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Robust Stability of Linear Quadratic Regulators

under System Uncertainties
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1. Introduction

For the past decade, considerable interest has beed directed to the
;obustness of multivariable systems designed based on the LQ technique in the
presence of system uncertainties [1]-[7]. Safonov and Athans [1] have consid-
ered the robustness of LQ regulators againt large dynamical,.time—varying, and
nonlinear perturbations in the feedback gains; they show that if the control
weighting matrix is diagonal, any LQ regulator has at least * 60 degrees
phase margin, infinite gain margin, and 50 percent gain reduction tolerance in
each feedback channel. In [2], Lehtomaki, Sandell, and Athans have derived
frequencey domain robustness results for LQ as well as LQG designs in terms of
the minimum singular value of the return difference transfer matrix.

Wong and Athans [3] have explicitly parametrized constant perturbations in
system matrices A, B such that LQ regulators will not be destabilized. In
[4], Patel, Toda and Sridhar have developed the robustness results of LQ reg-

ulators in terms of bounds on the perturbations in the system matrices A, B
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such that the feedback system will remain stable. Combining the results of
[1] and [4], Ikeda [5] has develoﬁed robustness results for LQ regulators,
showing that the stability margin will be reduced under the parameter pertur-—
pations. Moreover, Safonov [6] has derived stability conditions based on the
abstract results on the input/output stability of such general systems that
may include nonlinear time-varying dynamical perturbations in the A métrix.
And recently, Soroka and Shaked [7] have shown by an example that LQ regulators
may not be robust where small changes in system parameters may lead to fast
unstable closed loop modes. Although the stability results are obtained for
geheralnonlinear, time-varying, and dynamical perturbations in [2],[4]-[6],
they are implicit relations between bounds and the weighting matrices, since
the solution of the algebraic Riccati equation (ARE) is included. Hence, to
obtain the stability conditions, we have to solve the ARE’s for several times,
thereby limiting the usefulness of the stability results. In fact, in [1] the
results are stated without resort to the solution of the ARE.

This paper considers the problem of robust stability of LQ regulators in
the presence of system uncertainties under the assumption that the pertur-
bations satisfy the matching conditions [8]. Some stability results
for linear, nonlinear, time-varying, and.dynamical perturbations are stated
explicitly in terms of perturbations and the wéighting matrices in the perform-
ance index. Thus a designer can easily select appropriate weighting matrices
for the LQ regulator design such that the closed loop system remains robustly
stable. The problem is formulated in section 2. Robust stabiiity results for
constant linear perturbations are derived in section 3.1. Section 3.2 deals
with the case of nonlinear, time-varying perturbations, and section 3.3 is
devoted to the dynamical perturbations. The concluding remarks are given in

section 4.
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2. Problem Statement

Consider a linear time-invarinat system

() x(t) = Ax(t) + Bu(t), x(0) = x_ (1)

where x(t) is the n-dimensionl state vector, u(t) is the m-dimensional
control vector, and A and B are constant matrices of dimensions n x n and
n x m, respectively.

The optimal LQ regulator problem is to find the optimal control that

minimizes the performance index
o - T T
J = [ [x7(£)Qx(t) + u”(t)Ru(t)]dt (2)

subject to the constraint of (1), where Q is an n x n nonnegative definite
matrix, R is an m x m positive definite matrix, and (')T denotes the
transpose of a vector or a matrix. Then the optimal control u*(t) and the

optimal state trajectory x¥(t) ‘are given by

u*(t) = — Kx*(t) = — R IBIPx*(t) C(3)

(A ~ BK)x*(t), x*¥(0) = X, l (4)

x*(t)
where K is the m x n optimal feedback gain, and P is the solution of
the ARE

ATP + PA - PBR_lBTP +Q=0 (5)

It is well known [9],[10] that the ARE of (5) has the unique nonnegative
definite solution, and the associated clbsed loop system (4) is asymptotically
stabie if and only if (A, B) is stabilizable and (Vr; A) is detectable,
where /Q is a square root of Q.

In this paper, we consider the following three types of perturbations or

system uncertainties.

Case A: Constant perturbations
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We consider a perturbed linear system

& x = (A+BF)x + BGu, u=-Kx, x(0)=x_ (6)
where F is an m x n constant métrix, and G is an m x m nonsingular

. matrix. It should be noted that the parameter perturbations satisfy the
matching conditions[8], namely, AA = BF, AB = B(G-1I), where F =0 and G =1
~are nominal values. It is also interesting to note that the perturbed system
(EL) is stabilizable (or controllable) if the nominal system (Z) of (1) is
stabilizable (or controllable). Weobserve that although the parameter perturb-
ations are restricted to the range space of B, this type of perturbations can
cover a fairly large class of perfurbations, including the parameter variations

in mechanical systems.

Case B: Nonlinear and time-varying perturbations

Consider a perturbed nonlinear time-invariant system

(ENL) x = Ax + Bf(x) + Bg(u), u=-Kx, x(0) = X (7)
where f: R" > R" and g: R" > R™ are memoryless nonlinearities satisfying
the Lipschitz conditions with £(0) = 0 and g(0) = 0, so that the perturbed
system (ENL) has a unique solution defined for all t > 0. Note that f(x)
20 and g(u) = Iu are the nominal functions.

We also consider a nonlinear time-varying system

X = Ax + Bf(t,x) + Bg(t,u), u = -Kx, x(0) = X (8)

(ypp)
where f: RxR"+R" and g: RxR">R" are time-varying memoryless nonlinear

perturbations that are continuous in t, x and satisfy the uniform

Lipschitz conditions, namely, there exists a constant c > 0 such that

e(e,x) -~ (e, )l s ¢ llx-y] (9)
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A

llg(t,u) - g(t,v)|| c flu- vl (10)

for all t >0, and x, y € Rn, u, v € R™. Tt is also assumed that £(t,0)

=0 and g(t,0) = 0. Under the above conditions, the perturbed system

(ZNLT) has a uniuge solution defined for all t > 0, and X, = 0 is an

equilibrium solution.

Case C: Linear dynamical perturbations

We consider a linear perturbed system described by

(ELD) x = Ax + (BFx)(t) + (Bgu)(t), u=-Kx, x(0)=x  (11)

- .0 m ' m m ..
where F: L2e[0’ ®) > LZe[O’ ©) and §: L2e[0’ ®) > LZe[O’ ») are finite-
gain linear time-invariant operators with stable rational transfer function
matrices F(s) and G(s), respectively [1],[6]. Thus the Laplace transform

of the weighting pattern of (11) is given by
W(s) = [sI - A - BF(s) + BG(s)K]™* (12)

For each of Cases A, B, C above, we wish to derive conditions such that
the feedback controller u(t) = - Kx(t) guarantees the asymptotic stability
in the large of the perturbed systems of (6), (7), (8)\and (11) in terms of

perturbations and the weighting matrices Q and R.

3. Main Results

3.1 Constant perturbations

Theorem 1: Suppose that (A, B) is stabilizable and (/6; A) is detectable.
If there exist some positive numbers g and B such that
GIR + RG - (1+B)R 2 0 (13)

and

B(1-a)Q 2 FIRF (14)
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then the closed 1oop system (ZL) of (6) is asymptotically stable.
Proof: Suppose that (6) is not asymptotically stable. Then A-+BF-—BGR_1BTP

has an eigenvalue A with nonnegative real part, namely,
-1,T
(A + BF - BGR "B"P)w = Aw, Re A20, w#£0 (15)

By manipulating the ARE of (5), we have

(A +BF - BGR™1BTP) TP + p(a +BF - BGR™1BTP)

+ PBRTI[GIR + RG - (1+R)RIR"!BTP

+ (F-88'BTP)TR(F - Br™'BTP)/B

+ [B(1-0a)Q - FIRF]/B + aQ = 0 (16)
Premultiplying wH and postmultiplying w to (16), and using (15) yield
2(Re M)w'Pw + wiPBRL[GTR +RG = (1 + B)RIR 1B Pw
+ wi(F - 8R1BTP) TR(F - BR1BTP)W/B

+ wi[B(1-a)Q - FIRFJw/B + aw'Qw = 0 (17)

where (')H denotes the conjugate transpose or the adjoint of a vector or

matrix. From hypothesis, each term of (17) is nonnegative, so that

Wi[B(1-a)Q —~FRF]w = 0

' (18)
(F - BRTIBIP)w = 0, wiQw =0 '

Thus it follows that /ﬁw =0, Fw =0, RnlBTPw = 0, so that we have from
(15)

Aw = Aw, /Quw =0, Re A20, w##0 (19)
This contradicts the detectability of (/Q, A). OO

Remark 1: We observe from (17) that‘(13) and
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(F -8R BP)R(F-BRIBTP)/8 + (1-0a)Q - F'RF/B

T

_ (1-a)Q - PBF - FB'P + BPBR 'B'P >0 (20)

may be less restrictive conditions for the asymptotic stability of (EL). But
since (20) includes the solution P of the ARE, it is necessary to solve
the ARE of (5) iteratively to obtain a possibly better stability condition.
On the other hand, the conditions (13) and (14) express explicitly the
stability region in terms of the perturbationsyand weighting matrices, enabling
a designer to select appropriate Q and R quite easily, although the
stability region may be conservative. []

Taking F = 0 in Theorem 1, we have the well known result [1],[3].
Corollary 1: Suppose that (A, B) is stabilizable and (V/Q, A) is

detectable. Let F =0 in Theorem 1. If G satisfies
T
GR+RG-R>0 (21)

then the closed loop system\(EL) with F = 0 is asymptotically stable.
Moreover, if Q > O, the condition (21) can be weakened as GTR-+RG-R z 0.
Proof: For F = 0, (16) is reduced to

(A-BeR~IBTP)TP 4+ p(a - BGR™!BTP)

T

+ PBRIGIR+RG-RIRIBTP + Q = 0 (22)

The rest of the proof is similar to that of Theorem 1. []

Corollary 2: Suppose that (A, B) is stabilizable and (/6; A) is detectable.
Let G =1 in Theorem 1. If F satisfies

FT

(1-a)Q z F'RF, a >0 (23)

then the closed loop system (EL) with G = I 1is asymptotically stable.

Proof: A proof is omitted. []
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3,2 Nonlinear and time-varying perturbations

In this section, we present stability results for perturbed nonlinear
systems (ZNL) and (ZNLT)' |
1329599_2: Suppose that (A, B) is stabilizable and (Q, A) is observable.
1f there exist positive constants o, B8 such that
T T
2u'Rg(u) - (1+B)u'Ruz O ‘ ‘ (24)
m

for all u € R, and

fL(ORE(x) = B(1-a)x Qx (25)

for all x € R™, then the closed loop system (ZN) of (7) is asymptotically
stable in the large.
Proof: Note that the unique nonnegative definite solution P of the ARE of

(5) becomes positive definite, since (¥Q, A) is observable. Thus V(x) =

xTPx >0 for x # 0. Using the ARE of (5), the time derivative of V(x)

along the motion of (7) is given by

V(x) = [Ax + Bf(x) + Bg(u)]'Px + x'P[Ax + Bf(x) + Bg(u)]

]

Il

- [2u"Rg(uw) - (1+8)u"Ru] - [£(x) +Bul R[£(x) +Bul/B
- [B(1-a)x 0x - £L(x)RE(x)]/B - ax'Qx | O (26)

where u = - R_IBTPX. It follows from (24) and (25) that V(x) 20 ‘for
all x € R". Thus the perturbed system tEN) is stable in the sense of
Lyapunov.

To prove the asymptotic stability, we need the following lemma.
Lemma (LaSalle and Lefschetz [11])

Consider an autonomous system

x = F(x), F(0) =0, x(0) =x (FA)

(o]

If the solution of (FA) is bounded for all t > 0, then its positive limit
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set T+ is nonempty, compact and invariant. [] -

Note that since our solution x(t) of the perturbed system (EN) is
bounded, we can apply the above lemma. Let I'* be the positive limit set of
(7). Since V(x(t)) 2 0 is non-increasing, there exists-a coﬁstant % such that

lim V(x(t)) =220 ‘ (27)

e
Because I’ is nonempty, we can take an element & € . Let ¢(t) be the
solution of (EN) with the initial value £&. Since rt s invariant, ¢(t)
belongs to r* for all t > 0. But by the definition of the positive limit

set,

1]

rt écg = {x] V(x) = 2} (28)

Thus V(d(t)) = &, so that dV(¢(t))/dt 0. Hence, it follows from (26) that

1]

B(1- )T (£)Q0(t) - £L(O(L)IRE(S(t)) = O

(29)

I
o

£(o(t)) + Bu(t) =0,  &(r)Qd(t) =

where u(t) = — R-IB'P&(t). Hence we have vQb(t) = 0, £(6(t)) =0, u(t)

I

= 0. Therefore, from (7)

I
o

o(t) = Ad(t), &(0) =&, VQo(t) (30)

Since (/Q, A) is observable, we get & = 0. Hence ~ & ¢ CQ, so that

£ must be zero. Thus from (27), 1lim x(t) = 0 for any X € R". This
t>co

implies that the perturbed system (ENL) is asymptotically stable in the

large. []

Remark 2: It should be noted that the detectability of (/rl A) is not
sufficient for ensuring the asymptotic stability of (ENL)' Also, note that if
Q is positive definite, the proof of Theorem 2 is immediate, because it |

follows from (26) that 0(x) <0 for all x £0. [J
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Corollary 3: Suppose that (A, B) is stabilizable and Q, A) is

observable. Let f(x) = 0 in Theorem 2. If

ZUTRg(u) - uTRu >0 (31)

for all u ¢ Rm, then the closed loop system (EN) with f(x) = 0 1is asymp-
totically stable in the large. Furthermore, if Q > O, thén (31) is weakened
as 2uTRg(u) - uTRu z 0.

Proof: A proof is omitted. []

Corollary 4: Let g(u) = Iu in Theorem 2. If there exists a positive

constant @ such that

fLORE(x) £ (1-a)xiQx (32)

for all x € Rn, then the closed loop system (E ) with g(u) = Iu is

NLT
asymptotically stable in the large.
Proof: A proof is omitted. []

The second observation in Remark 2 suggests that the above results can
be extended to the case of nonlinear time-varying perturbations.

Theorem 3: Suppose that (A, B) is stabilizable and Q is positive definite.

If there exist positive constants a, B, k such that

!;gjiﬁTRu ;uTRg(t,u)lg k uTu (33)
for all u e R® and t > 0, and
T T :
£ (t,x)Rf(t,x) £ B(l-a)x Qx (34)
for all x € R™ and t > 0, then the‘perturbed system (ENLT) of (8) is

asymptotically stable in the large.
Proof: Let V(x) = xTPx. Since P is positive definite, V(x) > O for all
x # 0. Referring to (26), we see from (33) and (34) that the time derivative

V(x) of V(x) along the motion of (8) is evaluated as

~10-
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V(x) s - oxQx <0, x#£0 (35)

since Q 1is positive definite. Thus we observe that V(x) = xTPx satisfies
all the conditions necessary for ensuring the asymptotic stability in the
large (Kalman‘and Bertram [12, Theorem 1]).

Corollary 5: Let f(t,x) = 0 in Theorem 3. If

%‘UTRU < uTRg(t,u) <k uTu (36)

holds for some k > O and for all x € Rn, then the perturbed system (ENLT)
is asymptotically stable in the large.
Proof: For f(t,x) = 0, (34) is satisfied with B = 0. []

Corollary 6: Let g(t,u) = Iu in Theorem 3. If
T T
f (e, x)Rf(t,x) = (1-a)x Qx (37)

holds for some o > 0 and for all x € Rn, then the perturbed system (ZNLT)
is asymptotically stable in the large.

Proof: For g(t,u) = Iu, (33) is satisfied with B = 1. []

3.3 Linear dynamical perturbations

In this section, we consider the robust stability of the perturbed
system (ZLD) of (11) based on the approach due to Safonov and Athans [1].
Theorem 4: Suppose that (A, B) is stabilizable and Q is positive definite.

If there exist positive constants @, B such that

cT(~jw)R + RG(jw) - (1+B)R 2 O (38)
and

B(1-a)Q 2 F' (~jw)RF(jw) (39)

for all w, then the perturbed system (ELD) is asymptotically stable in\

the large.

~11-
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Proof: We follow Safonov and Athans [1]. Let X, be the trancation

defined by

A
~

X =

x(t), 0=t
{ (40)

0, otherwise

[0, =), namely

and similarly for u_. Let < , > be the inner product in L2 v

T

<x, 3> = [o7 x (D)y(t)de (41)

for x, y € L2[O, ®), Let V(x) = xTPx. Then, by using (11) and (5)

T : T
X Pxo - x (T)Px(T)

Il

- IOT V(x)dt

-2<Px , (AxT + BFx_ + BguT)>

T

T -
- <X, (PA+A P)XT>‘+ 2 <Ru_, Fx_ + Gu>

-1,T
X QXT> - X0, PBR "B PXT>

< Fx > < >
+ 2 RUT’ Fx > + RuT, 2§uT

1]

@ <x., QXT> + <RuT, [2§-—(1-+B)I]UT>
+ B<u_ + B A, R(u. + B 1Ax_)>
T T T T
+<x, [(1-0) - Bl A*RF]x > (42)

where 7* is the adjoint operator of 7. But it follows from Parseval

theorem and (38), (39) that since X, U, are square integrable,

T

1
2m

o, (26 - (14O = 3 | PR +re(w) - 1+ BRI )0

o

0 (43)

<x, [(1-0)Q-B ' F*RF]x > = 5= J X(30)[ (1-0)Q - B (jw)RF(jw) X (jw)do

0 (44)

[\

where ﬁ(jm) and X(jw) are the Fourier transforms of uL and X1

respectively.k Thus we have

-12-
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x Px_ oz oa<x, Qx> (45)

Taking T > ® in (45), we see that x(t) is square integrable, since Q
is positive definite. Since #, § are of finite gains, x(t) 1is also square

integrable. Thus we have 1lim x(t) = O for any x, € R". It follows that
t> oo

the weighting pattern w(t), the inverse Laplace transform of (12), is
asymptotically stable. Therefore, if there are no hidden unstable modes which
will be due to pole-zero cancellations in W(s), then (ELD) is asymptotically

- stable.
The dynamics of (ZLD) are expressed as

sI - A -B X

LN(s) LD(s) u
where L(s) = G(s)X- F(s), and LN(S) and Ly(s) are coprime polynomial matrices
satisfying L(s) = LD_l(s)LN(s) with LD(S) row reduced [13]. Note that all
the roots of det[LD(s)], the poles of L(s), have negative real parts, since
G(s) and F(s) are stable. It suffices to require that the roots of the

characteristic :polynomial p(s) for (46) have all negative real parts for

(ZLD) to be asymptotically stable in the large. As in [1], it follows from

(46) and (12) that
[sI - A -B ]
det Ly(s)  Ly(s)

det[LD(s)]det[sI-—A + BL(s)]

p(s)

= det[LD(S)]/det[W(s)] (47)
so that
det[L (s)]
det[W(s)] = —— D77 (48)
‘ : p(s)

Thus we see that possible pole-zero cancellations in (48) is associated with

-13-



stable zeros of p(s), since all the roots of det[LD(s)] ha

ve negative

real parts, so that there are no unstable hidden modes in W(s). Also, all

the roots of det[W(s)] have negative real parts, since w(t
cally stable. Therefore p(s) 1is a stable polynomial. []

Remark 3: Suppose that
T, . .
G (-jw)R + RG(jw) - (1+B+Y)R 2 O

holds for all w and Y > 0 instead of (38), then we have
X, Px0 4 0t<‘xT, QXT> +Y<uT, Ru_[>

which is similar to the estimate obtained in [1]. [J

We consider the special case where
= di >
R dlag(rl,..., rm), T 0

and the perturbation § satisfies

919
Gu = . , or G(s) = diag[Gl(s),..., Gm(s)]

.
°

G u

m m

where Gi(s) are stable rational transfer function.

) is asymptoti-

(49)

(50)-

(51)

(52)

Corollary 7: If the perturbed system (ELD) satisfies (51) and (52), and if

Re[G,(jw)] z (1+B)/2 holds for all ‘W together with (39),

asymptotically stable in the large. []

then (ELD) is

Put Gi(jw) = eaJei(w) in Corollary 7. Then it follows that

1+8
2

v

cos Gi(w) for all w, i =1,...,

Therefore the phase margin in each channel becomes less than

m - (53)

*+ 60 degrees,

because, in general, B > O due to the perturbation 7. But we see from (39)

that * 60 degrees phase margin can be recovered by taking Q sufficiently

large while keeping B arbitrarily small. This is a general

~14-

jzation of the
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result of [1].

'Example: We consider a single-input system, namely, m = 1. Let
R = r (scalar)
F(jw) = (fl(jw),..., fn(jw)) [1 x n vector]

Then the conditions (38) and (39) are reduced to

Re[6(jw)] = 1EE (54)
r 2 - — 7]
l£,1° ££, oo EE
B(l-o - 2 =
- Q:z £,£, lf?_l P (55)
- = 2
] e S 3 |fn| ]

A

for all w and o, B >0. Since F(-jF(jw) s (£ |£,(Gw)|»)-1, if Q

satisfies

2 .
qi>§'psl=

l,..., n (56)

Q = diag(q:l)--"qn):

where 02 = sup Z?=llfi(jw)|2, then (55) is satisfied. []

w

Several examples for the control of mechanical systems with constant,

nonlinear perturbations are found in Sasaki [14].

4, Concluding Remarks

This paper has considered the robust stability of LQ regulators in the
presence of system uncertainties. Under the assumption that the perturbations
satisfy the matching conditions, the robustness results are derived explicitly
in terms of perturbations and weighting matrices for constant,nonlinear, time-
varying, and linear dynamical perturbations. Theorem 3 and 4 generalize the
results due to Safonov and Athans [1].

Robust stablity of Kalman filter and nonlinear filters will be treated

in a future paper.

15
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