ooooobpooooo
956 O 19850 49-58

A Distributed Algorithm for Deadlock Detection
in Replicated Database Systems

Masanobu Ogata, Kazuo Sugihara and Tohru Kikuno

Faculty of Engineering, Hiroshima University
Higashi-Hiroshima, 724 JAPAN

1. INTRODUCTION

The deadlock problem in distributed environments has
recently received a great deal of attention. Deadlock detec-
tion is more suitable than deadlock prevention and avoidance in
distributed database systems (DDBSs) [Isloor80, Menasce79].
Furthermore, algorithms for deadlock detection in DDBSs should
be distributed ones, since the center node in centralized algo-
rithms may be a bottleneck from the viewpoint of reliability
and performance.

A number of distributed algorithms for deadlock detection
have been proposed [Badal83, Bracha84, Chandy82, Chandy&83,
Elmagarmid84, Goldman77, Ho82, Jagannathan82, Kawazu79,
Menasce79, Misra82, Mitchell84, Obermarck82, Sugihara84,
Tsai82]. These distributed algorithms can be classified into
the following three categories with respect to deadlock models
used in them. ‘ -

(1) Resource model: A process can proceed with 1its execution
only when it acquires all the resources that it is waiting for
(i.e., an AND request). A deadlock is represented by a cycle
in a wait-for graph that represents a system state. Most = of
the previously proposed algorithms have been devoted to detec-
tion of deadlocks in the resource model.

(2) Communication model: A process can proceed only if it
receives a message from any one of the processes that it is
waiting for (i.e., an OR request). A deadlock is represented
by a knot {[Chandy83, Misra82] in a wait-for graph.

(3) General model: A process can 1issue arbitrary requests
described by formulas with AND and OR connectives. A deadlock
is defined on an AND-OR graph.

43

) |
<

A deadlock in the general model may occur in a replicated
database system in which copies of each data item may be dis-
persed over more than one site. A write 1lock on data item x
can be regarded as an AND request for all the copies of x. On
the other hand, a read lock on x can be regarded as an OR
request for the copies of x. Moreover, some concurrency'
control schemes such as weighted voting [Gifford8l] may require
N-out-o0f-M requests such that a process must acquire at least N
copies out of M copies of a data item. Therefore, in order to
make deadlock detection independent of concurrency control
schemes, deadlocks in replicated database systems should be
represented in the general model that allows AND, OR and N-out-
of-M requests. Note that AND and OR requests are special cases
of the N-out-of-M request in which N=M and N=1l, respectively.

Recently, Bracha and Toueg have presented a distributed
algorithm for deadlock detection - that supports N-out-of-M
requests [Bracha84]. The algorithm requires at most 4e mes-—
sages where e is the number of edges in a wait-for graph G. It
provides the best solution with respect to communication com-
plexity among the previously proposed distributed algorithms
for deadlock detection in the AND-OR request model as well as
that in the N-out-of-M request model. However, it takes 4d
hops in the worst case to determine if a process is deadlocked
where d is a diameter of G. |

This paper discusses distributed deadlock detection in
replicated database systems that allow processes to issue any
requests described by formulas with AND, OR and N-out-of-M
connectives. For example, a process p can request services
from processes Pyr Pgrecer Pq with the following 1logical

condition: Py AND 2—out—of-3(p2,p3,p4) AND (p5 OR Pg OR p7).

The process p can proceed with its execution only if it is
granted the services that satisfies the above formula.
However, by parsing the formula and introducing dummy
processes, we can assume that any process issues only requests
that contain a single N-out-of-M request. Thus, the above
request can be formulated as follows: P issues a

3—out-of—3(pl,q1,q2) request, q; issues a 2—out-of—3(p2,p3,p4)
request and 9, issues a l—out-of—3(p5,p6,p7) request, where qq
and q, are dummy processes.

We present a new distributed algorithm for detecting dead-
locks in the N-out-o0f-M request model. The total number of
messages required in the algorithm is at most (3e+cn), where e
is the number of edges in a wait-for graph G, n is the number
of nodes in G and ¢ is the maximum length of simple paths from
an initiator of the algorithm in G. The size of each message
is at most 2n(log n) bits. Thus, the communication complexity
of our algorithm is at most 2n(3e+cn)log n bits, while that of
the algorithm in [Bracha84] is at most (4e log n) Dbits.
However, our algotithm takes only at most 3d hops, whereas that
in [Bracha84] takes 4d hops in the worst case.

2. THE SYSTEM MODEL
A distributed system is a finite set of processes. A

process can communicate with other processes by sending mes-
sages to them. Every message sent from u to v is received by v
within a finite time and in the order sent (i.e., the
First-In-First-Out manner). A process can be either active or
blocked. A process is said to be active if it 1is not waiting
for any other process. Otherwise, it is said to be blocked. A

process can proceed with its execution only if it is active.
An active process p can issue an N-out-of-M request to M

processes by sending REQUEST messages that state for them to
carry out a certain action on its behalf. Then, p becomes to
be blocked. The process that received aFREQUEST message from p
can carry out the requested action only when it is active. If
it 1is active, it carries out the action and then sends a REPLY
message to p to inform that the action has been completed.
When p receives REPLY messages from at least N processes in the
M 'processes, p becomes to be active again. Then, p relin-
quishes the requests for the rest of the M processes by sending
RELINQUISH messages to them.

ol

The global state of a distributed system is represented by
a digraph G=(V,E), called a wait-for graph. Each node vE€V

corresponds to the process v in the system. A directed edge
(v,w)€E corresponds to a REQUEST message sent from v to w such
that v has not received a REPLY message from w and v has not
sent a RELINQUISH message to w. Associated with each node v is
the number #(v) of REPLYs that v needs to receive to become
active. v is said to be active iff #(v)=0.

By OUT(v) we denote the sets of nodes w's such that v sent
a REQUEST message to w, and neither v received a REPLY message
from w nor v sent a RELINQUISH message to w. That is, OUT(v)
is the set of processes that v 1is waiting for. 1IN(v) denotes
the set of nodes u's such that v received a REQUEST message
from u, and neither v sent a REPLY message to u nor v received
a RELINQUISH message from u. We assume that each node v knows
#(v), OUT(v) and IN(V).

Next, we detine = transformations Tl and T2 of a wait-for

graph G=(V,E) to represent behavior of a distributed system.
Tl: Adding edges frombany active node v€V to r nodes in V and
setting #(v) to some k (1<£k<r).
T2: Deleting an edge (v,w)€E and decreasing #(v) by 1. If
#(v)=0, then all the outgoing edges of v are deleted.
The transformation Tl corresponds to change of a system . state
when v issues an N-out-of-M request where N=k and M=r,. The
transformation T2 corresponds to change of the system state
when Vv receives a REPLY message from w or v sends a RELINQUISH
message to w.
If application of a transformation s to G results in a
. : S 51 5,
wait-for graph G', we write G|---G'. If GOI—-——Gl, Gll————Gz,

s
k -z
ceor Gk—ll Gk' then we denote GOI Gk for the sequence O

=5485...8,. For a given G, a sequence O~ of transformations is

said to be a schedule ¢ for G if GIJZLG' for some wait-for

graph G'. A node v is deadlocked in G iff there is no schedule

03

g~ for G such that GIJZLG' and v is active in G'. Otherwise, v

is live.

3. DISTRIBUTED DEADLOCK DETECTION
We first present a key idea of our distributed algorithm
that is the two-phase algorithm (see APPENDIX). It consists of

the tree construction phase and the activation phase. Let p be
the node, called an initiator, that initiates the algorithm to
determine if p is deadlocked.

In the tree construction phase, p finds a set REACH of all
nodes v such that there is a path from p to v and also computes
a set ACTIVE of all edges incoming to active nodes in REACH.
Simultaneously, it constructs a directed tree T with the root p
such that T includes all the nodes in REACH. This phase can be
executed by using the echo algorithm in [Chang82].

In the activation phase, p informs every node in REACH to
start the activation phase by sending START messages along
edges 1in the tree T. Let father and CHILD(V) be the father of
v and the set of all children of v in T. Then, every active
node vEREACH sends ACTIVATE messages to all the nodes in IN(v)
to search for live nodes in REACH. The ACTIVATE messages prop-
agate in a forest-like pattern on G. When an ACTIVATE message
to a node v does not change the Boolean variable "live" of v
which indicates if v is live, v sends its father a DONE message
to inform p that the propagation of this ACTIVATE message ter-
minates. The algorithm terminates when the propagation of
every ACTIVATE message terminates. Then, p is deadlocked iff
"live" of p is false.

The major difference between the distributed algorithm in
[Bracha84] and the two-phase algorithm is how an initiator p
knows the termination of searches for live nodes in REACH. 1In
our algorithm, p maintains two sets SEARCH and TERM to know
when the propagation of every ACTIVATE message terminates.
SEARCH 1is a set of the edges that an ACTIVATE message has been
sent along. It is initially equal to ACTIVE. TERM is a set of
edges that an ACTIVATE message has already passed through.

54

Thus, the activation phase terminates iff SEARCH=TERM. To
maintain these sets consistently, each ACTIVATE(X,Y) message
includes two sets X and Y that represent partial information
about SEARCH and TERM, respectively. On the other hand, in the
algorithm in [Bracha84], each active node first knows the ter-
mination of search initiated by itself by using "echoes"
[Chang82] and then p 1is informed the termination of every
search.

Next, we present a sketch of our distributed algorithm in
which the tree construction phase and activation phase in the
two-phase algorithm are executed in parallel. That is, these
phases are synchronized so that each node executes the former
before the latter. An active node sends ACTIVATE messadges to
start the activation phase when it has completed its execution
of the tree construction phase. Thus, there is no need of
START messages. When an ACTIVATE message arrives at a node
that has not executed the tree construction, the message awaits
that the node completes it. If ACTIVATE arrives at a node that
is not reachable from p, the node waits for a message of the
tree construction phase forever. Thus, after p determines if p
is deadlocked, p has to send such nodes TERMINATE messages that
inform them the termination of deadlock detection.

4. CORRECTNESS AND PERFORMANCE

It is clear that when every search for live nodes termi-
nates, an initiator p is deadlocked iff live of p is false.
Thus, we show only that after the termination of every search,
p knows the termination of deadlock detection within a finite
time. PFor each ACTIVATE(X,Y), X is a subset of Y. Thus, - TERM
is always a subset of SEARCH. Note that SEARCH=ACTIVE and
TERM=g when the activation phase starts. Therefore, TERM is a
proper subset of SEARCH so far as there is an ACTIVATE message
in a system. On the other hand, any edge that an ACTIVATE mes-
sage has passed through is always included in X of at least one
message ACTIVATE(X,Y). If ACTIVATE(X,Y) has terminated, X 1is
added to TERM within a finite time by a DONE message. Thus,
after every ACTIVATE message terminates, TERM will become equal

90

to SEARCH (i.e., p knows the termination of deadlock detection)
within a finite time.

Next, we analyze the communication, time and space com-
plexities of our distributed algorithm. Let n and e be the
number of nodes and edges, respectively. Let ¢ and d be the
maximum length of simple paths from an initiator in G and a
diameter of G. The algorithm requires at most 2e messages in
the tree construction phase, and at most e ACTIVATE messages,
at most (c-1)(n-1) DONE messages and at most (n-1) TERMINATE
messages 1in the activation phase. Thus, the total number of
messages is at most (3e+cn). Since the size of each message is
at most (2n log n) bits, the total amount of communication is
at most 2n(3e+cn)log n Dbits. Suppose that all the message
transmissions are synchronized and take one unit of time,

called a hop, and local computation time is negligible. The

two-phase algorithm requires 2d and 3d hops to execute the tree
construction phase and the activation phase, respectively.
However, our algorithm requires only at most 3d hops, since
these two phases can be executed in parallel. Thus, it pro-
vides the better solution with respect to the time complexity
than the algorithm in [Bracha84]. It also requires at most

(2kn log n) bits of local storage where k=max{|OUT(v)|}.
'

5. CONCLUDING REMARKS

In this paper, we have presented the new distributed algo-
rithm for detecting deadlocks in the N-out-of-M request model.
It determines if its initiator is deadlocked in a "static"
situation where a system state does not change. However, it is
easy to extend the algorithm to a "dynamic" situation where the
system state dynamically changes, by taking a "snapshot" of a
state of each process in the same way as the algorithm in
[Bracha84]. |

ACKNOWLEDGEMENT

We are drateful to Professor Noriyoshi Yoshida for his
encouragement and advice. We also appreciate Mr. Mototaka
Ogino for his help on preparation of the manuscript.

.
(o]

REFERENCES

[Badal83] Badal, D. Z. and Gehl, M. T.:"On deadlock detection
in distributed computing systems," Proc. INFOCOM'S83, pp.
36-45 (1983).

[Bracha84] Bracha, G. and Toueg, S.:"A distributed algorithm
for generalized deadlock detection,” Proc. 3rd ACM Symp. on
Principles of Distributed Computing, pp. 285-301 (1984).

[Chandy82] Chandy, K. M. and Misra, J.:"A distributed algo-
rithm for detecting resource deadlocks in distributed
systems," Proc. ACM Symp. on Principles of Distributed
Computing, pp. 157-164 (1982).

[Chandy83] Chandy, K. M., Haas, L. M. and HMisra, J.:"Dis-
tributed deadlock detection," ACM Trans. Computer Systems,
1, 2, pp. 144-156 (1983).

[Chang82] Chang, E. J. H.:"Echo algorithms: Depth parallel
operations on general graphs," IEEE Trans. Software Eng.,
SE-8, 4, pp. 391-401 (1982).

[Elmagarmid84] Elmagarmid, A. K., Datta, A. K. and Liu, M.
T.:"Distributed deadlock detection algorithm in
transaction-processing systems," Proc. COMPSAC' 84, pp. 81-90
(1984) . J

[Gifford8l] Gifford, D. K.:"Violet, an experimental distrib-
uted systems," Computer Networks, 5, 6, pp. 423-433 (1981).

[Goldman77] Goldman, B.:"Deadlock problem in computer
networks," Tech. Rep. MIT/LCS/TR-185, M.I.T., Cambridge,
Mass. (1977).

[Ho82] Ho, G. S. and Ramamoorthy, C. V.:"Protocols for dead-
lock detection in distributed database systems," IEEE Trans.

Software Eng., SE-8, 6, pp. 554-557 (1982). (

[Isloor80] 1Isloor, S. S. and Marsland T. A.:"The deadlock
problem: An overview," Computer, 13, 9, pp. 58-78 (1980).

[Jagannathan82] Jagannathan, J. R. and Vasudevan, R.:"A dis-
tributed deadlock detection and resolution scheme:
Performance study," Proc. 3rd Int'l Conference on Dis-
tributed Computing Systems, pp. 496-501 (1982).

[Kawazu79] Kawazu, S. Minami, S., Itoh, K. and Teranaka, K.:
"Two-phase deadlock detection algorithm in distributed
databases," Proc. 5th VLDB, pp. 360-367 (1979).

[Menasce79] Menasce, D. A. and Muntz, R. R.:"Locking and
deadlock detection in distributed database," IEEE Trans.
Software Eng., SE-5, 3, pp. 195-202 (1979).

[Misra82] Misra, J. and Chandy, K. M.:"A distributed graph
algorithm: Knot detection," ACM Trans. Programming Language
and Systems, 4, 4, pp. 678-686 (1982).

[Mitchell84] Mitchell, D. P. and Merritt, M. J.:"A dis-
tributed algorithm for deadlock detection and resolution,"”
Proc. 3rd ACM Symp. on Principles of Distributed Computing,
pp. 282-284 (1984).

[Obermarck82] Obermarck, R.:"Distributed deadlock detection
algorithm," ACM Trans. Database Systems, 7, 2, pp. 187-208
(1982).

[Sugihara84] Sugihara, K., Kikuno, T., Yoshida, N. and Ogata,
M.:"A distributed algorithm for deadlock detection and

resolution," Proc. 4th Symp. on Reliability in Distributed

Software and Database Systems, pp. 169-176 (1984).

[Tsai82] Tsai, W.-C. and Belford, G. G.:"Detecting deadlock
in a distributed system," Proc. INFOCOM'S82, pp. 89-95
(1982).

APPENDIX

Two—-Phase Algorithm for Node v;

begin
/* Tree Construction */
compute REACH and ACTIVE and construct a tree T;

/* Activation */
if ACTIVE =g then declare "v is deadlocked"
else begin

the initiator p sends START to all w € CHILD(v);
SEARCH := ACTIVE; TERM := ¢g; live := false for each node;

a7

Upon receipt by v of START:
if 0UT(v) = ¢ then
begin
live := true;
for each w € IN(v) do

" send ACTIVATE({(w,v)},{(u,v)|u€IN(v)}) to w;
end

else for each w € CHILD(v) gg send START to w;

Upon receipt by v of ACTIVATE(X,Y):
if v is a node in T then
begin
tactive := #active + 1;
if 7 live and #active > #(v) then
begin '
live := true;
if v # p then
for each w € IN(v) do

send ACTIVATE (X U{(w,v)},YU{(u,v) |u€IN(v)})
to w;

end
else if v # p then send DONE(X,Y) to father;
if p = v then begin
TERM := TERM U X;

SEARCH := SEARCH U {(u,w)€Y|u€REACH}
end;

end;

Upon receipt by v of DONE(X,Y):
if v = p then

begin
TERM := TERM U X;
SEARCH := SEARCH U{(u,w)€Y|u€REACH};
if TERM = SEARCH then

iﬁ live then declare "v is not deadlocked"
else declare "v is deadlocked";

end
else send DONE (X,Y) to father;
end
end.

- 10 -

