A Remark on Solving the Set-Partitioning Problem by Dual All Integer Algorithm

Kakuzo Iwamura
Mathematics
Josai University
Sakado, Saitama

Abstract

A careful consideration when one solves the set-partitioning problem by dual all integer algorithm is presented. It saves both computing time and memory size.

[1]. Introduction

A Set-Partitioning Problem,

minimize
$$x_0 = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j = 1 (1 \le i \le m), x_j : \text{binary}(1 \le j \le m),$ (1.1)

where c; positive integer, a; =0 or 1 can be solved by Dual All Integer Algorithm[1,2]. Salkin & Koncal[4,5,6] transformed this problem to the Set-Covering Problem,

maximize
$$u_0 = \sum_{j=1}^{n} (c_j + Lh_j) (-x_j)$$

subject to $\sum_{j=1}^{n} a_{i,j} x_j \ge 1 (1 \le i \le m)$, x_j : binary $(1 \le j \le n)$, (1.2)
where integer L is greater than $\sum_{j=1}^{n} c_j$, $h_j = \sum_{i=1}^{m} a_{i,j} = 1$, and solved the original

Set-Partitioning Problem successfully.

Setting $x_{n+i} = \sum_{j=1}^{n} a_{ij} x_j - 1 (l \le i \le m)$, they applied Dual All Integer Algorithm to the dual feasible all integer tableau as follows[1,2];

Maximum tableau size could grow as large as (m+n+2) (n+1) including a cut row.

[2]. Another Transformation

Let's consider another transformation which transforms (1.1) to maximize $v_0 = -\sum_{j=1}^n c_j x_j$ subject to $\sum_{j=1}^n a_{ij} x_j = 1 \ (1 \le i \le m), x_j \ge 0$ integer $(1 \le j \le n),$ (2.1) where $v_0 = -x_0$.

Let M be any integer greater than the minimal value x_0 of (1.1), for example $M = \sum_{j=1}^{m} c_j + 1$, then we see that

$$v(2.1) > -M$$
 (2.2)

as v(1.1) = -v(2.1), where v(P) denotes the optimal value of the 0-1 integer programming problem (P).

Consider one more problem such as

maximize
$$w_0 = \frac{\sum_{j=1}^{n} c_j x_j}{j} - M \stackrel{\sum_{i=1}^{n} x_{n+i}}{\sum_{j=1}^{n} a_{ij} x_j} - x_{n+i} = 1 (1 \le i \le m), x_u \ge 0 \text{ integer} (1 \le i \le m+n).$$
 (2.3) We easily see that the following properties hold.

Property a: (2.3) has a dual feasible integer solution $x_j=0 \ (1 \le j \le n)$, $x_{n+1}=-1 \ (1 \le i \le m)$ with the same dual feasible all integer tableau as (1.3), u_0 , L replaced by w_0 , M.

<u>Property b</u>; (2.1) has a feasible integer solution if and only if (2.3) has a feasible integer solution whose objective function value w_0 is greater than -M.

Property c; $v(2.3) \ge -\sum_{j=1}^{n} c_j - mM$

From these properties, we can obtain an optimal integer solution of (2.3) after finite iterations of Dual All Integer Algorithm. Moreover we have, $v(2.3) \left\{ \right\} - \text{M} \quad \text{iff every optimal integer solution of (2.3) is an optimal integer solution of (2.1) & v(2.3) = v(2.1), \\ \leq - \text{M} \quad \text{iff (2.3) is infeasible,}$

so that we get the next Procedure d.

<u>Procedure d</u>; Every time any variable x_u ($n+1 \le u \le n+m$) becomes nonbasic in the course of dual pivoting, we can drop x_u and its corresponding column from the tableau.

[3]. Example

I quote Dual All Integer Algorithm from [1].

Step 0; (Preparation) Prepare simplex tableau,

$$x_{B_{i}} = y_{i0} + \sum_{j \in R} y_{ij} (-x_{j}), (0 \le i \le m),$$
 (3.1)

where $x_{B_0} = x_0$ = objective function value, x_{B_i} ($1 \le i \le m$) are basic variables, x_j ($j \in \mathbb{R}$) are nonbasic variables. A vector $v \ne 0$ is called <u>lexicographically</u> positive if its first nonzero component is positive. We use rotation v > 0 to denote v lexicographically positive. We use y_j to denote the j-th column of the simplex tableau (3.1). Simplex tableau (3.1) is called dual feasible if $y_j > 0$ for all $j \in \mathbb{R}$, all integer if y_{ij} ($0 \le i \le m$, $0 \le j \le n$) are all integers. [u] denotes the largest integer less than or equal to v.

Step 1: (Initialization) Begin with a dual feasible all integer tableau (3.1).

Go to Step 2.

Step 2: (Test for optimality) If the solution is primal feasible, it is optimal to (3.1). STOP. If not, go to Step 3.

Step 3: (Cutting and pivoting) Choose a source row($i \neq 0$) in the tableau with $y_{i0} < 0$, say i=r. The topmost row with $y_{i0} < 0$ must be chosen at least periodically. Select the lexicographically smallest column with $y_{rj} < 0$, say j=k, as the pivot column. Compute \overline{h} by

$$\bar{h} = \min_{j \in R_r} \frac{\bar{M}_j}{Y_{rj}}$$

where $R_r = \{ j \in \mathbb{R} \mid y_{rj} < 0 \}$, $\bar{M}_k = 1$, $\bar{M}_j = \min \{ u \mid y_j + uy_k > 0 \}$, $u \text{ integer} \}$ for $j \in \mathbb{R}_r \setminus \{k\}$.

If $\bar{h}=1$, execute one dual simplex iteration with pivot element y_{rk} . If $\bar{h}<1$, adjoin the cut

$$s = [hy_{r0}] + \sum_{j \in \mathbb{R}} [hy_{rj}] (-x_j)$$

with $h = \bar{h}$, to the bottom of the tableau. Execute a dual simplex iteration with s as the departing variable and x_k as the entering variable. In any case, if x_k is a slack from a cut, delete the x_k row. Return to Step 2.

To see the power of Procedure d, we take the Example from [1, page 315].

minimize
$$3x_1+7x_2 +5x_3+8x_4+10x_5 +4x_6+6x_7 +9x_8$$

 $x_1+x_2 = 1$
 $x_3+x_4+x_5 = 1$
 $x_5+x_6+x_7 = 1$
 $x_7+x_8=1$
 $x_2+x_4+x_6 = 1$

We start with dual feasible all integer tableau (3.2) which is obtained through replacing u_0 , L by w_0 , $M = \sum_{j=1}^8 c_j + 1 = 53$.

r=1, $R_r = \{1,2\}$, k=1, $\bar{M}_1 = -1$, $\bar{M}_2 = -2$, $y_{rk} = -1$ (circled) gives $\bar{h}=1$. Pivoting on y_{rk} makes x_1 basic, x_9 nonbasic so that we may drop x_9 column from the new tableau (3.3).

r=2, k=2, \bar{M}_2 =-1, \bar{M}_3 =-1, \bar{M}_4 =-2, y_{rk} =-1(circled) gives \bar{h} =1. Pivoting on y_{rk} makes x_3 basic, x_{10} nonbasic so that we may drop x_{10} column from the next tableau (3.4).

Doing in this way, i.e.,

 x_5 basic, x_{11} nonbasic drop x_{11} column; x_7 basic, x_{12} nonbasic drop x_{12} column; x_6 basic, x_{13} nonbasic drop x_{13} column; x_4 basic, x_5 nonbasic drop none, we get final tableau (3.5) which is optimal.

As v(3.5) = -17 > -53, we see that $x_1 = x_4 = x_7 = 1$, $x_j = 0$ (otherwise), $x_0 = 17$ is an optimal solution. Final tableau size is half as large as the original. We also do away with needless calculations for the deleted columns.

References

- [1] Garfinkel, R.S., and Newhauser, G.L., "Integer Programming", John Wiley & Sons, 1972
- [2] Hu, T.C., "Integer Programming and Network Flows", Addison-Wesley, 1970
- [3] Lemke, C., Salkin, H., and Spielberg, K., "Set Covering by Single Branch Enumeration with Linear Programming Subproblems", Oper. Res. 19(1971), 998-1022
- [4] Salkin, H.M., and Koncal, R., "A Pseudo Dual All-intèger Algorithm for the Set Covering Problem", Technical Memorandum No. 204, Nov. 1970, Case Western Reserve University
- [5] Salkin, H.M., and Koncal, R., "A Dual All-integer Algorithm (in Revised Simplex Form) for the Set Covering Problem", Technical Memorandum No.250, Aug. 1971, Case Western Reserve University
- [6] Salkin, H.M., and Koncal, R., "Set Covering by an All Integer Algorithm: Computational Experience", J.ACM 20(1973), 189-193