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j) 7% SEQUENTIAL STOCHASTIC ASSIGNMENT PROBLEM [Z 9 \T

’K?&ﬂﬁ@é& \?%ﬁ'\é%} 5% /q‘ ﬁ/ (' Toru Nakai )

1. Introduction

In an interesting paper [ 3 ] by Derman, Lieberman and Ross, a
sequential stochastic assignment problem is’investigated. Here we treat
this problem in a partially observable Markov chain with a known
transition probability matrix. Unlike problems treated in Derman,
Lieberman and Ross [ 3], Nakai [ 6 ], [ 8 ], it is assumed that the
states of this chain are not observable, however an a priori probébility
distribution p of the states is given.

A non-negative random variable is associated with each state of the
process, and the precise relationship between the states and the random
variables is previously known. The decision-maker observes a realization
of these random variables one by one sequentially. The number of actions
available to the decision-maker is finite, and each action is used only
once. After observing a realization x of the random variable associated
with the current state of the process, the decision-maker updates
information in the Bayesian manner, and selects one of N actions { CEERE
cerBy }. If he selects the i-th action a,, then he assigns this action
to x, earns a reward of aiu(p,x) ( where u(p,x) is an appropriate reward
function ), and moves to a next state of the chain, at the next 1hstant,

where he will have only the remaining N - 1 actions to choose from. When
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all the N actions are used up the process stops. The objective of this
problem is to choose one of N! permutations of the N available actions so
as to maximize the total expected reward.

In a formerly studied sequential stochastic assignment problem, the
random variable means a worth of an arriving job, and a worth of each job
is distributed as the independently and identically distributed random
variables. Here we make a more'realistic assumption that the succesive
distributions of the random variables are governed by a Markov chain, but
the states of this chain are not known explicitly. In this problem, the
states correspond to the economic conditions, and a worth of each job
depends on this conditions. The learning procedure about these conditions
is introduced.

The problem often refered as the house selling problem is a special
case of this problem. ( Albright [ 1 ], Sakaguchi [ 14 ] ) The problem
is one of waiting for the highest bid of price among N objects, and this
price depends on the conditions of the demand. The learning pfocedure
may be also important in this problem as the problem treated here.

There is another interpretation of this problem. Concerning the
inequalities, the following property is treated as Hardy's theorem.

( See Hardy, Littlewood and Polya [ 4, p. 391 ] )

“OIf x, >x 2 ..c02%xy20andy, >y
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wherel§h is the symmetric group on N letters. "



A sequential stochastic assignment problem will be considered as a
stochastic generalization of this property. Aﬁ each time when the decision-
maker observes a realization x of the random variable, he must select the
best action among the N actions one at a time in sequential order. Here
we assume the inequality a

2 +e.. > a, 2 0 without loss of generality,

1 N

similarly to [ 3 ].

In Nakai [ 8 ], a problem where the states of the chain are always
known to the decision—maker is observed. A problem over an infinite
horizon is, however, treated there and an action to take an option to pass
is introduced.

In Sectionlz, several assumptions are introduced. For a setvof
informations about the states of the chain, we introduce a relation and
observe some fundamental properties in Section 3. These things are
obtained through a method similar to one used in Nakai [ 7 J. In Section
4, we fbrmuléte this problem by means of the dynamic programming. The
theorem which contains an optimal policy and the total expected reward
under this policy, is treated in Section 5. As concerns the sequential
stochastic assignment problem with N actions in [ 3 ], etc, the sarﬁe
critical number policy, which is determined by the (N-1) critical numbers,
is optimal for any positive values of al,...,aN. On the other hand, the
optimal policy obtained here is not always a critical number policy: we
will consider a simple example in Section 5.

A sequential stochastic assignment problem includes a problem of
optimal selections, i.e., a problem is to select the k best realizations
of the random variables out of N where the reward is the sum of the k values

selected. As for the problem treated here, if we put al Z eee = ak =1
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and = ... =a,=0( k <N ), then this is a problem of optimal

S+l N =
selections. According to a realization of a random: variable associated
with each applicant, the decision-maker can select k applicants out of N
in order to maximize the total expected reward. When k = 1, this is an
optimal stopping problem‘which is formulated as a partially observable
Markov decision process as in Monahan [ s ]. For this problem of optimal
selections, we observe a relation to former results of a sequential

stochastic assignment problem.

2. Partially observable Markov chain

We will consider a process which is observed at time points t =
1, 2,..,N to be in one of a number of possible states. The set of possible
states is to be assumed countable and will be labelled by the positive

integers 1, 2,.... Let (Y t=1,...,N} be the above stationary Markov

.
chain with a known transition probability matrix P = (pij) (i, j =1,2,.. ).
We assume that the states of the process are not observable, but a priori
information about the states is given. All information is summarized by

a probability distribution pon {1, 2,... } (peSandS=1{p | p=

( pysPys----)y P; 20 and i ;___1pj =11}).

A non-negative random variable Xi is associated with each state i of
the process, and the X's are independent of the other states and the time
points. The probability distribution function Fi(x) of Xi is assumed to
be absolutely continucus with a density function fi(x). (i=1,2,....)

Similarly to the problem treated in Nakai [ 7 ], the following

assumptions are introduced.
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Assumption 1. When the process is in state i, i,e., Yt =1 (1
=1,...,N ), the conditional expectation of Xi is finite and bounded in i.

The density function fi(x) is uniformly bounded in i.

Assumption 2. If j<i (i, j=1,2,...), £, (y) < £, (O ()
for any xandy ( x <y ), i.e., fj(x)/fi(x) is non-decreasing in x.
(xe { x| fi(X) £0 1)

Assumption 3. If 1 < m < k, there exists x =sup { x | fm(x)

mk

< fk(x) }, which satisfies the following inequalities.

If x > X 1 then fﬁ(x) > fk(x) > fk+l(x) > heeeey
or otherwise fk(x) z_fm(x) Z-fm—l(x) 3_.....\Z.f1(x).

Assumption 4. If j<i (i, j=1,2,... ), then
>
pkipmj "pkjpmi for any mand k ( m < k ).
First three assumptions are satisfied for a sequence of the exponential
i iti = A -A A, SA, L ivaee )
with densities fi(x) iexp( iX) ( 12 = )
The likelihood ratio .ordering is introduced in Assumption 2, see
Ross [ 18, p. 266 ]. If this process is a Markov chain with two states,

, > <
Assumption 4 is equivalent to the inequality that p,; 2 p,, ( Py, S Py ),
which is a well known assumption stated in Ross [ 12 ], Monahan [ 5 ].

From Assumption 4, this Markov chain is total positive of order two.
After observing a realization x of the random variable associated with

the current state of the process, the decision-maker updates information

in the Bayesian manner. It is assumed that, for any realization x and
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probability distribution p in S, the posterior probability distribution
exists and is specified by the Bayes' theorem. Let T(p,x) = ( Tl(p,x),
T2(p,x),.... ) be the posterior probability distribution for any

X € R+ = [ 0, ) and p € S; then

T, (p,x) = p, £ (x)/( ] jaPyfy ) ). Ci=1.2,. ) (1)

After improving this information, the process will make a transition
according to the transition probability matrix P, and, at the next instant,

information about the states will be T(p,x) = T(p,x)°P, where

T(p,x) = ( Tl(p,X). Tz(p,x), ..... )
and

Tj(p.X) =1 :=1Ti(p.x)pij. (pes, xe R and j = 1,2,... ) (2)

3. Partial order in S

Similarly to Nakai [ 7 ], we introdece a relation in S by the

following manner.

Definition 1. Forpandq ( p, qeS ), p >qif piqj f'qui for any
iand j(i>jandai, j=1,2,...) and piqj < qui for at least one pair
of values i and j. If P; = q; (i=1,2,... ), Pp=q. p 2qif and only

if p>qorp=aq.

For this relation, we obtain the following properties which are showed

by a method similar to one used in Nakai [ 7 ] and we omit the proofs here.
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Lemma 1. The relation defined by Definition 1 is a partial order,

and p* = (1,0,0,....) 2 p for any p in S.

Throughout this paper, we call a real valued function u(p) on S is non-

decreasing in p if and only if u(p) > u(q) for p >2q ( p, q € S ).

Lemma 2. If u(p) = | i=1aivi(p)pi ( a; 2a, > ..... , vl(p) > v2(p)
R and vi(p) is increasing in p), then u{p) is increasing in p.

Lemma 3. If x 2y, then T(p,x) > T(p,y) for any p in S.
Lemma 4. Ifp2q (p, qe8S), T(p,x) 2 T(q,x) for any x > O.

Without Assumptions 1 - 4, Lemmas 1 - 4 are not obtained in a general

case.

4. Formulation of the problem

When information about the state of the process is p ( € S ) and
N actions { al,...;aN } are available to perform, we call this problem as
in state (al,...,aN;p). We consider that a non-negative number ai is
associated with each action ( i = 1,...,N ), and assume that al 2 e Z_aN
without loss of generality. |

When the process is in state (al....,aN;p), after observing a
realization x of the random variable associated with the current state of
the process, the decision-maker updates information as T(p,x) and selects
one of N available actions. If he selects the i-th action ai, he earns

an immediate reward of a *w(T(p,x),x) ( where w(p,x) is an appropriate

i
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reward function ), and the selected action is unavailable for future
decisions. After the decision, the process will next make a transition
according to the transition probability matrix P which is not affected by
actions. At the next instant, the problem is in state (al""ai—l’ai+1’
...aﬁ;T(p,x)), and we then face a problem equivalent to one that starts

in state (al,,.,ai_l,ai+1,..,aN;T(p,x)).

w(p,x) is a non-negative function defined on S x R+. It is assuﬁed
that w(p,x) is increasing in x and p in the sense of Section 3. Moreover
w(p,x) is measurable and f;w(p*,x)dFl(x) < », If the decision-maker earns
a reward wi(x) when the process is in state i ( i =1,2,... ) and wi(x)
20, + x and + i with [ ;wl(x)dFl(x) < o then w(p,x) =3 :=1 piwi(x)
satisfies the above conditions. If we put u(p,x) = w(T(p,x),x), then
u(p,x) also satisfies the above conditions by Lemmas 3 and 4. In the
following discussions, we use the notation u(p,x) for convenience saké.

Throughout this paper, we assume that N is equal to the number n of
actions avai;ablé for the assignment. This restriction can be relaxed
easily: if n < N, add N - n actions having a's equal to zero associated
with them, and if n > N, we can disregard the n - N inefficient actions.
Similar restrictions are found in [ 3v],‘etc.

The policy is to choose one of N! permutations of N available actions
for a sequence of N random variables; at each time when the decision-maker
observes a realization x of the random variable X, he must select the best
action among the N actions one at a time in sequential order. Whenever
the problem is in state (al,...,aN;p). this sequential stochastic

assignment problem is called by PN(al,...,aN;p), and the total expected

reward obtainablé under an optimal policy is denoted by vN(ai;.;.,aN;p).
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This problem is modelled by an argument similar to one used in a Markov
decision process, ( see Ross [ 10, Chapter 6 ] ) and, therefore, from a
dynamic programming formulation, VN(al,...,aN;p) satisfies the following

recursive equations.
ip) = [ eera; (3)
V(8 se - rayip) fovN(al, ,aN.plx)de(x),
and

vN(aI,...,aN;pIx) =123§N{ aiu(p,x) + VN-1(a1""ai—l'ai+1""aN;T(p’X)) },
(4)

with vl(al;plx) = alu(p,x), where Fp(x) =1 ;=1ijj(x).

5. Main result

First we construct a sequence of functions and observe several
properties about this sequence. The theorem which contains an optimal
policy and the total expected reward under this policy is derived from
these properties.

Let g(x) and u(x) be non-negative measurable functions. When
[ og(x)dF(x) and f qu(x)dF(x) exist, let Uglu(x),g(x)) and Vo (u(x),g(x))

be functions such that

]

U (u(x),g(x)) = [ ; (u(x) - g(x))*drF(x) (5)

and

v (u(x),g(x)) = [ J g(x)dF(x) + Up(u(x),g(x)), (6)

where F(x) is an absolutely continuous probability distribution function

defined on R+ and h(x)+ = max { h(x),0 }. These non-negative functions
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are considered as generalizations of well known functions, TF(z) and SF(z),

in DeGroot [ 2, p. 246 ]. 1If u(x) = x and g(x) = z, then
UF(u(x).g(x)) = TF(z) and VF(u(x),g(x)) = SF(z).

Let { gN’i(p) } (pesSandl X i £ N ) be a sequence of functions

defined by the following manner.

gy,1(P) = Vg (ulpuxd,gy , ((T(p,x))) - UL (ulp,x)igy . o (T(p,x))) (7)
p ’ el
and °
Ey,olP) = = gy y,,(P) =0 (N20).
In the following discussions, the next notations will be used. Let
Sy,i(P) = Ux | gN_l’i(T(p.x)) S u(p,x) < gN—l,i-l(T(p'X)) },  (8)
i-1
u, .(p) = |J s, .(p),
N,i j=1 N.Jj
and
Ly,i{P) =R = Uy 5,.(P)
where UN,l(p) = LN,N(p) = @ and UN,N+1(p) =R..

;=1 ij ;u(p,x)dFj(x), the sequence defined by (7)

is well defined. Concerning these functions, we have the following

Since g, 1(p) =1
’

properties. First we state these things and put the proofs together.

Proposition 1. (p) is increasing in p for any N and i.

8y,

Proposition 2. gy i(p) is decreasing in i for any p and N.
?

- 10 -
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Proposition 3. gy i(p) is increasing in N for any p and i.
?

Corollary 1. The sets, SN+1,i(p)' UN+1,i(p) and LN+1,i(p)' are

disjoint with each other and

sN+1,i(p)kJ UN+1,i(p)LJ LN+1,i(p) =R..

- Corollary 2. Let hN+1 i(plx) be a function defined by
\ ,i

(pix) = gN'i_l(T(p,X))IU o) * u(p,x)IS

N+l,i Ne1,1(P)

hN+1,i
+ .(T(P,X))I ’ (9)
o, Lye1,iP)
where IA is an indicator function of the set A. Then we have
(=1, hN+1,1(p'X)de(X)' (10)

Enel,i

i i d of .
i.e., hN+1’i(p|x) is an integrand o gN+l,i(p)'
cae i. 1 <i <N
Proposition 4. UN+1,i(p)( UN'i(p) for any p and i. (1 <1 <N

Proposition 5. If w(p,x) = w(x), i.e., w(p,x) and u(p,x) do not

> S ‘and
depend on p, then UN+1,i(p)(:-UN+1,i(q) forp>2q(p,qesS)

1<is<N+1.

Here we employ the ihduction principle on N. When N = 1,

Gl'l(p) =1 ;=1 pj / ;u(p,x)dFj(x)

- 11 -



and gl'o(p) = =, Since vi(p) = [ ;u(p,x)dFi(x) is increasing in p and
vj(p) 2_vi(p) (j<iandi, j=1,2,... ), Lemma 3 yields Proposition I,
and Proposition 4 is derived from this property. The other properties
are obvious by the definition for N = 1.

Next we consider the general case.

Proof of Proposition 1. Lemma 4 and the induction assumption yield
that gN—l,i—l(T(p’X)) and gN_l'i(T(p,x)) are increasing in p. Let's
compare two functions gN,i(p) and gN,i(Q)"( P2q)

It |

hN’i(plx) _?_hN'i(qu) : (11)

for any x in R+, this proposition is obtained. From Proposition 4 for

N - 1, we compare two functions hy .(pi{x) and hN .(q|x) in the following
)1 '1

nine cases; a) UN’i(p),n\UN’i(q), b) UN,i(p)/A\SN,i(q)' c) UN,i(p) M

LN’i(q). d) Sn,i(p)f\uu,i(q)' e) SN,i(p) (\SN,i(q). f) SN.i(p)m LN'i(q),

g) LN'i(p) N UN’i(Q), h) LN,i(p) ASN,i(Q) and i) LN'i(p) n UN'i(q).

These sets are disjoint with each other. It is easy to show Inequality

(11); for example, concerning Case d), if x ¢ SN,i(p)/\ UN,i(Q)’ then

g -1,1(T(p”‘)) <ulp,x) <gy, ; ,(T(p,x))

N

and
gy-1,i-1(T(0x)) < ula,x).
Since x € SN,i(p) F\UN,i(q)’

hy,1(PIX) = ulp,x) and by ,(a[x) = g, ; ,(T(q,x)).

Therefore the fact that u(p,x) is increasing in p, implies

- 12 -~
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hN,i(pIx) > hN'i(qlx).
Concerning Case h), if x ¢ LN,i(p) f\SN'i(q), then

ulp,x) < gy ;(T(p,x))
and

yq,i(T(@x)) <ula,x) <gy ;5 (T(q,x)).
Moreover we have

by, 1 (PIX) = gy ;(T(p,x)) and hy . (q[x) = u(q,x).
Since u(p,x) > u(q,x),

hy,1(PIx) 2 hy (ax).

The other cases are obtained similarly.

Proof of Proposition 2. Similarly to the proof of Proposition 1,
since SN,i(p)(ﬁ SN,i—l(p) = @, we compare two functions hN'i(p|x) and
hN,i-l(plx) (p €S ) in four regions; a) LN,i(p)’ b) SN,i(p)'

c) SN.i-l(p) and d) UN,i-I(p)' These sets are disjoint with eash other

and the union of these sets is equal to R+.

Concerning Case c), if x ¢ S, . .(p), then
N,i-1
gN_l’i_l(T(p,x)) < u(p,x) < gN_l,i_z('r(p.X)).

Since SN,i-l(p) f'UN‘i(p), hN,i—l(p|x) = u(p,x) and hN’i(p|x)

=811 1(T(p,x)). Therefore we have the inequality
-1,i-

- 13 -
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hn’i(plx) <h (p|x).

N,i-1

Concerning the other cases, the inequality is obtained similarly.

Proof of Proposition 3. Similarly to the above propositions, we
compare two functions hN,i(plx) and hN_l’i(p|x) in five regions; i.e.,

.(p),

from the induction assumption and Proposiiton 4, a) LN 1.4
=4

b) Sy_; ;) ALy () e) (Sy , () A Sy (Y (U, () MLy (P)),

d) Uy ; 3(P) A Sy ;(P) and e) Uy (p). Since
gy_1,1-1T(PsX)) 2 8y 5 5, (Tp,x))
and gy (T(p,x)) 2 gy, ;(T(p,x)),

the inequality hN i(p|x) Z.hN 1 i(p|x) is derived from an argument similar
] —dy
to one used in the above propositions. For example, if we consider Case b),

then the inequalities
-~ < —
gy2,1{T(P:x)) Sulp,x) < gy, (T(p,x))

are realized. Since
hy 1(PIx) = gy, ;(T(p,x)) and by , ,(p Ix) = u(p,x),
the desired inequality is obtained. The other cases are considered

similarly, and the proof is completed.

Proposition 2 yields Corollary 1, and Corollary 2 is easily obtained

from Equation (7). Equation (10) yields g .(p) >0.
N+1,1i -

Proof of Proposition 4. First we note that

- 14 -
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i-1
Uy,i(P) = A Sn,i(P) = {x [ gy ;,(Tkx)) <ulp,x) ).
If x € UN+1,i(p)’ thenvgN’i_l(T(p,x)) < u(p,x). Proposition 3 and

Lemma 4 yield

gy, 12 (TP X)) 2 g, (Flp,x)).

Therefore we have

SN_lti_l(T(p.x)) Lulp,x), i.e., x e U, .(p).

N,i

Proof of Proposition 5. Since u(p,x) = w(x), if x ¢ U

N+1,i(p)' then

By, ;-1 (T(Pyx)) < wix).

Proposition 1 and Lemma 4 yield

gy,1-1(T@x)) 2 gy, (Tla,x)).

Therefore

gN'i_l(’f(q.X)) Lwix), i.e., x ¢ UN+1’i(q).

The optimal policy and the total expected reward obtainable under this
policy are embodied in the following theorem.

Theorem 1. Suppose a problem in state (al,...,aN;p), then

N
1) vyla,,...,aip) = Zi=1aigN,i(p)-

2) When a realized value x of the random variables is observed, an

optimal policy of the decision-maker is:

- 15 =
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take the i-th action a, and assign to the value x if x € SN i(p).

i ’
(i=1,2,...,N)
Proof. We employ the induction principle on N. When N = 1, the

problem Pl(al;p) is obvious, and this theorem is valid since
g 1(P) =1 ;_;p;Eulp.X;).

We assume this theorem for any value less than N. From the induction

assumption, Equation (4) is rewritten as follows.

i-1 =
vy(aseerqep|x) = maxy{ a;ulp,x) + I j1258n-1, 3 T(Rsx))

+ ] j=i+1ajgN_l'j_l('T(p,x)) e (12)

Whenever xe¢ S .(p) (i=1, 2, ...., N ),
N,1i
gN_lii(T(p.x)) Lulp,x) < gy 5 ,(T(R,x))
from (8), and Proposition 2 yields the inequalities

y_g oy (TPeX)) < e < gy ) (T(Ryx)) < ulp,x)

< gN—].,i-l(T(p'X)) L eeee £ gN—l,l(T(p'x))' (13)

The well known Hardy's theorem ( see Section 1 ) yields, whenever

X € SN,i(p)’

vN(al,...,aN;plx) =] ;;iajgn_l’j(f(p,x)) + aiu(p,x)

+ 3N

j=i+1ajgN-1,j_i(T(P-x)), (14)

since 81'3 ceeas 3,aN. Therefore if x ¢ SN i(p), then an optimal decision

- 16 -
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is to take the i-th action a, and assign to the value x at this time.
N
Since ;fé SN,j(p) = R+, Equation (3) is

VN(al,...,aN;p) =/ ; vN(al,...,aN;pfx)de(x)

s (p) vN(al,...,aN;plx)de(x). (15)

N
s,

Substituting Equation (14) into (15) and rearranging the terms yield

N ’ -
vN(al,...,aN;p) =1 j=1 ay {/ o, j(p) gN_l,j_l(T(?.x))de(x)

u(p.x)de(X) + L .(T(p.X))de(x) }

/ g,
| SN'j(p) N'j(p) N-1,]

N
=) . . a.g .(p).
L je1 58w, 500

The last equality is derived from Equation (10). Here we get the proof

of this theorem.

Theorem 1 yields that S i(p) is the region where the i-th action a,

N,
is taken under the optimal policy, énd, therefore, the properties of the
optimal policy are contained in Propositions 1 - 5.

In a sequential stochastic assignment problem with N actions treated
in Derman et al. [ 3 ], Nakai [ 6 ] etc, the optimal policy is a critical
number policy which is determined by the (N - 1) critical numbers, i.e.,
this policy is determined by a set of N intervals which is a partition of
R+. As for the problem treated here, the optimal policy is determined by
the sets SN’i(p)'s, which are not alwyas convex, i.e., the optimal policy
is not always a critical number policy. Example 1 shows this fact.

Example 1. We treat this problem in a partially observable Markov

chain with two states in the following manner; Py = p22 = v, w(p,x)

-17 -
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= u(p,x) = x, X, is an exponential with a mean 1/)‘_1 (i=1, 2 and

i
fi(x) = Aiexp(—xix) ) and Al = 1.1, A, = 3.1.

In this problem S is considered as [ 0,1 ] and p, € [ 0,1 ]. We
assume that 0.5 < v = (2.1 - n)/(2 - n) < 1 where n = A\, /A, + X /A,

(p)=R’

When N = 1, a simple calculation yields S +

1,1

and T,(p,x) = ( p vf,(x) + p,v'£,(x) )/( plfi(x) + pofy(x) )

1 - v.

for p = ( P, P, ) where v
When N = 2,
Up,2(P) = R, 8, o(p) = 8

S (p) ={ x| g, 1(T‘(p,x)) <x 1}

|1}

{ x| T, (p,x)/A; + T,(p,x)/%, < x }.

Here we observe a set SZ,l(p) with p; = 1/(1+e), i.e., Py =‘e/(1+e).
Since

52’1(1/(1+e)) ={x | g{x) £x}
with |

glx) =1 (v+v'x1/x2)exp(-k1x) + (v+v‘x2/Xl)exp(1—A2x) }

exp(l-lzx)) }.

x { 1/(A1exP(_x1X)v+ x2

A simple calculation yields that x = 0.5 is an inflection point of g(x)
mdgm&=05,gw5)>Lg%ﬂiO,ﬂM:O,umvmﬂﬂ>0.

Therefore the equation g(x) = x has three roots 0 < a < 0.5 <Ac2, and
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52’1(1/(1+e)) = [ al,o.s‘ JUI @, ),

i.e., (1/(1+¢)) is not a convex set.

52,1

Theorem 1 and Proposition 1 yield that the value vN(al,...,aN;p) is

Moreover Theorem 1 and

increasing in p for any values of a ya

EERRELNT
Proposition 2 yield that the conditional value VN(al,...,aN;plx) defined
by Equation (12) is increasing in x. '

Finally, we consider a special case of this problem where a; = ..
e =a = 1 and Qg = ceeer =A@y S 0, i.e., a problem of optimal
selections. Whenever the decision-maker observes a realization of a
random variable associated with the current state of the process, he
decides either to select this value or to reject it, and he can select k
values out of N in order to maximize the total expected sum of k values
selected. If k = 1, this is an optimal stopping problem which is formulated

as a partially observable Markov decision process. We denote this problem

as (p), and let the total expected reward obtainable under an optimal

PN,k

policy be vN,k(p)'

Theorem 1 - 2) yields the following property for an optimal policy

of (p).

PN,k
Proposition 6. An optimal policy of the problem PN k(p) is as
’
follows. When a realization x is observed;

If x € U (p) then select this value,

N,k+1

or otherwise reject it.

In a sequential stochastic assignment problem treated in Derman,
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Lieberman and Ross [ 3 ], etc, an optimal policy is determined by the
critical numbers, and the following properties are obtained for these
numbers. The critical number for an action associated with the k-th

greatest value is increasing in N for any k ( k £ N ). Proposition 4

N,k+1

which can be selected by the decision-maker in the problem P

corresponds to this fact; the region U (p) consists of the values

N,k(p)’ and

this region becomes smaller as N increases.
When w(p,x) is independent of p, i.e., u{p,x) is also independent of

p, Proposition 5 yields that the region U (p) becomes smaller as p

N,k+1

increases. Theorem 1 - 1) yields the following proposition.

Proposition 7. (p) satisfies

VN, k

v, (p) =1 §=l'g (p).

N,k N, J

Proposition 7 yields that the total expected reward obtainable under

an optimal policy for the problem P ) is a sum of k values gy i(p)
14

N,k(p

(1<i<k). From Propositions 1, 3 and 7, v, ., (p) is increasing in p

N,k
and N. ( N=1, 2, ... and p € S ) Proposition 7 yields

ey, k(P) = iy, k(P = Yy, i1 (P)-

Thus gN,k(p) means a difference between two values, vN’k(p) and vN,k—l(p)’
In this problem of optimal selections, gy k(p) is considered as an extra
1]

profit of another "select" action to the problem P (p): if the "

N, k-1
decision-maker can take another "select" action in the problem Py 1(p),
he can expect to obtain gy k(p) from this additional action. From

. . ,

Propositions 1 - 3, gy k(p), which is‘decreasing in k and increasing in N
»
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andp (1 <k <Nandp e S ), is considered as a worth of the k-th

Yselect" action in the problem P

n,k(P)

As concerns a sequential stochastic assignment problem treated here,
gN;k(p) is an expected quantity by an action associated with the k-th
greatest value under an optimal policy in the problem PN(al,...,aN;p).
(1 <k <N) In this problem the k-th action has own value a, and the
decision-maker expects a quantity gN,k(p) by this action, and, therefore,
the expected reward obtainable by this action under an optimal policy is
kP

The number of jobs is, however, known in most of the sequential
stochastic assignment problems. It is natural to study the situation
where this number is not known in advance but is a random variable. A
problem of this‘type is studied in Nakai [ 9 ], [ 10 ], where a problem
with a knowledge of a prior distribution about the actual number of jobs
is treated in the following manner. Suppose there are N jobs, and the
number N is assumed to be a random variable whose distribution is given
beforehand. Regarding the number of remaining jobs, all information is
summarized by a probability distribution q = ( Qg+ = =2 Qy ) on the set
{ 0,1,...,M }. Consider that N jobs are labelled 1, 2,7..., N. Let Zj
be an arrival time of the job labelled j, and we assume that Zl""’ZN are
independently and identically distributed expénential random variables
with a known mean 1/X, i.e.,

P(zjgt ) =1 - exp(-2t). . ( j=1,2,...,N)

The information regarding the number of remaining jobs is updated in

a Bayesian mannner as the successive jobs are observed.

Let-xj, j=1,2,...,N, be a value of the job labelled j, and the X's
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are independently and identically distributed random variables with a
common cumulative distribution function F(x) which has a finite mean.

Under the above conditions, a sequential stochastic assignment problem
of this case is characterized by the following four things. 1) The
planning time period T remaining at the last job offer. 2) The passage
time t since the laét job offer. 3) Information q about the number N of
remaining jobs at the last job offer. Here we assume that P ( N <M | q )
= 1 for a given constant M. 4) The set { CYERERTL } of available actions.
Similarly to the problem treated in [ 3 ], it is assumed that M = n without
loss of generality. Under the above tonditions, we will consider the
(al,...,an;T,t,q) as a state variable. Whenever a job arrives, a decision
based on (al,...,an;T,t,q) is made by the decision-maker, and, therefore,
we treat this problem by choosing these points of time, so as to exploit
the lack of memory of the exponential distribution.

Whenever a new job arrives at time t since the last job offer with a
realization x of the random variable x, the decision-maker updatés
information about the numbgr of remaining jobs and selects one of n
available actions. The objective of this problem is to maximize the total
expected reward. Similarly to the problem treated here, each action is
used only once, and this problem stops whenever there is no action or T = O.
An optimal policy and the total expected reward obtainable under this

policy are discussed in [ 10 ].
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