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Abstract.

This paper considers a fault diagnosis problem of linear
systems from graph theoretical viewpoint. Specifically, we derive
conditions for fault distinguishability, and also we derive a fault
diagnosis algorithm which decides the faulty element from the
system observation. The conditions are given in terms of the

system representation graph which depicts the system structure.

1. Introduction.

This paper considers a fault diagnosis problem of linear
systems and derives fault distinguishability conditions and a fault
diagnosis algorithm.

The fault diagnosis techniques studied in this paper are based



on the fact that when the system is faulty the deviation of the
observation vector lies in the certain subspace corresponding to
the fault. This method is utilized as a fault diagnosis method for
linear electrical networks [1]. Structural conditions for fault
distinguishability are obtained for electrical networks [2],[3].
Without restricting the systems to electrical networks, fault
diagnosis method for linear systems has been discussed [4],[5].

In this paper, we present a fault diagnosis algorithm and
graphical distinguishability conditions. The algorithm is based on
linear algebraic consideration, which serves a simple calculation
method.

This paper considers the problem in the following manner.
Firstly, it is shown that the observation vector lies in the
subspace corresponding to the fault when the system is
malfunctioning. Then this fact is used to distinguish faults under
a certain condition which is made clear in this paper. Based upon
these consideration, a fault diagnosis algorithm is proposed.
Finally, graphical distinguishability conditions are derived. This
leads to a design method of observation point since they clarify
the relation between fault distinguishability and the system
structure. The conditions are also essential in carrying out the

fault diagnosis algorithm.

2. Principle of fault diagnosis.

2.1. System description.

Consider the linear system



Ax = 0, (1)
where A is a linear map: V> f, ¥ is the n-dimensional state
space, E is the n-dimensional error space (the name is clarified
later), and x € V is the state vector. We assume that eq.(1) is
‘the complete set for the discription of the system, i.e., A has
an inverse map A_l: E~>V.

Eq.(1) can represent several kind of systems by choosing the
map A: a linear stesdy system by a constant nxn matrix; a linear
dynamical system in state-space form with the system matrix F by
sI-F; etc.

When the system is faulty, eq.(l) cannot be satisfied, and the
system is described by

Ax = g, (2)
where ¢ € E is called the error vector (this clarifies the name
of E).

We assume that fault is brought about by the combination of

thé elementary faults, each of which corrésponds to thé system

component, This implies that we assume that there are the

elementary fault vectors Upseoesly (t is the number of the
elementary faults) and that the error vector é is a linear
combination of the elementary fault vectors.

When the faulty elements correspond to the elements of the
subset J of the index set {l,...,t},» we say fault J has
occured. If fault J occurs, the error vector is contained in the
subspace

F(J):= span {u;, 1 e J},
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where span denotes the operation which maps the subset of the

linear space to the minimum linear subspace which contains the

subset. F(J) is called the fault subspace (of the fault J).

Fau1£ J is called k-fault if dim F(J) = k. Fault I and fault
J are equivalent if F(I) = F(J). If fault I and fault . J are
equivalent, we cannot tell which fault has occured by examining to
which subspace the error vector belongs. If ¢ € F(J), we say the

fault equivalent to fault J has occured.

2.2 Principle of fault diagnosis

It is not always possible to observe all the states.
Accordingly, we consider direct sum decomposition of the state

space V =V, C)UE' Vo 1is called the observation space, and Vg

is called the nonobservation space. The observation vector is

given by
y = Cx, (3)
where C 1is the projection map from V to V,  along V5.

If fault J has occured, then y e S(J) := CA’lF(J) since g

e F(J). We call S(J) fault observation subspace (corresponding

to fault J).

An outline of the fault diagnosis is as follows; we seek the
fault observation subspace which contains observation vector 7y,
and decide which fault has occured. To be accurate, there are two
cases to be examined; (i) y € S(I) n S(J); and (ii) S(I) = S(J).

First we consider the case (i). We‘adopt the criterion that

the fault whose fault observation subspace is a minimum subspace

containing y has occured. This criterion has some ambiguity



because it ignores two situations; (a) y € S(J) when fault I
occurs, and S(J) 2 S(I); and (b) S(I) § S(J), S(I) §x S(J), and y
€ S(I) n 8(J). The former leads to a misjudgement. When the
latter is the case, the uniqueness of the minimum subspace may not
be gﬁaranteed. These situations, however, happen only if the error
vector lies in the sum of finite number of proper subspaces of the
fault subspace, and therefore we can expect these situations are
exceptional, This consideration justifies the following hypothesis
which we assume to hold.

[Hypothesis H] If fault I occurs, then y ¥ S(I) n S(J)
for every fault J such that S(I)§ S(J).

We say fault I and fault J are distinguishable if §(I) =

S(J), since if this holds we can tell which fault has occured by
the observation vector under the Hypothesis H.

The case (ii) is inevitable if dim F({1,...,t}) >m (m is
the dimension of the observation space). This necessitates
introducing the concept of k-distinguishability. Before defining
the concept, note that equivalent faults are not distinguishable no
matter what the observation space is. We do not try to distinguish
equivalent faults.

We say the system (A,C) (eq.(l) and eq.(3)) is

k—-distinguishable if fault I and fault J. are distinguishable

for arbitrary j-fault J (j = k) and arbitrary fault I which is
not equivalent to J. It is shown in ch.4 Theorem 1 that if the
system is k-distinguishable, then from the observation vector y

(a) we can tell whether j-fault (j s k) occurs or not, and if the



answer is affirmative (b) we can specify the fault uniquely within the
equivalence of faults, i.e., we can specify the fault which is
equivalent to the actual fault. A procedure which carry out the

judgement (a) and (b) is called k-fault diagnosis method. It is

clear that k-distinguishability implies (k-1)-distinguishability
(k > 0).

A necessary and sufficient condition for the system (A,C) to
be k-distinguishable is given in terms of the dimension of the
fault subspaces. We make an insubstantial assumption that there is
a (k+l)-fault.

[Proposition 1] [2] The system (A,C) is
k-distinguishable (k < n) if and only if dim S(J) = k+l1 for

arbitrary (k+1)-fault J.

3. Fault diagnosis algorithm

In this chapter, we give k-fault diagnosis algorithm based on
the principle presented in the previous chapters. We assume that
CA—lui, (lsist) span the observation space.

[Theorem 1] (k-fault diagnosis algorithm) Suppése that the
system (A,C) is k—distinguishable. We assume that the
observation vector y satisfies Hypothesis H., Then the following
algorithm offer a k-fault diagnosis method for the system (A,C).

Algorithm:

(Step 1) Find a k-cover K which is a subset of the power
set of the fault subspaces satisfying;

(a) for arbitrary F(I) € K, I is an m-fault and satisfies



dim (I) = m; and

(b) for arbitrary j-fault J (j = k), there exists F(I) ¢ K
such that F(J) < £(I).

(Step 2) For every F(I) € K, the linear map CAnllF(I): F(I)
+-Vo has an inverse map M(I). Define (I) :=M(I)y. If (1)
F(J) holds for j-fault J (j s k) satisfying F(J) ¢ F(I), thenia
fault equivalent to fault J has occured.

(Step 3) If the condition in Step 2 does not hold for every
F(I) € K, then a j-fault (j > k) has occured.

The following lemma gurantees the feasibility of Step 1.

[Lemma 1] (k-cover) There exists a k-cover for the

system (A,C) if and only if the system is (k-1)-distinguishable.

4, Concrete representation of the fault observation subspaces.

In this chapter, we consider specific linear systems. This
enables us to represent the fault observation subspace concretely
if the specific discription of the system is given.,

(1) Linear steady system

Consider n-set of linear algebraic equations

Ax = b : (4)
where A ¢ R™T, and b ¢R" is a constant vector. In this case,
V =E =R, We assume that every equation in (4) represents the
equation which describes the system compénent. Tﬁis means that the
elementary fault vectors uj (lgist) are the unit vectors e;

(1zizn) in RY, The fault observation subspace corresponding to

fault J < {1,...,n} is



F (J) = span {CA_lei, i eJ}
(2) Compartmental systems
We consider two types of steady compartmental systems; (a)
closed systems:
Ax = 0, 1 x = w, 17 = (1,...,1), ‘ , (5)
where A is the compartmental matrix, x 1is the state vector, and
w 1is a constant; and (b) open systems:
Ax 4+ Bu =0 (6)
where A and x are the same as (a), B is the input matrix, and
u 1is a constant vector. The elements of A are related with
e

ajj=ki; (= 3, (7)

the rate constants ki

335 = k03 7 Zin Kige
We say the system is faulty if aipart of the rate constants
take abnormal values apart from zero-fixed rate constants. This
implies that we should choose as the elementary fault vectors
e = e (for kij)’ and
e (for kOj)‘
These vectors are called the edge vectors since they have one-to-
_one correspondence to the edges of the compartmental graph
mentioned in ch.5. We avoid double-index and write the edge
vectors as fl""’ft’ where t is the number of edges.
First we consider closed system. When koj's (leaks) are
zero, the system is called a closed system. We assume that the

matrix is irreducible. This can be expressed in terms of the

compartmental graph that the graph is strongly connected. Then the



steady state of zero input response follows eq.(5) when the total
amount of mass is w. The state space V = R%, and the error space
E = R(A)(:)R1 where R(*) denotes the range space. The system
map is A®1". The matrix [AT 117 has an left inverse [A~ d]
since A is irreducible. The map A™: R(A) *V is independent of
the choise of the left inverse. The fault observation subspace
corresponding to fault J is

F(J) = span {CATf;, i ¢ J}. (8)

When one of koj's is not zero, the system is called an open
system. We assume that the matrix [A B] is irreducible, or that
every node is accessible from the input nodes on the graph. Also
we assume that every node is accesible to environment, i.e., there
is a leakage path from every node. Then the stead§ state follows
eq.(6) when we apply constant input u. The state space V = RT,
and the error space E =R(A) = R", The fault ébservation subspace
corresponding to fault J is

F(J) = span {CA_lfi, ie J}. (9)

(3) Linear dynamical systems in state space form

Consider the 1inear dynamical system described byvstate space
form |

X = Ax + Bu, (10)
where A € R™T ig the system matrix, x € R® is the state
vector, B € R™T is the input matrix, and u ¢ RY is the input
vector. Lablace transformation yields

(sI-A)x = Bu + xd. ‘ (11)

The state x and the input u are elements of AR® and ARF



respectively, where AR is the field of truncated R-valued Laurant
series of the form
z =1 t:to z¢ s7t
with coefficient addition and convolutional product. As in 4.1, we
assume every equation in (11) represents the system component. The
elementary fault vectors are the unit vectors ey (l<i<n) in ARP,
The fault observation subspace corresponding to fault J is
F(J) = span ,p {c(s1-a)7le;, i € 3. (12)
(4) Linear dynamical systems in descriptor form
Consider the linear dynamical systems in descriptor form
Ex = Ax + Bu, (13)
where E € R™*M | and A, B, x, and u are the same as (a).
Laplace transformation yields
(sE-A)x = Bu + Ex,. (14)
" The State space, the error space, and the elementary fault vectors
are the same as (a). The fault observation subspace corresponding
to fault J is

F(J) = span ;g {C(sE-D)7le;, 1 ¢ J}. (15)

5. Graphical distinguishability conditions

In this chapter, we first describe the system structure
inherent in the system. Then we give the system representation
graph which depicts the system structure. Fihally, graphical
distinguishability conditions are given in terms of the system
representation graph.

5.1 System structure

10
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We use the word 'system structure', roughly speaking, to
represent how the system components are connected with each other.
The following argument clarifies the meaning more clearly.

In the case of linear steady systems, éij z 0 (where A =
(aij)) means that the variable X (j-th component of the state
vector x) is related to i-th component of the system. Since the
elements of A are the functions of the system parameters, zeros
in A are assumed to be fixed. Therefore the relation between the
variables and the components are inherent in the system in the
sense that it is independent of the system parametefs.

In the case of compartmental systems, the non-zero rate
constant kij implies that there is material flow from compartment
j to compartment i (to environment if i =:0). Since the
material flows in the system are known'grgriori, the zero rate
constants are fixed. In this manner, the existence of material
flows is inherent in the system.

In the case of linear dynamical systems in state space form,
35 # 0 means that the variable X is related to the derivative
of X4, This relation is considered to be inherent in the system
as in the case of steady system.

Finally, in the case of descriptor form, ey # 0 (E = (eij))
or aij Z 0 means that the variable Xj is related to i-th
component of the system. This relation is considered to be
inherent in the sys£em.

5.2 System representation graph

It is of crucial importance to utilize graphs both in theory

11
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and application. Indeed, the use of graphs enables us to present
graphical distinguishability conditions and to carry out the fault
diagnosié algorithm with the aid of graphical techniques.

We use the fdllowing graphs., Although we use the same letter
to denote the different sets of graphs, there is no ambiguity since
the system under consideration is evident.

(1) Linear steady system

We use two representation graphs associated with the matrix
A, the Coates graph G,(N,E) and the bipartite graph
Gb(Nr,NC,Eb). The node set N of G, has natural correspondence
with the index set n = {1,2,...,n} of the state vector x.
Without ambiguity, we use the same letter - C to denote the set of
indices C'c N corresponding to the observed variable. A directed
edge  (i,j) belongs to E if and only if aji * 0. For
Gb(Nr,NC,Eb), the node set N, (resp. Nc) has natural
correspondence with the index set n of the row (resp. column) of
A. There are self-evident one-to-one correspondences T.:N » N,
and 7_:N-> N.. An undirected edge (ﬂr(i),nc(j)) ¢ By if and
only if (j,i) € E. We assume the equations are arranged so that
the diagonal elements of A are not zero since it is always
possible to do so. |

(2) Compartmental systems

We use the compartmental graph G.(N,E). The node set N has
natural correspondence with the set of c;mpartment (and environment

if the system is open). A directed edge (i,j) belongs to E if

and only if kji z 0,

12
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(3) State space form

We use two representation graphs associated with the matrix
A, the Coates graph GA(N,E) and the modified bipartite graph
Gb(Nr’Nc’Eb)' The Coates graph is the same as for steady systems.
For Gb(Nr,NC,Eb), the node set N. (resp. Nc) has natural
correspondence with the index set n of the row (resp. column) of
A. There are self-evident one-to-one correspondences m.:N > N_
and 7.:N >~ N.. An undirected edge (vr(i),ﬂc(j)) e By if and
only if either (j,i) ¢ E or i = j.

(4) Descriptor form

We use the bipartite graph Gb(Nr,NC,E) associated with the
matrices A and E. The node sets N, and N_. are defined
similar to those of the bipartite graph for steady systems. An
undirected edge (ﬂr(i),ﬂc(j)) € Eb if and only if either aj =0

or ey Zz Q.
5.3 Graphical distinguishability conditions

We are now ready to present graphical distinguishability
conditions. We can point out the following advantages of the
graphical representation;

(1) we can represent distinguishability conditions
independent of the system parameters;

(2) we can design the measuring points in view of (1); and

(3) it is essential in carrying out the fault diagnosis
algorithm at two stages ——- to check the k-distinguishability

assumed in the algorithm and to find a k-cover defined in the

algorithm.

13
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It suffices to derive a graphical condition on which the
dimension of the fault observation subspace for arbitrary k-fault
is k. This is because if we can measure the dimension of the
fault observation subspace on the graph, distinguishability
conditions are obtained since Proposition 1 holds.

The conditions are generic conditions since the property must be
independent to the system parameters. A generic property holds
for almost all parameters [6]. We assume that the system
parameters are (1) the nonzero elements of A for linear stedy
systems, (2) the nonzero rate constants for compartmental systems,
(3) the nonzero elements of A for state space form, and (4) the
nonzero elements of E and A for descriptor form.

Previous to stating the results, some graphical terms are in
order. In GA(N,E), a path P from vy to vy is an alternate

sequence of nodes and edges,

P = (VO’ (VOsV]_)’ Vi (V13V2>9'-" (Vk_lvvk)9 Vk)’

v; €N (i=0,...,k), (Vi’vi+l) e E (i=0,...,k-1),

where vg is the initial node, v is the terminal node, and k

(the number of edges in the sequence) is the length of the path.
If vi € C, then P is called a path from vy to C. A path from
B to C is similarly defined. For a path P, N(P) <N is the
node set and E(P) ¢ E is the edge set in the path. A set of

paths is said to be node-disjoint if no two paths in the set have a

common node. A set of paths P is said to join N; <N and Ny <

14



N,
the paths in P is equal to Ny

In Gb(Nr,NC,Eb),
is a matching of which edges are

is said to be

node v € Nr UN

[od

there is an edge in M incident

In G.(N,E), a rooted tree
which has a node called the root

node in the tree is accessible.

if the set of the initial nodes (resp. the

a matching between NJ

terminal nodes) of

(resp. Nj).
<N, and Nl <N_.
incident to nodes in NJ U Nl. A
saturated by a matching M if
to v.

is a connected subgraph of G,
of the tre to which every other

An isolated node is regarded as a

rooted tree. For M ¢ N, an M-rooted forest W 1is a collection

of rooted trees of which root is in M, and every node in N 1is

contained in exactly one rooted tree in W. To be accurate, a

'spanning' forest is more appropriate, but we omit 'spanning' for

simplicity. The edge set in W is denoted by the same 1ettér W
since there is no ambiguity.

(1) Linear steady systems

We can identify fault J with the subset of the node set N,
and therefore we use the same letter J to denote the subset
corresponding to the fault.

[Theorem 2-1]

Let J be a k-fault. Then the following

four statements are equivalent.
(1)
(i1)

k = g-dim F(J).

We can join J and C; < C with ]Cll = k by a set of

node-disjoint paths in G,.

(iii) There is a node set D, |D| = k, such that, by

removing D in G,, there is no path from J\ D to C\ D, and

15
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there is no such set whose cardinality is less than k.

(iv)  There is a matching between Wr(j) and wc(é) in Gy
by which E is saturated, where the bar denotes the complement.

(2) Compartmental systems

We can identify fault J with the subset of the edge set E.
We use the same letter to denote the subset.

(2~a) Closed system.

[Theorem 2-2-a] Let ©J be a k-fault which contains no
undirected circuits. Then g-dim F(J) = k if and only if there are
a node q and a (C u {q})-rooted forest W such that WU E
contains no undirected circuits.

(2-b) Open system.

[Theorem 2-2-b] Let J be a k-fault which contains no
undirected circuits. Then g-dim F(J) = k if and only if there is
a (C u{0})-rooted forest W such that W UE contains no
undirected circuits.

(3) State space form

We can identify fault J with the subset of the node set N,
and therefore we use the same letter J to denote the subset
corresponding to the fault,.

[Theorem 2-3] Let J be a k-fault. Then the following
four statements are equivalent.

(i) k = g-dim F(J).

(ii) We can join J and Cy < C with |C;| =k by a set of
node-disjoint paths in G,.

(iii) There is a node set D, |D| =k, such that, by

16
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removing D in G,, there is no path from J \ D to C \D, and
there is no such set whose cardinality is less than k.

(iv)  There is a matching between ﬂr(j) and WC(C) in Gy
by which C is saturated.

(4) Descriptor form. We can identify fault J with the
subset of the node set N, and therefore we use the same letter J
to denote the subset coresponding the fault.

[Theorem 2-4] Let J be a k-fault. Then g-dim F(J) =
k if and only if there is a matching between ﬂr(j) and nC(C)

in Gb by which C 1is saturated.

6. Conclusion,

Fault distinguishability conditions and a fault diagnosis
algorithm are derived. The distinguishability conditions are given
in terms of the system representation graph which depict the system
strpcture.

The algorithm is based on linear algebraic consideration, and
this simplifies computational procedures.

The graphical conditions possess the following adantages;

(1) we can represent distinguishability‘conditions
independent of the system parameters;

(2) we can design the measuring points in view of (1); and

(3) it is essential in carrying out the fault diagnosis
algorithm at two stages —--— to check the k-distinguishability
assumed in the algorithm and to find a k-cover defined in the

algorithm.
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