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A Remark on Solving the Set-Partitioning Problem

by Dual All Integer Algorithm

Kakuzo Iwamura
Mathematics
Josai University

Sakado, Saitama

Abstract
A careful consideration when one solves the set-partitioning problem
by dual all integer algorithm is presented.

It saves both computing time and memory size.
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{1]. Intxoduction
A Set-Partitioning Problen,.
minimize xq= Ys&cjxj
subject to 21 %=L (1gign) , x,:binary (Lgign), t.1)
where S5 positive mteger, 'aij=0 or 1 can be solved by Dual All Integer
Algorithm([l,2]. Salkin & Koncall[4,5,6] transfommed this problem to the Set~
Covering Problem,

n
maxzng u = Jl(c:-i-Ih)(-—x)

S > s .

subject to 3-1 13 J —l(1<1<m), j.bmary(1<]<n), (1.2)
where integer L is greater than 3~lcj hJ =12 15 (1, 3] ‘and solved the original

Set—Part:.tJ.omng Problem successfully.

Setting Xi™ o™ 12 15 3'1 (1gigm), they applied Dual All Integer Algorithm

to thé dual feasible all integer tableau as follows([l,2];

1 -X; TRy e s -

ug 0 cl-i-Lh1 c2+1.h2 “ s e cn+1‘hn

*n+l -1 <a;q -3y,

Xn+2 -1 8om
= (1.3)

*n+m -1 1 “am

Maximm tableau size could grow as large as (min+2) (n+l) including a cut row.



[2]. Another Transformation

I;et”s consider ancther transformation which transforms (1.1) to

maximize Vo= —35cix
subject to j=laij*j=l (1£ig< m) X352 0, integer(lgjgn), (2.1)

where v0= -xo.

Let M be any integer greater than the minimal value x, of (L.1), for example
M= %_cj-ﬁ-l, then we see that
v(2.1) > -M (2.2)
as v(l.1l) = -v(2.1), where v(P) denotes the optimal value of the 0-1 integer
programming problem (P). |
Consider one more problem such as
maximize wy= = 3504%5 = M foi¥neg
subject to 'jz___::]_aij'xj =X =llgigm), x, 20 integer(1g i§'_'m+n>vo (2.3)
We easily see that the following properties hold.
Property a; (2.3) has a dual feasible integer solution xj=0(l§. jgn), X =1
(1£igm) with the same dual feasible all integer tableau as (1.3), ug, L
replaced by w,, M.
Property b; (2.1) has a feasible integer soluticn if and only if (2.3)
has a feasible integer solution whose cbjective function value w, is
greater than -M.

) bal
Property ¢; v(2.3) = - $=icy -
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From these properties, we can obtain an optimal integer soluticn ‘of (2.3)
after finite iterations of Dual All Integer Algorithm. Moreover we have,
v(2.3) () - M iff every optimal integer solution of (2.3) is an optimal
integer solution of (2.1) & v(2.3) = v(2.1),
< = M iff (2.3) is infeasible,
so that we get the next Procedure d.
Procedure d; Every time any variable x (n+lg ug nim) becomes nonbasic
in the course of dual pivoting, we can drop X, and its corresponding colummn
from the tableau. |



~
(R

[3]. Example
I quote Dual All Integer Algorithm from [1].
Step 0; (Preparation) Prepare simplex tableau,

=y.q + Ay (%), (05 igm) (3.1)
xBi i0 jeRlJ 3°° !

where xBO = X, = cbjective function value, X5 (L£igm) are basic variables,
i

Xy (J€R) are nonbasic variables. A vector v # 0 is called lexicograghically

positive if its first nonzero component is positive. We use rotation v > 0
to demote v lexicographically positive. We use Y3 to denote the j-th
colum of the simplex tableau (3.1). Simplex tableau (3.1) is called

dual feasible if ngo for all j€R, all integer if Y33 (0gigm, 0<j&n) are
all integers. [u] denotes the largest integer less than or equal to u.

Step 1:(Initialization) Begin with a dual feasible all integer tableau (3.1).
Go to Step 2.

Step 2:(Test for optimality) If the solution is primal feasible, it is optimal

to (3.1). STOP. If not, go to Step 3.
Step 3: (Cutting and pivoting) Choose a source row(i # 0) in the tableau with
¥;5< 0, say i=r. The topmost row with y,,<0 must be chosen at least periodically.
Select the lexicographically smallest colum with ¥y< 0, say j=k, as the
pivot colum. Campute h by o

Ezmin.—bﬁ_

jer, ¥rj
where R. ={jeRl yrj<0} ’ —Mk=-l,_ F&jqnin{uiijyk g O, u mteger} for jeR:\{k} .
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If h=l, execute cne dual simplex iteration with pivot element y ”
If h<1, adjoin the cut

s=[hy 4] + %R[ hy, 1 (x;)
with h = h, to the bottam of the tableau. Execute a dual simplex iteration
with s as the departing variable and ¥ as the entering variable. In any case,
if % is a slack from a cut, delete the % row. Return to Step 2.

To see the power of Procedure d, we take the Example from [1, page 315].

minimize 3xl+7x2 +5x3+8x4+10x5 +4x6+6x7 +9x8

X+ X, =1
Xyt Xyt Xg =1
| Xg + Ix6+ X, =1
Xy + X5 = 1
X + Xy + Xe - =1

We start with dual feasible all integer tableau (3.2) which is cbtained

g
through replacing u;, L by W, M=_2cj +1 = 53.
=1
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1 TX) TXp X3 "Xy "Xg X “Xg "Xg

wa 265 56 113 58 114 116 110 112

r)Xq -1 @ -1

xlO -1 -1 -1 =1

xll = -1 -1 -1 -1
X, -1 -1
X3 -1 -1 -1 -1

62

(3.2)

=1, R. -‘-{112} . k=1, Fll= -1, -t:!z= -2, ¥4= ~Ll{circled) gives h=1. Pivoting on

Yri makes Xy basic, Xg nonbasic so that we may drop Xg colum fram the new

tableau (3.3).

&
1) %3 %y ~Xg X5 "X Xy
wy 209 57 58 114 116 110 112 62

%y "1 1 ,

r)xlo -1 @ -1 -1
Xy = -1 -] ~1 ~1
) -1 -1 -1
Xy3 -1 -1 -1 -1

(3.3)

r=2, k=2, M= -1, M= -1, M= -2, y = -l(cixcled) gives h=l. Pivoting on y &

makes X4 basic, X0 nonbasic so that we may dxop X109 colum from the next

tableau (3.4).
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1y =Xy =Xg Xg ~Xq g
Wy 151 57 56 58 110 112 62

Xy 1 1
X 1 1 1

Mxy = -1 @—l -1 (3.4)
x5, -1 ' -1 -1 |
X{3 -1 -1 -1 ~1

Doing in this way, i.e.,
Xg basic, Xyy nonbasic drop %11 ocolum;
X basic, X5 nonbasic drop X5 ocolummn;
X5 basic, X{4 nonbasic drop X3 column;
X4 basic, Xg nonbasic drop ncne,

we get final tableau (3.5) which is optimal.

1 ~Xy =Xg ~Xg
Wy <17 1 4 4
X1 1 1 |
Xq 0 -1 2 -1
Xy = 1 1 -1 1 (3.5)
%y 1 1l
0 1 -1
Xs
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As v(;.5)==-17> -53, we see that x;=x,=x;= 1, xj= 0(otherwise), x; = 17 is an
optimal solution. Final tableau size is half as large as the original. We also

do away with needless calculations for the deleted columns.
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