ooooboooao

556 O 19850 282-

282

293

On the Semantics of Infinite Computations in Logic Programs
Yasubumi Sakakibara C(#E &30
Department of Information Science

TOKYO Institute of Technology

Abstract In the classical semantics, successful finite
computations in 1logic programs are characterized by the least
fixedpoint. We characterize infinite computations by the greatest

fixedpoint on the complete Herbrand universe.

1. logic programs

Firstly we give some basic definitions.

Definition A <term is a variable, a constant or f(tl,....tﬁ),
where f is an n-ary function symbol and tl,...,tn are terms. An
atom is p(tl,...,tn), where p is an n-ary predicate symbol and
tl,...,tn are terms. A clause is a pair of sets of atoms of the
form: Al,...,Am<-Bl,....Bn (m=0,n20), which is to be understood
as: for all xl,...,xk; AIV Y AmV - BIV e VS B,, where
X{seeesX, are all variables in the clause. A definite clause is a
clause where m=1. A goal clause is a clause where m=0. An empty
clause is a clause where m=0 and n=0 which is to be understood as
a contradiction. A logic program is a finite set of definite

clauses.

Definition A substitution is an operation, say €&, which
replaces simultaneously each occurrence of the variable 1in an
atom A by a term. The result, denoted by Af, 1is called an
instance of A by €. A substitution @& is called a unifier for
atoms Al""’An if A10=...=An0. A unifier 8 for given atoms is

-1 -

283

called a most general unifier (m.g.u. for short) if for each
unifier ¢ of those atoms, there is a substitution 7 such that

g=8 7.

Definition Let P be a logic program. The Herbrand universe HU
for P is the set of all ground terms which can be formed out of
the constants and functions in P. The Herbrand base HB for P is
the set of all ground atoms which c¢an be formed out of
predicates, functions and constants in P.

A Herbrand interpretation is an interpretation whose domain
is the Herbrand uhiverse HU and in which constants and functions
are literally interpreted. We can identify it with a subset of

the Herbrand base.

Next we introduce SLD-resolution which is a special-purpose
resolution used as interpreter of logic programs. The procedural

semantics of logic programs is defined using this SLD-resolution.

Definition A computation rule is a rule to choose an atom,
called the selected atom, out of any nonempty goal.

Let G be (-Al,...,Am,....Ak and C be A<-Bl,...,Bq and R be a
computation rule. Then G' is said to be derived from G and C with
@ via R if the following conditions hold:

(1) Am is the selected atom by R.
(2) 8 is a m.9.u. of A and Am.
(3) G' is the goal (-(Al,...,Am_l,Bl,...,Bq,Am+l,...,Ak)9 .

Let P be a logic program, G be a goal and R be a computation
rule. An SLD-derivation (simply derivation) of PU {G} via R
consists of a finite or infinite sequence G=G0.G1,... of goals, a
sequence Cl.Cz,... of variants of clauses in P and a sequence
o 1,92,... of m.g.u.'s, such that each Gi+1 is derived from Gi

- 2'-

284

and Ci+1

input clause of the derivation.

with 6 via R. Each variant Cl‘c2"" is called an

i+1
A ground derivation is same as the derivation except that
the substitutions & i are unifiers (not necessary to be m.g.u.)

and goals Gi are ground (i.e. variable-free).

Definition An SLD-refutation (simply refutation) of PU {G} is a
finite derivation of PU {G} which has the empty clause [as the
last goal in the derivation.

The success set of P = {A€ HB:PUY {<-A) has a refutation}.

heorem 1.1 (Soundness and completeness of refutations [11,[4]1)
Let P be a logic program and G a goal. Then,6 there exists a

refutation of PU {G} iff PUY {G} is unsatisfiable.

Definition Let P be a logic program and G a goal. We say a
derivation of PU {G} 1is finitely failed if the derivation Iis
finite and ends with a/goal where the selected atom does not
unify with the head of any clause in P.

The finite-failure set of P = {A€ HB:all derivations of

PU {<-A} via a computation rule are finitely failed}.

From the "negation as failure" point of view, we infer —A

if A is in the finite-failure set of P.

Definition (fairness [51) A derivation is fair if, for every
atom B in the derivation, some instantiated copy is selected
within a finite number of steps. Note that a fair derivation is

finite iff it is a refutation.

Theorem 1.2 ([51) Let P be a logic program and G a goal. If all
..3..

derivations of PUY {G} via a computation rule are finitely failed,

then PU {G} has no fair derivation.

2. least fixedpoint semantics

In the fixedpoint semantics for conventional programs, the
semantics of a recursively defined procedure is defined to be the
least fixedpoint of the transformation associated with the
procedure definition. Here we give a similar definition of
fixedpoint semantics for logic programs.

Firstly, with a logic program P we associate a mapping Tp

HB of all Herbrand interpretations of P to itself.

from the set 2
It provides the 1link between the declarative and procedural
semantics of P.
Definition Let P be a logic program. The mapping Tp:2HB->2HB is
defined as
Tp(I) = {A€ HB:there is a clause B0<~Bl,...,Bn (n20) in P
such that A=B; 8 and B;6,...,B 6 € I for some

ground substitution 6 }.

Lemma 2.1 The mapping Tp is monotonic in the sense that Ilg 12

. . . HB
c
implies that TP(II) Tp(Iz). for any 11 and I2 in 2.

Theorem 2.2 (the Knaster-Tarski fixedpoint theorem [71) Let L be
a complete lattice and T:L->L a mapping. Then a monotonic mapping
T has a greatest fixedpoint (gfp(T), for short) and a least
fixedpoint (1fp(T), for short). Furthermore,

gfp(T)=U {1:1=T(1)}=U {I:IS T(I)},

1fp(T)=0 {1:1=T(1) =N {I:TCI)S I},

We define the following ordinal powers of Tp:

- 4 -

286

TPTO = ¢

Tp1 n = Tp(TpT (n-11)) if n is a successor ordinal,
= U {TPT k:k<n} if n is a limit ordinal;

Tplo = HB

Tpt n= TP(TPJ (n-1)) if n is a successor ordinal,
= N {Tplk:i«n} if n is a limit ordinal.

c c c
We have that TpT I8 lfp(Tp) gfp(Tp) Tp¢ %)

Lemma 2.3 The mapping Tp is continuous in the sense that for

every increasing chain Ilg IZG “en of elements of 2HB

b4

T {Ii!i(u)})=U (T(Ii):i<&)}.

Now we have a theoren which provides a fixedpoint

characterization of the success set of a logic progranm.

Theorem 2.4 (Fixedpoint characterization of success set [4]1)
Let P be a logic program. Then

the success set of P = lfp(Tp) = TPT W .

As for the greatest fixedpoint, however we may not have
gtp(T)=T} w. Indeed, T 4 w may not be a fixedpoint of T,. The
following example is such a Tp in [11.

Example Consider the logic program P

P = {p(al)<-p(x),q(x).

P(5(x))<-p(xX).
q(b)<-.
q(s(x))<-q(x). 1I.
For all finite n we have
T,4n = HB-{q(a),...,a(s" Lca),

n-1

p(b),...,P(s (b)) 1.

-5 -

287

Hence T 4w = (p(sMa))in<w?y U (asMb):in<w?. Now pla)
& n =
Tp(Tp¢ w?. therefore Tpl w # ng(Tp). In fact, Tp (Tpi W)
Tpl w-{p(s'(a)y:i<n} for finite n, and we have Tp¢ (W+w) =

(a(sMb)incwy = gEP(T) = 1fp(T,).

Theorem 2.5 (T1131.[51) Let P be a logic program. The finite-

failure set of P is the complement in HB of Tpl W .

3. Greatest fixedpoint semantics
Consider the following logic program P and the goal G:
P = {p(f(x))<-p(x).} G = <-p(x).

The SLD-resolution for this PU {G} yields infinite derivation and
one might expect its answer to be {f(f(...))/x}. However in the
classical fixedpoint semantics, lfp(Tp)=9fP(Tp)=¢ ,» that is, ¢
is the only fixedpoint, and infinite computations are not taken
into account. In this section, we extend the Herbrand universe so
that it includes infinite terms, and we will characterize
infinite computations by the greatest fixedpoint.

Let P be a logic program, F be the set of functions and
constants in P and V be-a (finite or infinite) set of variables.
First we need the definitions of infinite term and infinite atom
to make ready for discussions of infinite computations. We denote
the set of all (possibly infinite) trees over a ranked alphabet X

by M (X) (in [31).

Definition An jinfinite term is an element of M°°(FU V). An

infinite atom A is p(tl""’tn)’ where p is an n-ary predicate

symbol in P and tiE M°°(FU V) (1=is=n). The complete Herbrand

universe HU' for P is the set of all ground infinite terms. The
complete Herbrand base HB®' for P is the set of all ground atoms.
We extend a substitution, a unifier and a m.g.u. to those
..6_

288

for infinite atoms. Note that for unifiable infinite atoms, a
m.g.u. always exists as in the case of finite atoms. See [3] for
details.

In the sequel we adopt the convention that "term" and "atom"
will always mean possibly infinite term and atom. If a term or an

atom is finite, this will always be explicitly stated.

A complete Herbrand interpretation for P is an

interpretation whose domain is the complete Herbrand universe
and in which constants and functions are literally interpreted.

In an analogous way to HB, the set of all complete Herbrand

interpretations for P can be identified with 2HB.. We also define
the mapping Tp':ZHB'->2HB' as
TI;'(I)={AE HB':there is a clause By<-B,,...,B, (nZ0) inP

such that A=BOG and 819 ,...,Bne € 1 for some
ground substitution & }.
Then what we want to show is the important property of Tp'
that gfp(Tp')=Tp'¢ w. For this goal, we present some properties

of Tp and Tp .

Lemma 3.1 Let P be a logic program. For A€ gfp(TP), PU {<-A} has
a (possibly ;nfinite) ground fair derivation. \

Proof: For A€ gfp(Tp), we construct a ground fair derivation of
PU {<-A}, <-A=<-N0,<-N1,<—N2,... inductively. Since gfp(Tp) is

the fixedpoint of Tp and a set of ground atoms in HB, it is

enough for us to get Nn such that {Nn}g gfp(Tp) (n20).
For n=0, since A€ gfp(Tp), clearly {NO}G 9fp(Tp). Now

suppose that we get N =(C1,....Cm), m=1, and its selected atom

n-1
(by a fair computation rule) is Ci‘ By the inductive hypothesis,

CiE gfp(Tp) and so Cie Tp(gfp(Tp)). Then there exists a clause

D,<-D

0 y?+-+*Dg InP such that C

i
-7 -

=009 and Dle ,...,qu € gfp(Tp)

for some ground substitution 6 . We define

N =(CyvunnnCy_

n 1’ ,Dq,C ..,Cm)G.

11 i+1’°
Then clearly {Nn}g gfp(Tp). Thus PU {<-A} has a ground fair

derivation. O

Lemma 3.2 Let P be a logic program. For A€ HB, if PY {<-A) has a
(possibly infinite) ground fair derivation, then A€ gfp(Tp).
Proof: For a ground fair derivation <-A=<-N0.<-N1,<—N2,... of
PU {<-A}, let J=U {Ni:i<u)} (If the derivation 1is finite of
length n, then J=L5{Ni:i§rn0. Since the derivation is fair, it
is clear that J& TP(J). Thus JE U {I:I& Tp(I)}=gfp(Tp). Hence

Ae Jg¢& gfp(Tp). a

Example Consider the following logic program P
P = {p(s(x)I)<-p(Xx).
q(0)<-p(x). }.
We have the following infinite fair derivation of PU {<-q(0)}
<=9(0),<-P(x;),<-P(X,),<~P(Xg),...
but no ground fair derivation. We only have the finitely failed
ground derivations -

<-q(0),<-p(n),<{-p(n-1),...,<{-p(0).

For a sequence & 1,6 2,9:3.... of substitutions in a
derivation, when the sequence 6 1° 8 19 29 e 19 26 grees of
substitution compositions converges to a substitution &, we
denote 6 by 11mn(91...9n).

Lemma 3.3 (m.g.u. lemma) Let P be a logic program and A an atom.

Suppose that PQ {<-A} has an (possibly infinite) ground fair
derivation. Then PU {<(-A} has a (possibly infinite) fair

derivation.

5

Now we come to the main result of this chapter that
Tp'¢(0=9fp(Tp'). The results of lemmas 3.1, 3.2, theorems 2.5
and 1.2 can easily be extended to Tp' and we use the extended

versions of them in the proofs of next theorems.

Theorem 3.4 Let P be a logic program. For A€ HB', there is a
(possibly infinite) fair derivation of PU {<-A} iff A€ gfp(Tp’).
Proof:

(only-if part) Suppose that PU {<-A)} has a (possibly infinite)
fair derivation <-A=<-N0,<-N1,<-N2,... with the sequence
g 1,6 2,8:3,... of most general wunifiers and the sequence

Cl,Cz,. of input clauses. By lemma 3.2, it suffices to show

that PY {<-A} has the (possibly infinite) ground fair derivation.
Without loss of generality, we can assume that

llmm(9i+1...ei+m) (i20) exists. Take a ground substitution ¢
ei+m)0 for each i20. Then it is

clear that N'ig HB' (i=0). Next we confirm that <—N'0,<-N’1,

and define N'i=Nilimm(6 i1

<-N" is a ground fair derivation from <(-A with unifiers

gr e

limm(el...em)a,limm(Gz...em)a,... and input clauses

Cl,Cz,... by induction on the derivation steps.
First note that N*=Ny=A. Suppose that we get N'n_1
o, where N

=Nn_lllmm(6n...9 =(Bl’...’Bk)' B. is its

n+m n-1 i
selected atom, Cn is D0<-D1,...,Dq and Nn
=(Bl""Bi-l’Dl""Dq’Bi+1’"’Bk)en for the m.g.u. Gn such that

Bien=D09n. Then limm(é)n...emm)o is also a unifier of Bi and

Do, and from N'n-1=(Bl""’Bk)(limm(913"'9 +p’)y wWe can

[

n
derive

X n”..emm)a)

.,Bk)erﬁlimm(9

(Bl,..,Bi-l,Dl’..,Dq’Bi+l'."B)(1imm(9n0

=(Bl,.l’Bi_1,D19.o,DqQB)

i+1’” n+1"9n+m)a

=N, (Lim (6 . ..0 .)0)

291

=N'n.
Hence we can get a (possibly infinite) ground fair
of PU {<-A}.

derivation <-A=<{-N' <—N'1,<-N'

0’ AR
{if part) It is clear from lemma 3.1 and m.g.u. lemma. [J

Corollary 3.5 Let P be a logic program. Then we have
Tp lw = gfp(Tp).

Proof: Straightforward by theorems 3.4, 2.5 and 1.2. O

Corollary 3.5 is also obtained by a topological approach in

£67.

4. Answer substitutions of infinite computations

Let P be a logic program, G a goal and & 1,9 2,...,91V...
the seéuence of m.g.u.'s in a derivation of PU {G}. An answer
substitution for PY {G} 1is the substitution obtained by
restricting the composition 1imn(6 1...9 n) (or 6 1...6 n if the
sequence 1is finite of length n) to the variables of G [11. Then
we have the following result, a stronger version of theorem 3.4.
Theorem 4.1 Let P be a logic program and A an atom.
(1) If @6 1is the answer substitution of a fair derivation of
PU {<-A}, then A8 ¢ & gfp(TP') for a ground substitution o.
(2) For every substitution 8 such that AQ € gfp(Tp'), there is a
fair derivation of PU {<-A} with the answer substitution & ' such
that §=8 'o0 for some substitution ¢.
Proof: (1) is shown exactly as theorem 3.4.

(2) By theorem 3.4, PU {<-A@ } has a fair derivation. Then, by

lifting lemma (see, for example, [2]), we get the conclusion. 0O

292

Example Consider the following logic program P which computes
the infinite "factorial" sequence from 1.

P = {fact(z)<-integer(1,n),factl(n,1.z).
facti(x.n,y.v.w)<{-mult(x,y,v),facti(n,v.w).
integer(n,n.x)<-plus(n,1,y),integer(y,x). }.

where the argument of fact is the factorial sequence.

(Note the convention that plus(x,y,z) means x+y=z and mult(x,y,z)
means xX»y=z).

For the goal <-fact(z), we get the answer substitution
z=1.2.6.24.120.... through a fair derivation. Then clearly

fact(1.2.6.24.120....)€ ng(Tp').

5. Concluding remarks

As we have seen, taking the complete Herbrand universe as
the domain seems to be the simplest and most natural way of
providing a semantics for infinite computations. Then gfp(Tp') is
the analogue of the semantics lfp(Tp) for (ordinary) terminating
logic programs and a fair derivation is the analogue of a
refutation.

The characterization of infinite computations remains an
open question. The problem is to find the appropriate -sense of an
infinite computation being "useful". Then finding a satisfactory
semantics for wuseful infinite computations is also a research
problem. The greatest fixedpoint semantics gives a nonempty
denotation mnot only +to non-terminating logic programs which
compute infinite terms, but also to "bad (or not useful)" - non-
terminating logic programs (for example, “loop" programs). It is
a further work to give a good fixedpoint semantics for infinite

computations.

29

Acknowl edgement The author would like to thank Prof. Masako
Takahashi Horai and Mr. Hideki Yamasaki for their useful comments
and encouragement. Thanks are due also to Prof. J.-L.Lassez for

his helpful comments.

References

(11 Apt,K.R. and van Emden,M.H.: Contributions toc the theory of
logic programming, JACM, 29, 3(1982), 841-862.

“[21 Chang,C.L. and Lee,R.C.T.: Symbolic logic and mechanical
theorem proving, Academic Press, New York, 1973.

[3] Courcelle,B.: Fundamental properties of infinite trees, TCS,
25(1983), 95-169.

4] van Emden,M.H. and Kowalski,R.A.: The semantics of predicate
logic as a programming language, JACM, 23, 4(1976), 733-742.

{51 Lassez,J.-L. and Maher,M.J.: Closures and fairness in the
semantics of programming logic, TCS, 29(1984), 167-184.

(61 Lloyd,d.W.: Foundations of 1logic programming, Technical
report (revised) 82/7, Univ. of Melbourne, 1884.

{71 Tarski,A.: A lattice-theoretical fixpoint theorem and its

applications, Pacific J. Math., 5(1955), 285-309.

- 12 -

3

