, ,0, ) does not depend on 6, and
v v 1772 kl k2

2v+1

!®$l)(k’p)|mk for small k. (See (33) below for the explicit

form of G(l)

(0) (0) (0)

w + w #w

kl k2 kl+k2
find a solution of (31) for %=1 in the similar form of (26),

in terms of u). By virtue of the fact that

for kl,k2>0 (non-resonant condition), one can

CH _(me o (M) (k,p) ( |
- 0T, _(0)__(0) COS 0k 0y —0p 4y ) dkydk, (32)
0’0 wkl +wk2 -wkl+k2 1 2 1752

- 11 -
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(2)

v However, the

Thus, if there is no-resonance, one can find I

higher order equations (222) generally contain the resonant terms

(0),,(0)_, (0)_ (0) ),

(e.g. w -
kl k2 k3 kl+k2 k3

study the singular integral equations having the poles at the

and in these cases, we need to

resonant points, and give the analytical estimates for the existence

(2)

of the solution I, -
Fortunately, there is another way to find the solution for
(27) based on an algebra of the functionals consisting of the
differential polynomials (¥DP), instead of the analytical way
discussed above. This algebraic method is particularly useful for
the case of the KAV equation where the higher order equation does
not have simple forms like those in the previous case (e.g. (31))

[8] . Noticing that the linear part of X(l)

(0)
v

i.e. u is perpen-
’ 5%’ T

(1)

dicular to VI (this imolies #(u) in (X 'VIéo))=3), eq. (27)

for ¢=1 can be written in

(X(O)-VIél))[u] - ) aéli J u, us dx , (33)
£l+222=2v+l 1727 =0 7] 2
1521522
where the constants a(l) are determined from {a(l)}3_ in X(l)c
2182 2 =1

From the relation Deg(Iél)[u])=2v+4, one can find the solution

Iél) in the following form,

1Y) = ] b} J 2 ax + ¢ D10y (39
2

u u
o (=) x7 (-1 x v o oTu+l

(1)

where the sum is taken over the same way as (33), c, is an

arbitrary constant, and béli are determined uniquely from aéli

172 172
by comparing the coefficients of the independent FDPs, i.e.

[

2
}uzlxuzzx dx for each *;, *,, with £,422,=2V+1 on both sides of

(33). The explicit forms of Iél) for v=1,2 are given by

- 12 -
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1) ) = p{d) J w?ax + V1t
(35)
2 1 0
Iél){u] = {;) J uu dx + cé )Ié )[u] ,
where b{i)=(—2aél) l))/6 b (l)—( a(l)+2a )/6. It is important

()

to note that the first order vector field X can be determined

conversely by giving the set of integrals (35), except the linear

(1)

term a; ug, which can be determined by fixing the linear dispersion

(1)45

relation i.e. w =k3-eal . Namely, the perturbed equation up to

k

order € can be characterized by two integrals (35) and the linear
dispersion relation. This fact will be important in the followingk
sections.

(2)

One can also construct the next order solution Iv easilyv by

using the algebraic method. Eg.(27) for 2=2 can be expressed by

X(O)'VI£2) = Z é2£ L J Yo xe xui X
£l+£2+223=2v+1 17273 1 2 3

05£l<22523

dx

+ ) a(?) I u u% dx . (36)

m,+2m,=2v+3 mymy

1<m) <m,

It is easy to see that the solution of (36) is given by

(2) _ (2) 2
I [ul =) b f uglxu(zz-l)xu(23-l)x dx

J u 1) u% -1) dx
(ml— x” (m, X

(2) ; (0)

where céz)
b (2)

mymy

case 2=2 which has the resonant terms, this method can give the

(2)

2122Q3

are determined by the same way as before. Thus, even the

are arbitrary constants, and the constants b

solution explicitly in terms of the FDPs. However, at the next

- 13 -
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order £=3, the solution may not be obtained directly from the
form of the FDP on the right hand side of (27), because of the

increasing nonlinearity, and the method should be modified.

4c. The KAV equation [7].

The set of integrals {IéO)[u]}:=0 of the KAV equation is

given by the following recurrent formula [2],

(0)5;(0) _  (0), (0) . (0) _1 ("
0 VIv+1 = 3 VIv with I0 [ul] = > J_mu dx , (38)
where the Hamiltonian operators éO) and {0) are defined by
(0) _ 4(0) _ (0) ._ o(1) _ .3
8o =& =03, . &y =9y =08, + 2(3 utud ) . (39)
The first three integrals are as follows:
0 1 2
I{ )[u] =5 [ u” dx ,
(0) _ 5 (0) - 3 _1 2 '
I2 [u] = H [u] = J (u > ux) dx , (40)
(0) _ 5 4 _ 2 1 2
I3 [ul = f (7 u Squ + 5 u2x) dx .
In this case, the equation for Iél) has the following form,
L. 2 L
(0) .o+ (1) _ (1) 0.71,,..'N
X vIj® =) alo"'QN J(u u, uy,) dx (41)

where the sum is taken over (10,---,2N) with the constraints

29 .+39% +--~+(N¥2)2 =2v+7, and %,..>2, and the constants a(l) are
0 1 N N 20°-£N
determined from {aél)}z=l in X(l). The general solution of (41)

may not be obtained directly. However, for the first three cases
(v=1,2,3) where the degree of nonlinearity (20+21+~-+2nsv+2) is
5 or less, the solutions can be found explicitly by the same way

as the previous case. Namely,

- 14 -
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(X(O)~VIil))[u] = a(l) { ui dx ,

03
(X(O);Vlél))[u] = J (a{%)uui + aéi%uxugx) dx , (42)
(0) (1) - (1) 2 3 (1) 2 (1) 2
(X *VIST) [u] = I (ay37u"u  + aj;jruu u, + agjgouus ) dx

which lead to the solutions,

I{l)[u] - béi) J wlax + c{l)Iéo){u] ,

LV = 5+ Pl (43)
1 ) = J mMuw? + b e + ey ax + POy,

where H(l)[u] is the higher order Hamiltonian given in (18). While

(1)

v assumed in

in the cases v>4, it is not obvious that the forms I

the similar manner as above satisfy (41l), since the possible number

(1) (0) (1)

of dimension for X 'VIv >the maximum dimension of Iv , (the

dimension of FDP with fixed degree is defined by the number of

independent FDPs there). However, one can actually show that the

(1)

solutions Iv

exist for all v ero (={0,1,2,+°=}), i.e. rl=r0.

We will discuss this in the last section where we construct a
transformation between the perturbed equation (1) with (17) and

an integrable system, from the fact that the perturbed equation

has three integrals (43). While at the next order, one can show

(2)
v

that there exist I for v=1,2, but not for v=3, in general. This

fact will be important for the integrability of the second order

equation.

5. Normal forms

If the perturbed equation has several integrals, then by

- 15 -
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changing the coordinates on M, one can expect to transform the

equation into a simpler equation having the same number of integrals.

The transformed equation may help us to find more integrals of the

perturbed equation (which we could not find easily), because of

its (simple) form (it is sometimes linear or integrable). We call

the resulting simple equation "a normal form" of the perturbed

equation. 1In the next section, we will construct such transformations.
The normal forms may be defined as follows: Let §=Xé0)(v)

= 3éo)VH(0)[v] be an integrable Hamiltonian system in the sense of

0
(I), and Xél)(v), 221, be the vector fields satisfying the Conditions

(X). A perturbed Hamiltonian equation
n
v =) széz)(v) + 0(e™
=0
= XO(V;E) = }O(V;S)VHO[V;QJ ’ (44)
where 90= 3éo)+e 9él)+~--, HO=HéO)+eHél)+---, is said to be

of the perturbed equation

a normal form on {I(O)[v]=const.}
v \)an

(L) (sometimes‘called a normal form on Fn), if the vector fields

Xég)(v) satisfy

< (0 or(0) _ o

, for 1 £ 2. £ nand VvET_ . (45)
0 v n

(i.e. {Iéo)[v]} are integrals of (44) up to order ™). Here,

\;efn

Fn is determined from the integrals of the perturbed equation (1)

n+l)}.

by (20), i.e. rn={ve-r0|3 Iv[u;e] such that X-VI\)=O(€ Namely,

the normal form on Fn is a perturbed equation in which Xél), 1<%%n,

are on the tangent space of the integral surface given by Ié0)=const.

ﬂn:\)érn. Note that if Fn=F then Xéz), 1<2<n, are the Hamiltonian

0
vector fields given by the integrals Iéo), and (44) is integrable up

to en. In the rest of this section, we give the normal forms for

- 16 -
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the examples in the previous section.

5a. N-uncoupled harmonic oscillators.

As an example of the normal forms of (1) with (9), we consider

the classical one which is defined on the constant energy surface,

i.e.
XO-VH(O) =0 . (46)
Here if Xd=9(O)VK0 with 3(0) defined in (8) and a Hamiltonian KO’
then (46) can be written in
N
(0) 2
L Ky = ) W ~— K. =0 . (47)
XéO) 0~ L, %w 35,70

In the case where {wéo)}ugl are rationally independent (non-resonant
case) the solution K, can be expressed as a function of the action
variables only, i.e. KO=KO[pl,°°,pN], and the normal form is an

integrable system given by

3K

s _ _ 0 _ (0) (1) v

eu -a—p—- = wu + EU)U (p) + ;
k (48)
oK

b = - 92 -0 ,

u aeu

2 L . . 0 1),
where mé )=8Ké )/BOU with the formal series KO=Ké )+eKé Feee,

In the resonant case, i.e. there exists a non-empty set of

N, (0).__ N (0) . . o
integers A={s €%‘[m °g= Z w SU=O}' the Hamiltonian KO satisfying

p=1 ¥
(47) is given by
- - ¢-m N L m
Ky = ) Com? z" z'z = 1 ZUUZUu , (49)
2-m €A u=1

where z =% +iyu, Eu=xu—iyu. The normal form in this case is not

integrable in general (see [3]).
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5b. The linearized K4V equation.

It is easy to see that a linear dispersive wave equation

given by

* n_(n)
v=va + e ay V(2n+3)x ’ (50)

(n),

where ay s are constants, is the integrable normal form on FO

(i.e. (50) has the same set of integrals {Iéo)[u]}vzl in (30) of
(11)). Let us see the normal forms on the constant surfaces given

by the finite sets of integrals {I(O)[u]=const.} for T.={1}
ekt v \)€-I'l 1

and Tl={1,2}. The normal form on Fl={l} is given by the vector

field (12) satisfying

x Pyl 11 = {_m xp" (v ax =0, o

(1) (1) (1) (1)

which implies that a, —2a2 and a;”", a, are arbitrary, i.e.

(1)

+ a, (vv3x+2vxv2X) . (52)

(1) (D)
Xg  {v) = a;" Vg,

Similarly, the normal form on Pl={l,2} is given by the conditions

(51) and
(1), 54 (0) _ (7 L _
(X 12 Y [v] = [_m X0 (v)v2X dx = 0 , (53)
which lead to aél)=a§l)=0, and a{l) is arbitrary. Consequently,
the normal form on the constant surface determined by the two

(0)

constants I fvl, v=1,2, is nothing but the linear equation (50)

up to order ¢, i.e.
Xél)(v) = a{l)v 9(0) [V + 2 [v] ’ (54)

where the Hamiltonian structure is given by

- 18 -
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(1)83

(0) _ (1) _
30 =9 r 30 —bl XI

X
(55)

Héo)[v] = Iéo)[v] ’ Hél)[v} = c;l)léo)[vl '

with {0 (vl in (30), ana b{P+c!P=alV) (i.e. (51) ana (53) give
bél)=b§l)=0 in (14)). Thus, the normal form given by (54) is

actually the normal form on FO’ i.e. Xél)-VIéO)=O for any v GFO.

5c. The KAV equation.

Since the results for the KAV equation are similar to those
of the previous example 4b, we just state the results. The normal
form on the constant surface given by Iéo)[v]=const. for v=1,2

(defined in (40)) is

Xél)(v) = a{l)(vsx + 10vv + ZOVXV + 30v2vx)

3x 2x

il

90 vait o1+ I wwm{ v, (56)

where the Hamiltonian structure is given by

(0) _ (1)
0o T 9 v

_ (1,3
% 0 (v) = bl (3X+2(8XV+V8X)) ,

B w1 =, mP =PV,

with Iéo)[v] in (40) and b{l)+cél)=a{l) (arbitrary) . Note that

the normal form given by (56) is also an integrable system (known
as the Lax hierarchy of the KAV equation, and its set of integrals

is the same as that of the KAdV equation, i.e. T =FO, [2]). Also,

1

it can be shown easily that at the next order, the normal form is

(2)
v
(2)
3

an integrable equation (in the Lax hierarchy), if there exist I
for v=1,2,3. (i.e. at this order, we need one more integral I

to have the integrable equation in the Lax type as the normal form).

- 19 -
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Thus, the second order eqguation may not be integrable, since Iéz)

does not exist in general (see the comment at the end of the

previous section).

6. Transformations

As we have seen in the previous section, it is not practical
to find the integrals Iv[u;e] of the perturbed equation for all
v QFO. However, we have noticed in the cases 4b and 4c¢ that the
nerturbed equation and the corresponding normal form are characterized
by the few integrals (not all of them). So that if there is a
transformation between the perturbed equation and the normal form,
it may be constructed from those integrals only, and if the normal
form is integrable, so is the perturbed equation.

We consider such transformation in the following power series,
- ] - (1) .
u = ¢(vie) = v + €¢ (v) + ==+, ; (58)

where u and v are the solutions of the perturbed equation (1) and

its normal form (44), respectively. Then the equations for ¢(£)'s
are given by
Yo (2mm) o, (m) 1 & (2-m) (1)
D 1%, v - lim &~ — X (Vi8¢ " /++=)} =0
m! m
m=0 §~+0 as
for l1<2<n, (59)
where we have assumed ¢(O)(v)=v. For %=1, we have the following
equation for ¢(l),
[X(O),¢(l)] . X(O)°V¢(l) - ¢(l)~VX(0)
- x kb (60)
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where [ +,+ ] is the Lie bracket. Under the transformation ¢, the
integrals Iv[u;€] of the perturbed equation (1) are transformed
into those of the normal form, i.e.

n

Itwel = (o*1) tviel = 1P w1 + ] Mo lP vl 4+ 0e™h
v 221 \%
€
for v Fn , (61)
(%) . . (0) .o (2)_
where Jv [vl are the integrals of the normal form i.e. X0 VJV =0,

and ¢* is the pull-back map. Especially, for the Hamiltonians H

and HO’ we have
Hlu,e]l = (¢*H) [v;e]l = Hylv;el . (62)

For each order of e, (61) can be written in the form

m
lim

1 4" (m-2)
§+0 220 g

(1)(
2 as \Y

[v+ed V)+eee] = Jém)[V] ’

for 1 <m<g<n, \>an . (63)

(1)

Thus, the equation for ¢ in terms of the integrals (instead of

the vector fields as (60)) is

(1) (0)

(L) _ (1)
v + I =J, . (64)

0 *VI

Note that (63) can be derived directly from (59). In order to find
(1)

¢ , we rather use (64) than (60) which is more difficult to solve
(because the dimension of differential polynomials (DP) is much
greater than that of functional DP, and for (64) we deal only few
numbers of v's (e.g. v=1,2 for thé examples 2b, 2c¢)).

In connection with Hamiltonian formalism, let us discuss how
the Hamiltonian structure changes under the transformation. We note

that by the transformation ¢ in (58), the gradient of a functional,

VuK[u], becomes, for any vector field Y,

- 21 -
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. d
Y.V K[u]l] = lim =+ K[u+dY]
u 550 dd

(l)(

= ¥V Ky [v] = e(¥-7 6 (v) -7 K v + 0(e?) , (65

where KO[V]=(¢*K)[V]=K[u]. From (1) and (44) in the Hamiltonian
forms, and usihg (65), we obtain the relation between the

Hamiltonian overators d in (1) and ﬁo in (44) at order ¢,
( $ M -9 @k v
= (30 vy -ve P ) + g0 crs M (@) evr vl L (66)

where ( -V¢(l))-VK is defined by for any vector field Y,

0

(Y'V¢(v))'VK0[V] = éig I KO[V+6Y-V¢(V)] . (67)

(1)

In the sense (66) (i.e. ¢ connects the Hamiltonian structures for

the systems (1) and (44)), the transformation ¢ may be considered

as "a canonical transformation". It is interesting to note that

¢(l)

which
(1)

in finite dimensional case, the canonical transformation
may be given by ¢(l)=3(O)VS(l) with 9(0) in (8) and a function S
(so-called the generator of the ransformation) does not change the

Hamiltonian structure (i.e. J(l)=)él)). On the other hand, in
(1)

infinite dimensional case, ¢ generally changes the Hamiltonian

(1)

structure, and the generator for ¢ may not exist (except for the

auto-canonical transformations, (see [9,10])).

(1)

We now construct ¢ for the examples given in the previous
sections. Here we consider only the first order problem, but the

higher order problems can be discussed in the same way.

6a. N-uncoupled harmonic oscillators.

Here we recover the classical result [3] in which the perturbed

- 22 -
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equation,

a= 9@y v em ) + ey,

with 39 in (8) ana &*)

into the normal form
v = 2éO)V(HéO)[V] + eHél)[v] + cee) ,

where 2é0)=§(0) and {H(O) (2)}(0)=VHéO)-Q(O)VH52)=O.

In the equation (62) at order e, i.e.

(1) (1)

(1) + H = Hyo'

0 .yg (0)

we look for the solution ¢(l)

s = (0 gg(D)

Then, (70) can be written by

L (1)

X

S W 2 g g

(0) - E‘”uW‘

(1) (1)

The solution S

(1)

the kernel of L in H , i1.e.

()

(1) _ (1)
Hy ' = (ker LX(O))/\H '

which is nothing but the resonant term in H(l).

The higher order problems which is given by

(2) _ p(2) _ 4(2)

L S = [ ’
< (0) 0

(2-1) (%)

0

with P(Q)=P(2)[Héo),--,H st L, s (1) (Deg P

=9+2), can be solved in the same way. Namely, choose HO

() _ (2)
Hy = (ker LX(O))f\P ,

- 23 -
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(68)

in (10), can be canonical transformed

(69)

(70)

in the form given by the generator S

(71)

(72)

can be found by choosing Ho as the part of

(73)

(74)

as

(75)

(2)

(1)
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(2)

(Note that the decomposition of P into two parts, ker L and

(0)
X
im L (the image of L ) is unique). This is the result of

< (0) < ()
the Binkhoff normal form theorem (see the section 3 and ref.[3]).

6b. The linearized KdV equation.

For the perturbed equation.

with the Hamiltonian structure given by (14), we have shown in the
previous sections that, up to order e, (76) has at least three

integrals given by (35), and the corresponding normal form is

v =9{0mO 1+ e {Vva{Y w143 (P vy + 0?77

(1)

with (55). The transformation ¢ between (76) and (77) can be

constructed by the equations (64) for v=1 and 2, i.e.
(¢(l)-VI£O))[V] = J ¢(l)(v)v dx

= (Y{l)—C{l))Iéo)[v} - b{i)[_mVB dx ,

Foo(78)

o]

My f w1 = | oW vy, ax

-0

= (Yél)—cél))Iéo)[V] - b{%)J~wvvi dx ,

(1)
v

(0)

(1) (1)
Y v+l

v Ty
), and the integrals of (77), I

I with constants vy (note

(0)
v

where we have chosen J

(1) _ (0)
Deg Jv =Deg Iv+l

(30). Here, we have used the fact that the normal form has the

, are given by

integrals Iéo) for v=1,2,3. 1In order to solve (78), we make an

anstz for ¢(l) having Deg(¢(l))=4 (7,111,
- X :
¢<l)(v) = a{l)vz + aél)vx J _ v dx + aél)vzx ’ (79)
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where {aél)}i=l

(79) into (78), we obtain the constants from the coefficient of

are constants determined from (78). Substituting

the independent FDPs, i.e. JVBdX, Jvidx, vaidx and {vgxdx,

R N LT P S C RN S P

1 11
af? =2 Py = - 2 2PV, (80)
(1) _ 1 (1)_ (1), _1 . (1)_ (1)

o3 =3 (pimep) =7 lygtme)

Also, it is easily checked from (66) that under this tranformation

the Hamiltonian operator 8(l)=b{l)ai+bél)(Bxu+uax) is transformed

(1)33‘

into 361)=bl X

6c. - The KdV equation.

In the similar discussions as the previous example, we obtain
the result where the perturved equation (17) is transformed into
the integrable normal form (56) by a transformation having the same

form as (76) [7].
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