ooooobpooooo
956 O 19850 37-48

37

EFFICIENT IMPLEMENTATIONS OF PARALLEL SORT ALGORITHMS

ON A MESH-CONNECTED PROCESSOR ARRAY

Yoshihide Igarashi, Kazuhiro Sado and Noriaki Adachi

L+ #¥ % t & — Ik % & ® W

Department of Computer Science,

Gunma University, Kiryu 376, Japan

1. Introduction

The parallel bubble sort is also called the odd-even transposition
sort and rather slow compared with other sophisticated parallel sort al-
gorithms. If we assume that the computing time for routing values, com-
paring éwo values and exchanging the two values if necessary is one time
unit, then the parallel bubble sort takes N time to sort N values whereas
both Batcher's bitonic sort and odd-even merge sort take O(log2 N) time
[2]. The time complexity of the fastest parallel sort known is O(log N)
[1, 2, 771. Thompéon and Kung [10], Nassimi and Sahni [8], and Kumar and
Hirschberg [6] have shown efficient implémentations of the Batcher's al-
gorithms to sort N values on an n X n mesh-connected processor array, where
N = nz. These implementations take O(Nl/z) time.

Although the time complexity of the parallel bubble sort is poor,
it has a couple of significant advantages. The construction of the par-
allel bubble sort is simple, and it needs very little in the way of con-
trol hardware. ‘The parallel bubble sort network occupies less area than
any of other parallel sort networks. The parallel bubble sort, therefore,
is considered to be the most realistic sort algorithm to be implemented
on a VLSI chip. The time unit used in this papér is called a stage.

In this paper we investigate how we can improve the time efficiency
of the parallel bubble sort without increasing much its contol hardware.
We introduce a function defined on the set of pairs of values and stages
of the parallel computation. It is denoted by COUNT(v, s) and proved
that its function value is the exact number of stages necessary to route
value v at stage s to its final position. This function is a powerful

tool to design efficient parallel sort algorithms and to analyze their

time efficiency. We désign some parallel sort algorithms that can be
implemented on a mesh-connected parallel processor array. Our algo-
rithms are some combinations of the parallel bubble sorts in horizon-
tal and verfical directions, and their structure and control hardware
are simple. Although the time complexities of our algorithms are O(Nl/2
log N), even in the worst case they are as fast as the implementations
of Batcher's algorithms for practical values of N, 1 < N < 1282. In the
average case some of our algorithms are even faster than the implemen-

tations of Bathcer's algorithms for the same range of practical values

of N.

2. The parallel bubble sort

Although we study sorting networks realized on VLSI chips, for clar-

ity we describe our algorithms by sequences of PASCAL like statements.
We suppose that N values are initially stored in an array A[l . . N].
Without loss of generality we assume that N values in A[1 . . N] are a
permutation of (1, 2, . . . ,N) unlesswe specify them. The computation
of the parallel bubble sort starts at the first stage and its s-th stage
consists of the following operations (s =1, 2, . . .):

Case 1. s is an odd number: The following |N/2| operations are
executed in parallel: A[2t-1] and A[2t] are compared, and if
the order ié not correct then the contents of A[2t-1] and A[2t]
are exchanged (t =1, . . .,|N/2]).

Case 2. s is an even number: The following L(N—l)/ZJ operations
are executed in parallel: A[2t] and A[2t+1] are compared, and if
the order is not correct then the contents of A[2t] and A[2t+l]
are exchanged (t = 1,. . .,L(N—l)/ZJ).

The parallel bubble sort is defined as BUBBLE(A[1 . . N], N), where

procedure BUBBLE is defined as follows:

procedure BUBBLE(A[1l . . N], k);
begin

1. for s:=1 step 1 until k do

2., if s is odd then

3. for all t (¢ = 1,. . .,|N/2]) do in parallel

4. if A[2t-1] > A[2t] then exchange A[2t-1] and A[2t]
5. else {in the case where s is even}

-2 -

6. for all t (t = 1,. . .,[(N-1)/2]) do in parallel
7. if Af2t] > A[2t+1] then exchange A[2t] and A[2t+l]
end.

In the above procedure we consider that the computation from line 2
to line 4 or from line 5 to line 7 takes one time unit (i.e., one stage).

Definition 1. Suppose that for an initial configuration of N input
values in array A procedure BUBBLE(A[l . . N}, k) is executed. For value
v 1 £ v <N), position p (L £ p £ N) in array A and stage s (1 ¢ s ¢
k+l) of the computation,

(1) PST(v, s) is the position of value v in A at the beginning of

the s-th stage of the computation,

(2) VAL(p, s) is the value located at the p-th position of array A

at the beginning of the s-th stage of the computation,

(3) LES(v, p, s) is the number of positions j such that PST(v, s)

<j < por PST(v, 8) > j 2 p, and v > VAL(j, s),
(4) GRT(v, p, s) is the number of positions j such that PST(v, s)
< j < por PST(v, s) > j 2 p, and v < VAL(], s),

(5) MAXLG(v, s) = max{LES(v, p, s) - GRT(v, p, s) | LP(v, s) <
PST(v, s)}, where LP(v, s) is the least position j such that
< VAL(j, s), and
(6) MAXGL(v, s) = max { GRT(v, p, s) - LES(v, p, s) | PST(v, s) < p

< 1A

< GP(v, s)}, where GP(v, s) is the greatest position j such
that VAL(j, s) < v.

Definition 2. Suppose that BUBBLE(A[l . . N], k) is executed. For
each value v (1 sve N) and each stage s (1 <s < k+1) COUNT(v, s) is
defined as follows:

(1) When GRT(v, 1, s) = 0, COUNT(v, s) = LES(v, N, s) +MAXGL(v, s).

(2) When LES(v, N, s) =0, COUNT(v, s) = GRT(v, 1, s) +MAXLG(v, s).

(3) When GRT(v, 1, s)# 0 and LES(v, N, s) #0, COUNT(v, s) = LES(

v, N, s) + GRT(v, 1, s) + max{l, MAXLG(v, s), MAXGL(v, s)!}.

Note that if LES(v, N, s) = 0 and GRT(v, 1, s) = 0, then COUNT(

v, s8) = 0 is from any of (1) and (2) of Definition. From Definition 2
COUNT(v, s) = 0 if and only if LES(v, N, s) = 0 and GRT(v, 1, s) = 0.
Thus we have the next lemma. |

Lemma 1. If COUNT(v, s) = 0, then value v does not move from the

39

beginning of stage s to the end of the computation of BUBBLE(A[1 . . N], k).

Theorem 1. Suppose that BUBBLE(A[1 . . N], k) is exécuted. If k >
s > 2 and COUNT(v, s) > 0, then COUNT(v, s+l) = COUNT(v, s) -1.

Proof. The proof is by a case analysis. We assume that s > 2 and
COUNT(v, s) > O.

Case 1. GRT(v, 1, s) = 0, the values at PST(v, s) and at PST(v, s)

+1 are compared at stage s, and v < VAL(PST(v, s) +1, s).

Since COUNT(v, s) > 0 and GRT(v, 1, s) = 0, LES(v, N, s) cannot be 0.
Therefore, there exists at least one value i less than v such that PST(
i, s) 2 PST(v, s) + 2 and VAL(PST(i, s) - 1, s) > v. The first value
less than v after PST(v, s) is ome of such values. Since s > 2, for such
any value i VAL(PST(i, s)-1, s) and i are compared and exchanged at stage s.
Therefore, MAXGL(v, s+l) = MAXGL(v, s)-1. Since LES(v, N, s) = LES(v, N,
s+l) in this case, COUNT(v, s+l) = COUNT(v, s) -1.

Case 2. GRT(v, 1, s) = 0, the values at PST(v, s) and at PST(v, s)

+ 1 are compared at stage s, and v > VAL(PST(V, s)+1, s).

Since v and VAL (PST(v, s)+l, s) are exchanged at stage s, for any
position j greater than PST(v, s) LES(v, j, s+l) = LES(v, j, s)-1. Since
s > 2, for any value i less than v such that VAL(PST(i, s)-1, s) > v and
PST(i, s) > PST(v, s), VAL(PST(i, 8)-1, s8) and i are also exchanged.
Therefore, MAXGL(v, s) = MAXGL(v, s+l). Hence, COUNT(v, s+l) = LES(v, N,
s+1)+MAXGL(v, s+l) = LES(v, N, s)-1 +MAXGL(v, s) = COUNT(v, s) - 1.

Case 3. GRT(v, 1, s) = 0 and the values at PST(v, s) and at PST(

v, 8) -1 are compared at stage s.
Since GRT(v, 1, s) = 0, VAL(PST(v, s)-1, s) < v. Therefore, the

proof is the same as that of Case 1. Note that this case includes the

case where PST(v, s) 1 and v is compared with the imaginary value at
the imaginary position PST(v, s) -1 (i.e., the case where v at the left
end is not compared at stage s).
Case 4. LES(v, N, s) = 0, the values at PST(v, s) and at PST(v, s)
-1 are compared, and VAL(PST(v, s) =1, s) < v.
The proof is analogous to that of Case 1.
Case 5. LES(v, N, s) = 0, the values at PST(v, s) and at PST(v, s)
-1 are compared at stage s, and VAL(PST(v, s)-1, s) > v.
The proof is analogous to that of Case 2.
Case 6. LES(v, N. s) = 0 and the values at PST(v, s) and at PST(

v, 8) + 1 are compared at stage s.

41

The proof is analogous to that of Case 3. ©Note that this case
includes the case where PST(v, s) = N and v is compared with the imagi—
nary value at the imaginary position PST(v, s) + 1.

Case 7. GRT(v, 1, s) > 0, LES(v, N, s) > 0, the values at PST(v, s)

and at PST(v, s)+l are compared at stage s, and v < VAL(PST(v, s)
+1, s).

Note that in this case PST(v, s) is not 1 nor N. Since v does not
move at stage s, LES(v, N, s) =LES(v, N, s+l) and GRT(v, 1, s) = GRT(v,
N, s+l). Since s > 2, for any pair of values at position p and at posi-
tion p+l such that VAL(p, s) > VAL(p+l,s) these two values are compared and
exchanged at stage s. Since in this case VAL(PST(v, s)-1, s) < v < VAL(
PST(v, s)+l, s), both MAXLG(v, s) and MAXGL(v, s) are not 0. Therefore,
MAXLG(v, s+l) = MAXLG(v, s)-1 and MAXGL(v, s+l) = MAXGL(v, s)-1. Since
s > 2 and LES(v, N, s) > 0, VAL(PST(v, s)+l, s) < VAL(PST(v, s)+2, s)
and there exists a position j such that PST(v, s)+2 < j < N and VAL(j, s)
< v. Therefore, MAXGL(v, s) > 2. Hence, COUNI(v, s+l) LES(v, s+l)+
GRT (v, s+l)+max{l, MAXLG(v, s+l), MAXGL(v, s+l)} = LES(v, s) +GRT(v, s)
+ max{1, MAXLG(v, s)-1, MAXGL(v, s)-1} = LES(v, s) + GRT(v, s) + max{

1, MAXLG(v, s), MAXGL(v, s)} -1= COUNT(v, s) -1.
Case 8. GRT(v, 1, s) > 0, LES(v, N, s) > 0, the values at PST(v, s)
and at PST(v, s)+l are compared at stage s, and v > VAL(PST(v, s)
+1, s).
GRT(v, 1, s+l) = GRT(v, 1, s) is immediate. Since v and VAL (PST(
v, s), s) are exchanged at stage s, LES(v, N, s+l) = LES(v, N, s) -1.
Since s > 2 and GRT(v, 1, s) > 0, there exists a value i greater than v
such that PST(i, s) < PST(v, s) -1 and VAL(PST(i, s)4l, s) < v. Any of
such values is exchanged with the value at its immediately right posi-
tion at stage s. However, VAL(PST(v, s)+l, s) is moved to the left at
stage s. Hence, MAXLG(v, s+l) = MAXLG(v, s). We can similarly show
MAXGL(v, s+l) = MAXGL(v, s). Hence, COUNT(v, s+l) = COUNT(v, s) -1.
Case 9. GRT(v, 1, s) > 0, LES(v, N, s) > 0 and the values at PST(
v, s) and at PST(v, s)+l are compared at stage s.
The proof is analogous to the proofs of Case 7 aﬂd Case 8. O
The next theorem is immediate from Theorem 1 and Lemma 1.
Theorem 2. Suppose that BUBBLE(A[1 . . N], N) is executed. Then

for any value v (1 sve N) and any stage s (2 sz N), PST(v, s +

COUNT(v, s)) is the final position of v and v does not move after the
end of stage s+ COUNT(v, s) -1.

Theorem 3. Suppose that BUBBLE(A[1 . . N], N) is executed. Then
for any value v (1 SVvIN)

(1) 0 ¢ COUNT(v, 1) <N,

(2) COUNT(v, 2) = COUNT(v, 1) -1 or COUNT(v, 2) = COUNT(v, 1), and

(3) if COUNT(v, 1) = N then COUNT(v, 2) = COUNT(v, 1)-1=N-1,

Proof. Assertion (1) of the theorem is immediate from Definition 1
and Definition 2. For any value v (1 <v < N) the computation of BUBBLE
at stage 1 reduces COUNT(v, 1) by at most one. Assertion (2) of the theo-
rem is therefore true. The details of the proof are similar to the proof
of Theorem 1. Suppose that COUNT(v, 1) = N. Then from Definition 1 and
Definition 2 GRT(v, 1, 1) > 0 and LES(v, N, 1) > 0. Thus PST(v, 1) is
not 1 nor N, and COUNT(v, 1) = LES(v, N, 1) +GRT(v, 1, 1) +max{1l, MAXLG(
v, 1) + MAXGL(v, 1)}. 1If at least one of MAXLG(v, 1) and MAXGL(v, 1)
were not 0, COUNT(v, 1) should be at most N-1. This is contrary to our
assumption. Hence, MAXLG(v, 1) = MAXGL(v, 1) = 0 and LES(v, N, 1) +GRT(
v, 1, 1) = N-1. Therefore, v is compared and exchanged with the value
at PST(v, 1) -1 or at PST(v, 1) + 1 at stage 1. Hence, COUNT(v, 2) =
LES(v, N, 1) + GRT(v, 1, 1) +1 -1 =N - 1. o

Cororally 1. Suppose that BUBBLE(A[1 . . N], N) is executed. Then
for any value v (1 < v < N) v reaches its final position at the end of
the COUNT(v, 1)-th stage or at the end of the (COUNT(V, 1) +1)-th stage,
and does not move after that stage.

The purpose behind introducing the concepts of fqnction COUNT is
now clear. As shown in the above results, COUNT(v, s) is an interesting
characteristic of value v at stage s in the computation of BUBBLE(A[l
. « N}, N). For s > 2, it indicates the exact number of stages neces-—
sary to move v to its final position. This characteristic is a powerful
tool to design efficient parallel sort algorithms and to analyze them.

As in the case of the serial bubble sort, an obvious technique for
improving the time efficiency of BUBBLE is to remember whether or not
any change in A[1 . . N] has occured at each stage. If there is no ex-
change of values at a stage, then the sorting is completed and we may
terminate the computation at the end of that stage. The improved version

of BUBBLE in this way is called SBUBBLE and described as follows:

-6 -

43

procedure SBUBBLE(A[1 . . N], k, s);

begin
1 s:= 0
2, repeat
3. s:= s+1; CHANGE:= false
4. if s is odd then
5. for all t (t =1,. . .,|N/2]) do in parallel
6. if A[2t-1] > A[2t] then
begin
7. exchange A[2t - 1] and A[2t]; CHANGE:= true
end
8. else {in the case where s is even}
for all t (t =1,. . .,|(N-1)/2]) do in parallel
10. if A[2t] > A[2t+1] then
begin
11. exchange A[2t] and A{2t +1]; CHANGE:= true
end

12. until (s > 2 and CHANGE = false) or (s = k)

end.

On the average the improvement of the time efficiency by SBUBBLE
is marginal. The control hardware for implementing SBUBBLE is somewhat
more complicated than that for implementing BUBBLE.

Let BUBBLE is a procedure obtained from BUBBLE by reversing the
direction of the inequalities at line 4 and line 7. Thus ﬁﬁgﬁfEKA[l
N], N] is the parallel bubble sort in nonincreasing order for N input
values. Similarly we define §§E§§EE'by reversing the direction of the

inequalities at line 6 and line 10 of SBUBBLE.

3. Sorting on a mesh-connected processor array

We assume a parallel computer with N = n2 identical processors. The
processors of this model are arranged in a two-dimensional square array
A[1 . . n, 1 . . n]. Each processor contains a comparison-exchange ele-
ment, registers and some circuit. If there is no confusion, the proc-
essor at location A[i, j] is denoted by its location. A[i, j] is direct-
ly connected to its neighbors A[i, j-11, A[i-1, j], A[i+l, j] and A[i,

j+11, provided they exist. This model is the same as that used in [8,

44

9, 10]. The processors are indexed by an appropriate way. The row-
major (or column-major) indexing and the snake-like row-major indexing
are commonly accepted ways to order a two-dimensional array (see Fig.1l).
In the worst case the computing time of any sort algorithm implemented
on the mesh connected processor array cannot be smaller than 2n-2. The

i-th row and the j-th column of A[1 . . n, 1 . . n] are denoted by

1 1 2 L33 L 4 1 +— 2 }— 3 b 4
I | I I | I I I
5 M6 7 1 8 s 1711615
I | I | | [I I
9 M 10— 1111 12 9 110 11x 1112
I 1 I I | [I [
13 FH{14 {15 [16 1615114 13
(a) Row-major indexing (b) Snake-like row-major
indexing

Fig. 1 Processor array indexing schemes

A[i, 1 . . n] and A[1 . . n, j], respectively. To simplify the proofs.
of the correctness of our algorithms we use the following well known
result called the zero-one principle [5].

Theorem 4 (zero-one principle [5]). If a network with N input lines
sorts all ZN sequences of 0's and1's, it will sort any arbitrary sequence
of N numbers.

procedure FHVBUBBLE(A[l . . n, 1 . . nl);

begin {T(nz) = (n+l) log n +5n/2 -2}

1. if n = 1 then return
. "k:= n;
3. for i:= 1 step 1 until [log n] do
- begin
4, for all t (¢t =1,. . .,n) do in parallel
5. if t is odd then BUBBLE(A[t, 1 . . n], n)
6. else BUBBLE(A[t, 1 . . n], n)
7. for all t (¢t =1,. . .,n) do in parallel
8. BUBBLE(A[1 . . n, tl, k);

9. ki= |(@r)/2M] 41
end; |
10. for all t (t =1,. . .,n) do in parallel
11. if t is odd then BUBBLE(A[t, 1 . . nl, n)
12. else BUBBLE(A[t, 1 . . nl, n)
end.
Theorem 5. FHVBUBBLE(A[1 . . n, 1 . . n]) sorts n2 input values in

A into snake-like row-major nondecreasing order. The computing time of
the procedure is (n-+l)[1og n1 +2n-1+ :E:ilgg nwljn+l)/ZiJ.

Proof. We assume that 0 or 1 is initially allocated to each entry
of A[1 . . n, 1 . . n]. We first consider the configuration of A at the
end of the computation from line 4 to line 6 in the first loop of the
outermost "for statement'". Let p and q be arbitrary column numbers such
that 1 < p < q < n. Let r; and r, be the number of 1's in the odd num-
bered éntries of A[1 . . n, p] and the number of 1's in the even numbered
entries of A[1 . . n, p], respectively. Let I, and , be the number of
1's in the odd numbered entries of A[l1 . . n, q] and the number of 1l's
in the even numbered entries of A[l1 . . n, q], respectively. Then 0 <
Iys Ty, Tys T, < fh/ZT. Since each odd numbered row is sorted in non-
decreasing order and each even numbered row is sorted in nonincreasing

order from line 4 to line 6, r. < r, and r, > r4. Hence, |(rl-+r2) -

(r34-r4)| = |(r2-r4)-(r3-rl§| < ?h/Z]. 2At line 7 and line 8 each
column is sorted in nondecreasing order. Therefore, all rows except at
most [h/2] consecutive rows are sorted at the end of the first loop of
the outermost '"for statement'. In the other words, all rows above the
unsorted rows are all 0's, all rows below the unsorted rows are all 1's
and the number of the unsorted rows is at most fh/ZT at the end of the
first loop of the outermost '"for statement". Hence, just after the end
of the computation from line 4 to line 6 in the second loop of the
outermost '"for statement", for any t (1 < t < n) thellength of the
longest subword of A[l1 . . n, t] in the form (10 . . . 10)T is at most
2L(n+l)/4j, where uT is the transposition of a sequence a. By Defini—
tion 2 the domain of COUNT is the set of ordered pairs of values and
stages. In the case of 0-1 sequences the same values may be at differ-
ent positions. To distinguish a value at a position from the same value

at a different position, we use a notation such as VAL.A[i, t] which

45

means the value in A[i, t]. We may modify the domain of COUNT to be
the set of pairs of values at positions aﬁd stages. For example, we
may write COUNT(VAL.A[i, t], s) instead of writing COUNT(v, s), where
v is the value in A[i, t] st stage s. This modification of the domain
does not affect the results on COUNT.

Since for any t (1 tg n) the unsorted subword of column A[l . .
n, t] just after the computation from line 4 to line 6 in the second
loop of the outermost "for statement'"is in the form (10 . . 10)T
since its length is at most 2|(n+l)/4], from Definition 2 for any i (

1 < i < n) COUNT(VAL.A[i, t], 1) is at most L(n+l)/4j, where stage 1 of
the second argument of COUNT means the first stage of the computation
of BUBBLE(A[1 . . n, t], k) at line 8 in the second loop of the outer-
most "for statement". Therefore, from Theorem 2 and Theorem 3 the num-
ber of stages necessary to sort each column A[1 . . n, t] (1 £t < n) at
line 8 in the second loop is at most Ljn+1)/4j-+l. We can repeat this
argument to each loop of the outermost "for statement”. That is, for
the i-th loop of the outermost "for statement" the number of stages
necessary to sort each column A[l1 . . n, t] (1 sts n) by BUBBLE at
line 8 is at most L(n+1)/2%J + 1. Hence, the value of the second argu-
ment of BUBBLE at line 8 is enough to sort each column. When the number
of unsorted rows becomes 1, the computation escapes from the loop and the
values in A are completely sorted in snake-like row-major ordering by the
computation from line 10 to line 12.

The computing time of FHVBUBBLE is evaluated as follows: In each
loop of the outermost "for statement" at line 3 the computation from
line 4 to line 6 takes n stages. In the first loop of the outermost '"for
statement" at line 3 the computation from line 7 to line 8 takes n stages.
In the i-th loop (2 £ i 2 [log n|) of the outermost "for statement" the
computation from line 7 to line 8 takes L(n+1)/ZiJ + 1 stages. The com-
puting time from line 10 to line 12 is n stages. Therefore, the total
number of stages of the computatlon of FHVBUBBLE for n2 input values is

nflog n] +2n+ > |1 1°g 1| a1y /2 v

= (n¥1) rlog n_[+2n + z rlog n-l |_(n+1)/21J . O

We may replace BUBBLE's at llne 5, line 8 and line 11 of FHVBUBBLE
by SBUBBLE's and may replace BUBBLE's at line 6 and line 12 of FHVBUBBLE
by SBUBBLE's. Then the average computing time of FHVBUBBLE improves

- 10 -

somewhat by this modification, but its control hardware becomes some-
what more complicated.

Corollary 2. When n is a power of 2, the computing time of FHVBU-
BBLE for n2 input values is (n+l) log n+ 5n/2 - 2.

Cororally 3. If we replace the statements at line 11 and line 12
of FHVBUBBLE by BUBBLE(A[t, 1 . . n], n), then it sorts n2 input values
in A into row-major nondecreasing order and its computing time is the
same as that of FHVBUBBLE.

We can obtain an algorithm from FHVBUBBLE by changing the order of
the alternation of the horizontal and vertical parallel bubble sorts in
FHVBUBBLE. This modified algorithm is somewhat less efficient than
FHVBUBBLE. As shown in Theorem 5 the asymptotic computing time of
FHVBUBBLE is worse than those of the implementations given in [6, 8, 10]
However, the control hardware of our algorithm is much simpler than that
of the implementations of Batcher's algorithms and its computing time for
practical values of n is not much different from that of Batcher's algo-
rithms. We finally present a variation of our algorithm which is faster
than any implementation reported in [6, 8, 10] for practical values

of n, 1 ¢ ng 128.

procedure SVHBUBBLE(A[1 . . n, 1 . . n]);
begin {good performance for random data}
1 | if n = 1 then return;
2. for all ¢t (¢t =1,. . .,n) do in parallel
3. SBUBBLE(A[1 . . n, t], n sc(t));
4, COMPLETE:= false; k:= |n/2] + 1;
5. while not COMPLETE do
begin
6. if k £ 2 then COMPLETE:= true
7. for all t (¢t = 1,. . .,n) do in parallel
8. if t is odd then
9. SBUBBLE(A[t, 1 . . n], n, sr(t))
10. else SBUBBLE(A[t, 1 . . nl, n, sr(t));
11. for all t (¢t =1,. . .,n) do in parallel
12. SBUBBLE(A[1 . . n, t], k, sc(t));
13. k:= |max{sc(t) | 1 < t g n}/2] +1
end;

faauimbend

- 11 -

47

45

14. for all t (¢t = 1,. . .,n) do in parallel

15. if t is odd then
16. SBUBBLE(A[t, 1 . . n], n, sr(t))
17. else SBUBBLE(A[t, 1 . . n], n, sr(t))
end. ;

The correctness of SVHBUBBLE can be shown in the same way as the
proof of Theorem 5, but it seems to be difficult to evaluate analytically

its computing time,

References

1. Ajtai, M., Komlos, J., and Szemeredi, E., An O(N log N) sorting net-
work, Proc. of 15th Annual ACM Symp. on Theory of Computing, 1983,
pp. 1-9.

2. Batcher, K. E., Sorting networks and their applications, Proc. of
AFIPS Spring Joint Computer Conf., 32, 1968, pp. 307-314.

3. Bilardi, G., and Preparata, F., A minimum area VLSI architecture
for 0(log N) time sorting, Proc. of 16th Annual ACM Symp. on Theory
of Computing, 1984, pp. 64-70.

4, Bitton, D., Dewitt, D. J., Hsiao, D. K., and Mrnon, J., A texonomy
of parallel sorting, Tech. Rep. TR 84-601, Cornell Univ., Ithaca,
New York, 1984,

5. FKnuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973.

6. Kumar, M., and Hirschberg, D. S., An efficient implementation of
Batcher's odd-even merge algorithm and its application in parallel
sorting schemes, IEEE Trans. Comput., C-32 (1983), pp. 254-264.

7. Leighton, T., Tight bounds on the complexity of parallel sorting,
Proc. of 16th Annual ACM Symp. on Theory of Computing, 1984, pp. 71-80.

8. Nassimi, D., and Sahni, S., Bitonic sort on a mesh-connected pavallel
computer, IEEE Trans. Comput., C-27 (1979), pp. 2-7.

9. Thompson, C. D., The VLSI complexity of sorting, IEEE Trans. Comput.,
C-32 (1983), pp. 1171-1184,

10. Thompson, C. D., and Kung, H. T., Sortingon amesh-connected parallel
computer, Commun. ACM, 20 (1977), pp. 263-271.

11. Ullman, J. D., Computational Aspects of VLSI, Computer Science Press,

Rockville, Maryland, 1984.

- 12 -

