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Optimal Control
for
Linear and Semi-linear Partial Functional Differential Equations

PR T § FB| 4% — (Shin-ichi NAKAGIRT)

1. Introduction

There exists a great number of literatures which study optimal control
problems of abstract control systems in Banach and Hilbert spaces (see books
f1,2,31 and thé references cited therein). The most studies have been done
for the systems without delay, and the papers treating the systems with retar-
dation are not many I[4,5,6,7,8].

In this paper we study some standard optimal control probléms, namely the
fixed time intégral convex cost problem and the time optimal control problem
for linear and semi-linear retarded systems in reflexive Banach spaces.

The content of this paper is as follows: After system descriptions and
formulation of the control problems are given, the retarded adjoint system is
introduced and the representation of the adjoint state is given in Section 2.
In Section 3 two existence theorems of optimal confrbls are given, one is
for bounded control set and the other is for unbounded control set. In Section
4 the necessary conditions for optimality are describea by the adjoint state
and integral inequality. Some examples of necessary optimality conditions for
technologically important costs are also given in Section 4. 1In Section 5 the
maximum principle for Bolza problem is established with some examples. In
Section 6 the bang-Bang principle for terminal value problem with time varying
control domain and its applications to uniqueness and expression of the optimal
control are given under some regularity conditions of adjoint system. Section

7 deals with the time optimal control problem to a target set. An existence



theorem, the maximum principle and the bang—baﬁg prinéiple are established
for time optimal controls. A convergence theorem of time optimal controls
is also given in Section 7. Finally in Section 8 a general integral cost
problem is considered for semi-linear control systems and the 'extended'
maximum principle isrshown. All proofs of the results in this paper are

sketched or omitted. Detailed proofs will appear in [10].

2. System Description, Control Problem and Adjoint System
First we give the notations and terminology used in this paper. Let X

and Y be real (separable) Banach spaces with norms |-| and , respec-

-1,
tively. The adjoint spaces of X, Y are denoted by X*, Y* and their norms

are denoted by and . We write the duality pairing between X

|.IX* "iy*

and X* by < , > and the pairing between Y and Y* by < Let

> -
" Ty, y*

L(X,¥) be the Banach space of bounded linear operators from X into Y. When
X =Y, [(X,Y) is denoted by [(X). Their operator norms are denoted by]['l].
Given an interval I c R, we denote by LP(I; X) and C(I; X) the usual
Banach spaces of measurable functions which are p-Bochner integrable (l<p<») or
essentially bounded (p=x) on I and strongly continuous on I, respectively.

The norm of LP(I; X) is denoted by || - The function X; Means the

Il
b

characteristic function of the interval I.

Let T > 0, h> 0 be fixed and let I = [0, T], Ih = [-h, O]. We consi-

der the following linear hereditary control system on X:

. 0
-§§é21-= on(t) + J dn(s)x(s+t) + £(t) + B(t)u(t) a.e. t e I, (2.1)
-h
(cs) x(0) = go, x(s) = gl(s) a.e. s ¢ [-h, 0), (2.2)
ueldlU

ad’

0 1
where f ¢ LP(I; X}, g9=1(g ,9) ¢ X X Lp,(Ih; X). Uad

c LP(I; Y), p,p'ell,>],



R1U

B € L (I} L(Y,X)) and AO generates a strongly continuous semigroup T(t),
t 20 on X. As for the retardation term in (2.1) we suppose that the

Stieltjes measure Tl is given by
0

(
(s)a_ - J D(&)ag s €I, (2.3)

m
ni{s) =- X ¥ N
S

r=1 % _hr]

where O < hl < eeee < hm £ h are non-negative constants, Ar (r=1,---, m)

L(x)).

are bounded linear operators on X and D € Ll(Ih;

The quantities x(t), u(t), B(t) and Ua in (CS) denote a system

d

state (or a trajectory), a control, a controller and a class of admissible
controls, respectively.
Let G(t) be the fundamental solution of (CS) which is a unique solution

of
T(t—s)[ an(€)G(E+s)ds, t =0

T(t) + J :
-h (2.4)

G(t) = 0

O, t <0,

where O is the null operator on X. We know that G(t) is strongly conti-

nous on Rf. If the condition
DeL (T Lx)y, 1/p' +1/9 =1 (2.5)
+
is satisfied, then for each t € R the operator valued function Ut on Ih
defined by
s
m B
= - -s+ .
Ut(s) L G(t-s hr)ArX[_h ) 0](s) + f G(t-s+£)D(&)ag, s € Ih (2.6)
r=1 r -h
belongs to Lq(Ih; L(xy). Hence the function
t
x(t) = x(t; £,9) + [ G(t-s)B(s)u(s)ds (2.7)
0
is well-defined and is a member of C(I; X), where
t 0
0
x(t; £,9) = J G(t-s)f(s)ds + ( G(t)g + J Ut(s)gl(s)ds ), te I. (2.8)
0 -h
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It is préved in- [10] that the function x(t) in (2.7) satisfies the integra-
ted form of (2.1), (2.2) in terms of T(t) if (2.5) is satisfied. In this
sense we shall call this x(t) the mild (or weak) solution of (CS). Since
we use the class of mild solutions {2.7) to investigate the control problems
for (CS), the condition (2.5) is always assumed.

In what follows the admissible set Uad is assumed to be closed and con-

vex in Lp(I; Y). We sometimes denote x(t) in (2.7) by xu(t) to express

the dependénce on -u «¢ Ua The function X is called the trajectory corr-

a
esponding to wu.
Let J = J(u,x) be the integral convex cost given by
J = ¢O(x(T)) +kJ (fo(x(t),t) + ko(u(t),t))dt, (2.9)
I

where cpo : X > R, fo : X X I~ R, ko : Y X I~ R. We study the following

control problems Pl and P on the finite interval I = [0, T].

P.. Find a control u € Uad which minimizes the cost J subject to the

constraint (CS).

P_. Find optimality conditions for (u, xa) such that

2
inf J(u,x) = J(, x-), uevu .. o (2.10)
ueu u ad
ad
In Pl such as u € Uad is called an optimal control for the cost J. In
‘P2 the pair (G, Xﬁ) is called the optimal solution for J. We will solve

Pl partly by showing the existence of optimal controls in Section 3 and

solve P2 ‘by deriving necessary optimality conditions of both integral and
pointwise types in Section 4. More further properties such as maximum pri-
nciple and bang-bang principle are studied in Section 5 and Section 6. To

give a difinite form of those optimality conditions it is required some know-

ledge on the adjoint system.
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‘is reflexive, it is known [11l] that the adjoint operator AS generates a c -

oo

Now we introduce the retarded adjoint system in the case where X 1is ref-
lexive. Let X Dbe reflexive and qs € X*, q{ € Ll(I; X*), The retarded

adjoint system (AS) on X* is defined by

0
ddétL + ASp(t) +’f an* (s)p(t-s) - qi(t) = 0, a.e. tel
(2S) ~h (2.11)
p(T) = - at, Pp(s) =0 se (T, T+h],

where As, n*(s) denote the duals of AO, N(s), respectively. Since X

0]

semigroup T*(t) on X* which is the adjoint of T(t), t = O. Hence we
can construct the fundamental solution G, (t) as in [10]. That is, G_(t)

is characterized as the (unique) solution of

t 0
T*(t) + J T* (t-s) [ an*(£)G, (E+s)ds, t 20
. 0 ,,' - N
G, (t) = h (2.12)
o, t <0
We denote by G*(t) the adjoint of G(t). ’ Then it is verified that G*(t)

= G*(t). By changing time direction in (AS), we consider the following

system on X*:

0
L) _ axg(r) + | dAn*(s)w(t+s) + g*(T-t) a.e. te T
at o N 1
(Cs) * (2.13)
w(0) = - qg*, w(s) =0 se [-h, O).

0

The mild solution w(t) of (CS)* is represented by
t

w(t) = G*(t)(—qs) + J G*(t—s)qi(T—s)ds (2.14)
0

It is easily seen that the system (CS)* is transformed to the system (AS)
by a change of variable t = T-t. Hence by (2.14) the function p(t) given

by



T

p(t) = w(T-t) = G*(T—t)(—qa) + J G*(s—t)(—qi(s))ds, t el (2.15)
, N ‘

may be called the mild (or weak) solution of (AS). We often call that p(t)

in (2.15) solves (AS) in the weak sense.

Remark 2.1. Even if X 1is not reflexive, the adjoint system can be con-

structed by the adjoint theory in [11].

3. Existence of Optimal Control
In what follows we assume that Y is reflexive and 1 < p < &, We

consider two cases to solve the problem Pl' one is the case where Ua is

a
bounded and the other is where Uad is unbounded in LP(I; Y). For a boun-
ded Uad we suppose the following assumption Hl on v¢0, fO and ko.

le (1) ¢O : X > R is continuous and convex;

(2) fO : XX I>R is measurable in- t € I for each x € X and con-
tinuous and convex in x € X for a.e. t € I and further for each

bounded set K © X there exists a measurable function mK €

Ll(I; R) such that

sup !f (x,t)l < m (t) a.e. t e I;
0 K ,
x € K

(3) ko : ¥YXI>R satisfies that for any u € Ua ko(u(t),t) is

d'
integrable on I and the functional EO : LP(I; Y) * R defined

by

Epn) = { ky(ult),t)dt (3.1)
I

is weakly lower semi-continuous.

THEOREM 3.1. Let Ua be bounded and H be satisfied. Then there

d 1

exists a control uO € Uad that minimizes the cost J in (2.9).



(Proof) Let {un} be a minimizing sequence of J such that

inf J = 1lim J(u 1 X )I
n n
u€yu n->®
ad

where xn is the trajectory corresponding to un. Since Uad is bounded

and weakly closed, there exists a subsequence {un } o« {un} ‘and an uo €
k

U such that
ad

u > u weakly in Lp(I; Y). (3.2)

n 0
Using (3.2), Hl and Legesgue-Fatou's lemma, u, is shown to be an optimal

control for J.

Next, we consider the case where Uad is unbounded. In this case we

suppose Hl and the following additional assumption H2.

H_ : (1) there exists a constant c¢ such that ¢O(x) 2 CO on X;

2 0
(2) there exists a constant <, > 0 such that fo(x,t) z - c, on
X X I;

. . . +
(3) there exists a monotone increasing function 90 € C(R; R) such

that 1lim GO(r) = ® and

>
E,(w) = Lko(u(t),t)dt = eo<|! u ||Lp) for u.€ U_..
THEOREM 3.2. Let Hl and H2 be satisfied. Then there exists a cont-
rol u, €U which minimizes the cost J in (2.9).

0 ad

(Proof) Note that

J 2 GO(H u!lL ) + ¢, - clT for wu € U g

0



4, Optimality Condition

In this section we study the problem P2, or we seek necessary optimality
conditions of the optimal solution (u,x) for J in (2.9). The existence
of optimal solutions is assumed in this section. To give two types of opti-

’ . . . w
mality conditions we introduce the following two assumptions H3 and H3.

H_: (1) ¢O: X * R is continuous and Gateau differentiable, and the
Gateau derivative _d¢o(x) € X* for each x e X;

(2) fO: X X I >R 1is measurable in t € I for each x ¢ X and con-
tinuous and convex on X for a.e. t e€ I and further there exi-

+
€ C(R ; R)

10

st functions 9.f : X X I - X*, 61 € Ll(I; R), 62

such that

a) 3lf0 is measurable in t € I for each x € X and continuous
in x € X ‘for a.e. t € I and the value 31fo(x}t) »is the
Gateau derivative of fo(x,t) in the first argument for (x,t)
in X X I, and

b) talfo(x,t)lx* <0 (8) + ez(lxl) for (x,t) € X X I;

(3) ko: Y X I+ R is measurable in t € I for each u € Y and
continuous and convex on Y for a.e. t € I and further there
exist functions 3.k : YXI>Y*, ©O_ €L (I; R) and M, > O

10 3 q 4
such that
a) 31k0 is measurable in t € I for each u € Y and continuous
in ueyY for a.e. te I and the value Blko(u;t) is the
Gateau derivative of ko(u,t) in the first argument for (u,t)

in Y X I, and

p/q
b) |3k (u,t) [y, < B,(8) + M, [uly for (u,t) € Y X I.

Next we give the condition (3)w which is different from H3(3).



w . .
(s) ko: Y XI *R is measurable in t € I for each u € Y and con-
tinuous and convex on Y for a.e. t € I and further there

exist a function 65 € Ll(I; R) and M6 > 0 such that

k()| < 0 (0) + M6|u|§ for (u,t) € Y X I.

The assumption HZ is the set of conditions H3(l), H3(2) and (3)". The
assumption H3 is for the differentiable costs and HZ is for non-differen-

tiable costs. The following is the main theorem which gives the necessary

conditions of optimality for the problem Pz.

THEOREM 4.1. Let H3 (resp. HZ) be satisfied and let (u,x) € Uad X C(I; X)

be an optimal solution for J in (2.9). Then the integral inequality

< - - >
JI v(t)-u(t), alko(u(t),t) B*(t)p(t)>Y,Y*dt 0 for all v € Uad (4.1)

(resp. jI<V(t)—u(t{,—B*(t)p(t)>Y'Y*dt + { (kO(V(t),t)—ko(u(t),t))dt z 0

I
for all v € U (4.2))
ad

holds, where o

p(t) = - G*(T—t)d¢d(x(T)) - J G*(s—t)alfo(x(s),s)ds. (4.3)
t

If Uad = LP(I; X), then the condition (4.1) is reduced to that
81ko(u(t),t) - B*(t)p(t) =0 a.e. t € I. (4.4)

Furthermore if X 1is reflexive, p € C(I; X*) satisfies

dgétx + agp(t) + J dn* (s)p(t-s) - Blfo(x(t),t) =0 a.e. teTI,

(aS) ~h

p{T) = -d¢o(x(T)), p(s) = 0 s € (T, T+h]
in the weak sense.

(Proof) Let H3 be satisfied. Then the cost J given in (2.9) is Gateau
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differentiable. The inequality (4.1) follows from the necessary optimality
condition

J'"(u)(v = u) 20 for all v € U
ad

in [1,p.11] and the representation (2.15). Next, let HZ be satisfied.

Then we can use the optimality condition

(g - EO)'(u)(V - u) + ( EO(V) - EO(U)) >0 for all v ¢ U g

in [1,p.13] to obtain (4.2), where £, is given in (3.1). The condition

0

(4.4) is obvious from (4.1) and U =L (I; X).
ad P

Remark 4.1. Consider the special case where Y is a Hilbert space, p = 2

and U
a

a- {uce LZ(I; Y): ||u HL < a }. In this case the optimal control
2

u 1is characterized by the relation

A_lK(u)
| A |l

L (I; Y
5 )
where N is the cannonical isomorphism of L2(I; Y) into L2(I; Y*) and

K(u) (t) = alko(u(t),t) - B*(t)p(t) a.e. t € I.

Now we give pointwise necessary conditions for optimality. Let U be

a closed convex set in Y and the admissible set U a be given by
a

U_.={uelL (I; ¥ : ult) € U a.e. te I }. (4.5)
ad P

The next corollary follows from the Lebesgue density theorem.

COROLLARY 4.1. Let the assumptions in Theorem 4.1 be satisfied and Uad A

be given by (4.5). Then the condition (4.1) (resp. (4.2)) is reduced to the

pointwise optimality condition that for a.e. t e I,

<v - u(t), Blko(u(t),t) - B*(t)p(t)>Y,Y* 20 for all veU

10
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(resp. <v - u(t), - B*(t)p(t)>Y + ( kO(V,t) - ko(u(t),t)) >0

&

for all v e U ).

(Proof) The proof is similar to that given in {[2,p.290-2911. Remark that
Blko(u(t),t) - B*(t)p(t) and ko(u(t),t) are measurable and integrable on

w
I by H3 and H3.

Example 4.1. (Regulator problem) Let X and Y be Hilbert spaces with

inner products ( , ) and <, >Y' respectively. We suppose Uad =

L2(I; Y). The spaces X and X* are identified. The cost Jl is given by

Jl = (x(T),Nx(T)) + J (x(t),Ww(t)x(t))dt + EQ(u), (4.6)
I
where
_1
gg(u) = 5-J1<u(t),Q(t)u(t)>Ydt. (4.7)

In (4.6), (4.7) we assume that N € L(X), w(-) € L _(I; L(X)), Q(*) € L _ (I;L(Y))
; N, W(s), Q(s) are positive and symmetric for each s ¢ I; there exists a

constant ¢ > 0 such that
2
<u,Q(t)u>Y 2 c|u|Y for a.e. t € I.

Under the above conditions it is verified that EQ(u) is strongly continuous

and strictly convex in L2(I; Y) ([1,Chapter 3]1). Since J is also strict-

1
ly convex, there exists a unique optimal control fdr Jl. Then we have
COROLLARY 4.2. Let the cost Jl be given by (4.6), (4.7). Then there
exists a unique optimal solution (u,x) € L2(I; Y) X C(I; X) for Jl. The

optimal control  u(t) is given by
-1
u(t) = 9 "~ (t)B*(t)p(t) a.e. t e I,

where the pair (x,p) € C(I; X) X C(I: X) satisfies the system of equations

11
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0
,é%éEL = on(t) + J dn(s)x(t+s) + B(t)Q—l(t)B*(t)p(t) + f(t) a.e. t ¢ I,
-h
x(0) = go, x(s) = gl(s) a.e. s € [-h, 0),
r0
ddét) + ATR(t) + J dn* (s)P(t-s) - W(E)x(t) = 0 a.e. t e I,
-h
p(T) = - Nx(T), p(s) =0 s € (T, T+h],

in the weak sense.

The regulator problem is very important in system design and is investi-
gated in many references. We refer to the books [1,2,3] for infinite dimen-
sional systems without delay and [12,13] for finite dimensional retarded sys-
tems. The literature dealing infinite dimensional retarded systems are few

[4,51.

5. Maximum Principle
The purpose of this section is to establish the maximum principle for the

time varying control domain with the convex integral cost

J = ¢0(x(T)) + ( (fo(x(t),t) + ko(u(t),t))dt. (5.1)
Jr :
We assume the existence of optimal solutions for J and the assumption HZ
in this and next sections. Let the admissible set Uad be
U_={uel (I; ¥) : ult) € u(t) a.e. teIl, (5.2)
ad P

where the (time varying) control domain U(t) < Y, t € I satisfies
H4: (1) U(t) 1is closed and convex in Y for each t ¢ I;

(2) v U(t) is bounded in Y;
tel

(3) for any t € I, Vv € Int U(t), there exists an 80 > 0 such that

vV e n U(s) for any 0 < € £ €5°
se(t,t+e)

12
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It is clear from H4(l),(2) that Uad is bounded and convex. Furthermore

we have the following lemma.

Lemma 5.1. Let H4(l),(2) be satisfied. Then Uad given by (5.2) is

weakly closed and weakly compact in LP(I; Y).
(Proof) This lemma follows from Mazur's theorem and Eberlein-Smulian's theorem.

Remark 5.1. If U(t) varies continuously with respect to the Hausdorff

metric or U(t) is monotone increasing, then the condition H4(3) is satisfied.

By Lemma 5.1 and HZ, Theorem 4.1 holds for the admissible set (5.2). More~-
over if Hl is satisfied, there is an optimal solution (u,x) ¢ Uad X C(I; X)
for 3 in (5.1). We now give the maximum principle for the cost J in

(5.1) which is deduced from the optimality condition (4.2).

THEOREM 5.1. Let Ua be given by (5.2) and H4 be satisfied. Let (u,x) €

d
Uad X C(I; X) be an optimal solution for J in (5.1). Then

max { <B(t)v,p(t)> - k_(v,t)} = <B(t)u(t),p(t)> - k_(u(t),t)
0 0
veU(t)
a.e. te I, (5.3)

where p(t) 1is given by
T

p(t) = - G*(T-t)d¢O(X(T)) - [ G*(s—t)alfo(x(s),s)ds, t e I. (5.4)
, t

If X is reflexive, then p(t) in (5.4) belongs to C(I; X*) and is the mild

solution of (AS) in Theorem 4.1.°

(Proof) ILet t e (0, T) and v € Int U(t). Then by H4(3), the function
u(s), s € I - (t, t+e)

ve(s) =
v , s € (t, t+g)

13
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belongs to Uad for any € ¢ (O, SO]. From (4.2) and Lebesgue's density theo-

rem we have by letting € - 0 that for a.e. t € I,

- <v,B*(t)p(t)>Y + ko(u(t),tL (5.5)

+k (v, 1) 2 - <ule),BHOp(e)> o

) Y*

Let t € I Dbe fixed for which u(t) € U(t) and (5.5) holds. Since the

duality pairing <V,B*(t)p(t)>Y is continuous in v, we have from (5.5)
14

Y*

that (5.3) is true for such t € I. The latter part of this theorem may be

obvious.

We shall give some applications of Theorem 5.1. We consider the special
cost functionals J2—J4 in Examples 5.1-5.3. Such costs are important in
practical applications and are studied in [1,9,14,15,16] for systems without

is given by (5.2) and H, is satisfied in each

delay. We assume that Ua 4

d

examples below.

Example 5.1. (Special linearized Bolza problem) The cost J2 is given by

3, = <x(T),UE> + J(I<x(t),d)i(t)>dt, (5.6)

where ws € X* and wi € Ll(I; X*) . Then we have

COROLLARY 5.1. Let (u,x) € Ua X C{(I; X) be an optimal solution for J

d 2°

Then

Jax <B(£)v,p(t)> = <B(Du(t),p(t)>  a.e. te I,

where p(t) is given by
T

p(t) = - G*(T-t)ws - J-G*(s-t)w;(s)ds, t e I. (5.7)
t

If X 1is reflexive, p(t) in (5.7) belongs to C(I; X*) and satisfies

14
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[

ddét) + Afp(t) + J dn*(s)p(t-s) - WE(t) =0 a.e. telI,
-h

p(T) = - IPS. p(s) =0 s ¢ (T, T+h]
in the weak sense.

Example 5.2. (Terminal value control problem) ILet X be a Hilbert space.

As usual we identify X and X*. The cost J3 is given by

|2, X, € X. (5.8)

-1 -
3, =3 | x (1) X4

3

COROLLARY 5.2. TLet (u,x) € Ua X C(I: X) Dbe an optimal solution for J

d 3

in (5.8). Then

max  (B(t)v,p(t)) = (B(t)u(t),p(t)) a.e. t e I,
veU(t)

where p(t) is given by
plt) = G*(T—t)(xd - x(T)), teI. (5.9)

The adjoint state p € C(I; X*) in (5.9) satisfies

0
dp(t)

3t Aop(t) + dn*(s)p(t~s) 0 a.e. telI

J-n
p(T) = Xq ~ x(T), p(s) =0 s € (T, T+h]

in the weak sense (p(t) may be identically zero).

Example 5.3. (Minimum energy problem) Let X and Y be Hilbert spaces.

The cost J4 is given by

J = J M lxe) ]2 + Jue |Dat, (5.10)
4 I Y

where A > 0. Then we have

COROLLARY 5.5. Let (u,x) € Uad X C(I; X) be an optimal solution for J4.

Then

15
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max { (B(t)v,p(t)) - |v|§} = (B(t)u(t),p(t)) - |u<t)|§ a.e. t e I,
veU(t)
where 0
p(t) = - f G*(s—t)(2K2x(s))ds X* = X, telI
t
satisfies
0
dgét) * Aap(t) + ( an*(s)p(t-s) - 2K2x(t) =0 a.e. tel

J-n

p(s) =0 s € [T, T+h]
in the weak sense.

6. Bang-Bang Principle

Let the admissible set Ua be given in Section 5. In this section we

d

consider the terminal value cost J given by
J = ¢O(X(T)), (6.1)

where ¢0 satisfies Hl(l) and H3(1). We investigate the possibility of the
socalled bang~bang control for J in (6.1) under the time varying control
domain U(t). In general the bang-bang control does not hold for the retar-
ded systems even in finite dimensional space [17,p.60]. However by restric-
ting the cost J to the terminal value cost (6.1), we can prove that the
bang-bang control is possible under some regularity condition for the adjoint
system. Let X be reflexive in this section. Consider the adjoint system
(as) in (2.11). We denote by plt; g*, qi) the mild solution of (AS).

0

Now we give the following condition

C : qa = 0 in X* follows from the existence of a set E ¢ I such that

meas E > O and p(t; qg, 0) =0 for all t € E. (6.2)
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We say that the adjoint system (AS) is weakly regular if the condition CW is
satisfied. Examples for which the system (AS) is weakly regular are given

in [9,p.41], but such systems do not involve time delay.

Example 6.1. Consider the control system (CS) enjoying the following
conditions i), ii) and iii):
i) AO generates an analytic semigroup;

ii) the Stieltjes measure TN 1is given by n(s) (s)Al;

= 7 X(ewo,-n]
iii) the system (CS) is pointwise complete for all t > O.

s cos 1 +
The condition iii) means that for any £ ¢ LPOC(R ;7 X))

ci1 { x(t; £f,9) : ge XX LP,(Ih; X) } =x for each t > O,
where Cl M denotes the closure of M. If i),ii), i) are satisfied, then
the adjoint system of (CS) is weakly regular [10].

The following assumption is needed in proving the bang-band principle.

HS: d¢0(xu(T)) #0 din X* for each u € Uad' where xu(t) is the

trajectory corresponding to u € Uad'

THEOREM 6.1. Let the cost J be given by (6.1). Assume that the adjoint
system (AS) is weakly regular and B*(t) 1is one to one for each t e I. If

H5 is satisfied, then the optimal control u(t) for J in (6.1) is a bang-

bang control, i.e., u(t) satisfies
u(t) € 3u(t) a.e. t e I. (6.3)

(Proof) . This theorem is a consequence from the maximum principle (Theorem 5.1)

and weak regularity.

Example 6.2. Let the assumptions in Theorem 6.1 be satisfied and let X

17
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be a Hilbert space. We consider two costs J3 = %'lX(T) - xdl and J5 =

(x(T),wo), wO € X. If there exists no trajectory Xu' u € Uad such that

xu(T) = x4 ( wO # 0 in X), then the optimal control u(t) for J3 (J5) is
a bang-bang control, i.e., u(t) satisfies (6.3).
Let U Dbe a convex set in Y. The convex set U 1is said to be strictly

convex if u, v, (u + v)/2 € U imply u = v. The following corollaries

follow immediately from Theorem 6.1.

COROLLARY 6.1. Let the assumptions in Theorem 6.1 be satisfied and let U(t)

be strictly convex for all t € I. Then the optimal control wu(t) for J in

(6.1) is unique.

COROLLARY 6.2. Let the assumption in Theorem 6.1 be satisfied. Let Y

be a Hilbert space and
u) ={uey: |u-yl,srwl}, ter, (6.4)

+
where vy(-) € C(I; ¥) and r(-) € c(1; R -{0o}). Then the optimal control
u(t) for J in (6.1) is unique and is given by
-1
AY B* (t)p(t)

u(t) = y(t) + r(t)- ] a.e. te I,
|A, "B (t)p(e) |

where AY is the cannonical isomorphism of Y onto Y* and

p(t) = G*(T—t)d¢o(x(T)), t e T.

(Proof) Notice that the nonvoid closed ball in a Hilbert space is strictly

convex and U(t) in (6.4) is Hausdorff continuous in t € I.
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7. Time Optimal Control
In this section we study the time optimal control problem. Throughout
this section it is assumed that X is reflexive and Uad is bounded in LP(I;Y).
Let W be a target set in X. Define

U.={ueu . :x(t)e W for some t € I}
0 ad u

and suppose that U0 # 0. For each u € U0 we can define the transition time
that is the first time t(u) such that ,xu(t) € W. The time optimal control

problem P3 is formulated as

P3. Find a control u € UO such that t(ﬁ) < g(u) for all u € UO

subject to the constraint (CS).

In P, such an u € U, is called a time optimal control and t(u) is called

3 d

an optimal time.

THEOREM 7.1. Assume that W is weakly compact in X and UO # ¢. Then

there exists a time optimal control for P3.

Now we consider the possibility of maximum principle and bang-bang principle
for time optimal controls. The most simple case in which the maximum principle

holds is given by the following

THEOREM 7.2. Assume that W is convex, closed,bounded and has non-empty

interior. Let u be a time optimal control for P3 and let tO be its

optimal time. Then there exists a non-zero g* € X* such that

o o
< * * - *> ds = < B* * - *> ds.
max J v(s),B*(s)G (t0 s)gq v, y*38 J u(s) ,B*(s)G (t0 s)g Y,y s
veU 0 0
ad
Furthermore if Uad is given by (5.2) and the control domain U(t) satisfies
H4, then
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max <V,B*(t)G*(to—t)q*>

= <u(t),B*(t)G*(tb—t)q*>
veU(t)

Y,Y* Y,Y*

a.e. t e [0, tO].
(Proof) This theorem is proved by using the separating hyperplane theorem [18].

COROLLARY 7.1. Let W satisfy the assumption in Theorem 7.2 and let the

assumption in Theorem 6.1 with T = tO be satisfied, where tO is the optimal

time for the problem P Then the time optimal control u(t) for P3 is a

3

bang-bang control, i.e., u(t) satisfies

u(t) € 3U(t) a.e. t e [O, tO].

(Proof) The proof is similar to that given in Theorem 6.1. Note that g* # O.

Lastly we consider the case W = {gl} , a single point. 1In this case the
time optimal control problem can be considered as a limit of those problems for
target sets with non-empty interior. Let {Wﬁ} be a sequence of convex and
weakly compact sets in X such that

(e o]
g, € n Wn ’ Int Wn ¢ , n=1,2,°°-°-, W, DW, > --+ > Wn S ee-

_ 1 2
n=l (7.1)

dist (gl, Wn) = sup [x - gli > 0 as n > o,
ern

put UL = {ueU _:x(t) ew for some t e I }.
0 ad u n

THEOREM 7.3. Let {Wn} be a sequence of convex and weakly compact sets
in X satisfying the condition (7.1). Assume Ug Z ¢ for all n =1,2,---
and let {un} , be a sequence such that u is the time optimal control with
the optimal time tn to the target set Wn' n=11,2,°°-° . Then there exists
a time optimal control uo(t) to a point target set ‘{gl} which is given by
the weak limit of some subsequence of {un} in Lp([O, tO]; Y), where t_ =

0

lim t  is the optimal time to the target ’{gl}.
n->co
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8. Semi-linear System

In this section we consider the following semi-linear control system:

0

_QgéEl = A x(t) + J dn(s)x(s+t) + £(x(t),u(t),t) a.e. t e I, (8.1)
-h

x(0) = go, x(s) = gl(s) a.e. s € [-h, 0), (8.2)

u € Uad c gm(l; Y), (8.3)»

where f: XX Y X I—>X is a nonlinear control term. By using suitable modi-
fications we can develop optimal control theory as in previous sections for the
semi-linear system (8.1)-(8.3). As a part of the theory we shall give the
maximum principle for a general integral cost.

A continuous solution x(t) = xu(t) of the integral equation

t 0
0 1
x(t) = J G(t-s)f(x(s),u(s),s)ds + ( G(t)g + { Ut(s)g (s)ds) tel
0 Joh
is called the mild solution of (8.1)-(8.3). We define the set Ugd and the
cost J = J(u,x) by
0 . . .
U . =9{ue U _: the mild solution x (t) exists on I }
ad ad u
and
Jd = f W(X(t)lu(t)lt)dtl (8-4)
I X

respectively. Here in (8.6) w: X X Y X I > R is a cost integrand. We shall

call a pair (ﬁ,xa) € Uzd X C(I; X) the optimal solution for J in (8.4) if

u satisfies

inf J(u,x) = J(u,x-).

0 u
uevu

ad

To state the maximum principle precisely, we require the following assump-

tion H6 on f and w.

H6: (1) £:X XY X I+ X and w: X XY X I+ R are continuous in (x,u) e

X X Y and measurable in t e I;
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. + +
(2) for each wu(-) «¢ Uad there exists a function 97: R X I~ R

such that for all x € X
l£x,ue), 0], Jwx,ue), )] < 67(lx],t) a.e. 't €1,

and 97(r,-) € Ll(I; R), 67(-,t) are monotonically increasing for
all (r,t) € R' x I;

(3) £ and w are continuously Frechet differentiable in the first
argument and the corresponding derivatives 3lf(x,u,t) € L(X) and
3lw(x,u,t) € X* are continuous in (x,u) € X X Y and measurable

in t € I and further for each u(-) ¢ Uad'

8 fxueer, 0] < 6 (x[,6) ae. ter
lalw(x,u(t),t)lx* < 98(!X!,t) a.e. t €I,

+ +
where 68: R XI >R is as in (2).

- - 0
Let (u,x) € U, X C(I; X) be an optimal solution for J in (8.4). By

d

virtue of H6(3) we can construct a family of bounded operators U(t,s) € L(x),

0<s <t <T by the solution of the operator integral equation
rt
U(t,s)x = G(t-s)x + J G(t-&)alf(é(i),G(E),E)U(E,s)xdz for any . x € X.
S
(8.5)

The following theorem gives a general form of the maximum principle [19].

THEOREM 8.1. Let Ua be given by (5.2) and assumptions H4 and H6 be satis-

d

. - = 0 . . .
fied. Let (u,x) € Ua X C(I; X) be an optimal solution for J in (8.4).

d
Then
max H(t,u) = H(t,ult)) a.e. teI,
uel(t)
where T
p(t) = - J U*(s,t)3lw(;(s),a(s),s)ds t e I. (8.6)
t

22



Furthermore if X 1is reflexive, p € C(I; X*) satisfies

0
e A + A*p(t) + J dn*(s)p(t-s) + 9. £f*(x(t),ult),t)p(t)
dt 0 -h 1
= alw(i(t),ﬁ(t),t) a.e. teI
p(s) =0 s € [T, T+h] (8.7)

in the weak sense. Here in (8.6) and (8.7) U*(s,t) and 3lf*(§(t),a(t),t)
denote the adjoint operators of U(s,t) given in (8.5) and Blf(g(t),a(t),t)

given in H6(3), respectively.

(Proof) This theorem can be proved by calculating the first variation of J

in (8.4) and applying the Lebesgue's density theorem.
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