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1. 1Introduction

- We consider a finite graph G which may have multiple edges
but has no loops. We denote by V(G) and E(G) the set of verti-
ces and the set of edges of G, respectively. We write dG(x)
for the degree of a vertex x in G. Let a, b and r be integers
such that 0O<a<b and r>0. A spanning subgraph F‘of G is called
an [a,b]-factor of G if ade(x)sb for all xeV(G), and we call
an [r,r]-factor an r-factor. An r-regular graph is a graph in
which each vertex has degree r.

Tutte [8]( [3],p.77) proved that for any odd integer r and
any integer k (O<k<r), every r-regular graph has a [k-1,k]-
factor. It was proved in [5],[9 ] that every regular graph has
a [1,2]-factor each of whose components is regular. Enomoto and
Saito [4] gave the following conjecture: Every r-regular graph
has a [k—l,k]—factor each of whose components is regular for
any k, O<k<r. Note that this conjecture is true when r is even
by Petersen's 2-factorable theorem (see Lemma 1). So the
essential part of this conjecture is the case that r is odd.
We obtain the following two theorems.

Theorem 1. Let r and k be positive integers. If k<2(2r

+1)/3, then every (2r+l)-regular graph has a [k-1,k]-factor each



of whose components is regular.
Theorem 2. Let k and r be positive integers. If 2r+3
- ¥2r+1 <k<2r, then there exists a simple (2r+l)-regular graph

that has no [k-1,kl-factor each component of which is regular.

It seems that there exists a (2r+l)-regular graph that has
no [k-1,k]-factor with regular components if 2(2r+1)/3<k<2r.
Some results related to our results can be found in a survey

article [1].

2. Proofs of Theorems

Let G be a graph, and g and f be integer-valued functions
defined on V(G) such that g(x)<f(x) for all xeV(G). A spanning
subgraph F of G is called a (g,f)-factor if g(x)de(x)sf(x) for
all xeV(G). A (g,f)-factor satisfying g(x)=£f(x) for all xeV(G)
is briefly called an f-factor. For a vertex subset X of G, we
write G-X for the graph obtained from G by deleting the vertices
in X together with their incident edges. Similafly, for an edge
subset Y of G, G-Y denotes the graph obtained from G by deleting
all the edges in Y. For two disjoint subsets S and T of V(G),
we denote by eGCS,T) the number of edges of G joining S and T.

Lemma 1. (Petersen [T7],[2]p.166) Every 2r-regular graph
has a 2k-factor for every integer k, O<k<r.

Lemma 2 [6] Let G be an n-edge-connected graph (nxl), 6
be a real number such that 0<6<1, and f be an integer-valued
function defined on V(G). Suppose (1) and (2) hold. Moreover,
if one of (3a) and (3b) holds, then G has an f-factor.

1y L £(x) = 0 (mod 2).
x€V(G)



(2) e= J |f(x)—6dG(x)| < 2.
xeV(G)

(3a) {f(x) | x€V(G)} consists of even numbers, and m(1l-6)>1,
where me{n,n+1} and m=1 (mod 2).

(3b) {dG(X), f(x) | xeV(G)} consists of odd numbers, and
m6>1, where me{n,n+l} and m=1 (mod 2).

Lemma 3. Let G be an n-edge-connected graph (nx1l), 6
be a real number such that 0<6<l, and g and f be integer-valued
functions defined on V(G) such that g(x)<f(x) for all xeV(G).
Suppose (1) and (2) hold. Moreover, if one of (3a) and (3b)
holds, then G has a (g;f)—factor.

(1) G has at least one vertex v such that g(v)<f(v).

(2) e= ) (max{0,g(x)-8d; (x) }+max{0,0d,(x)-£(x)}) < 1.
xeV(G) :

(3a) {f(x) | £(x)=g(x), xeV(G)} consists of even numbers, and
m(l-6)>1, where me{n,n+l} and m=1 (mod 2).

(3b) {f(x), dG(x) | £(x)=g(x), xeV(G)} consists of odd numbers,
and m62>1, where me{n,n+l} and m=1 (mod 2).

Lemma 4. Let G be a 2-edge-connected (2r+l)-regular graph,
and h be a positive integer. If 2h<2(2r+1)/3, then G has a 2h-
factor. If (2r+1)/3<2h+1<(2r+1), then G has a (2h+l)-factor.

In particular, for every integer k, O<k<2r+1, G has a [k-1,k]-
factor each component of which is regular.

Proof Define a function f on V(G) by f(x)=2h for all x
€eV(G), and set 6=2h/(2r+1l). We show that G, f and 6 satisfy
conditions (1), (2) and (3a) of Lemma 2. Since G is of even
order, (1) holds, and (2) is trivial as €=0. Furthermore, (3a)

follows from m=3 and 2h<2(2r+1)/3. Hence G has an f-=factor,



that is, G has a 2h-factor. Similarly, we can prove that G

has a (2h+l)-factor if 2h+1>(2r+1)/3 by using (3b) instead of
(3a). Since of of {k-1,k} is odd and the other is even, the
last statement is an easy consequence of the two results proved

above.
Lemma 5. Let G be a 2-edge-connected [2r,2r+1]-graph
having exactly one vertex w of degree 2r. Then
(1) if 0<2kg2(2r+1)/3, then G has a 2k-factor; and
(2) if (2r+1)/3<2k+1<2r+1, then G has a [2k,2k+1l]-factor F such
that dF(w)=2k and dF(x)=2k+l for all xeV(G)\{w}.
Proof We prove only (2). It is clear that we may assume
2r>2k. Define two functions g and f on V(G) by
{Zk Cif x=w
g(x)= and f(x)=2k+1 for all =xe&V(G).
2k+1 otherwise,
Put 6=(2k+1l)/(2r+1l). We show that G, g, f and 6 satisfy condi-
tions (1), (2) and (3b) of Lemma 3. Since g(w)>f(w), (1) holds.
It is immediate that g(w)<edG(w)<f(w). Thus (2) holds. Since
{dG(x), f(x) | £(x)=g(x), xeV(G)}={2r+l, 2k+1} and m=3, (3b)
follows. Therefore, G has a (g,f)-factor F, which is a [2k,2k
+1]-factor. Since G is of odd order, we have dF(W)=2k. Conse-

quently, F is a desired factor.

The next lemma plays an important role in the proof of
Theorem 1, and its proof is not so Short.

Lemma 6. Let G be a connected (2r+l)-regular graph with
at least two bridges, and k be a positive integer. If (2r+l)
/3<k<2(2r+1)/3, then G has a [k-1,k]-factor each component of

which is regular.



Proof of Theorem 1 We prove the theorem by induction on 2r+l.

Let G be a (2r+l)-regular graph and k be an integer such that 2
§k52(2f+1)/3. Note that every regular graph has a [0,1]-factor
with regular components since it has a O-factor. By Lemma 4,
we may assume G is not 2-edge-connected. Suppose G has one
bridge vw. Then each component C of G-vw is a 2-edge-connected
[2r,2r+1]-graph possessing one vertex of degree 2r. Thus C has
a k-factor or a (k-1)-factor by Lemma 5. Therefore G has a k-
factor or a (k-1l)-factor , and the theorem holds. Consequently,
we may assume G has at least two bridges.

By Lemma 6, a 3-regular graph with aﬁ least two bridges has
a [1,2]-factor with regular components. Hence every 3-regular
graph has a [1,2]-factor with regular components, and so the
theorem is true if 2r+1=3. Similarly, we can show that every
5-regular graph has a [2,3]-factor F1 with regular components.
Since 3-regular components of Fl has a [1,2]-factor with regular
components, Fl has a [1,2]-factor with regular components, which
is of course a desired [1,2]-factor of G. Hence the theorem
follows for 2r+l1=5. In general, if a (2r+l)-regular graph G
has an [h-1,h]-factor F2 with regular components and if each
component of F2 has a [k-1,k]-factor with regular components,
then G has a [k-1,k]-factor with regular components. By this
argument, we can verify that if 2r+1<13, then the theorem
holds. Suppose 2r+1>15. If (2r+4)/3<k<2(2r+1)/3, then a
(2r+l)-regular graph G has a [k-1,k]-factor with regular compo-
nents by Lemma 6; Hence we may assume k<(2r+4)/3. Let h be

the greatest integer not exceeding 2(2r+1l)/3. Then G has an



[h-1,h) -factor F with regular components. Since 2(h-1)/322(4r
-1)/9 and 2r+1215, we have 2(h-1)/32(2r+4)/3>k. Hence each
component of F has a [k-1,k]-factor with regular comoponents

by Lemma 1 or by the inductive hypothesis. Therefore G has a
[k-1,k]-factor with regular components, and we conclude that the

proof of Theorem 1 is complete.

Proof of Theorem 2. Let k and r be positive integers such

that 2r+2-J2r+1<2k<2r. Let k' be an odd integer that is one

of {2k—l,2k+l} and not equal to 2r+l. Let K, .4 denote the

complete graph with vertex set {al,...,a2r+3}. We obtain the
graph R from K2r+3 by deleting edges 8189,8783,.--,8189 _opuc>
a2r-2k+6a2r—2k+7""’a2r+232r+3' It is clear that dR(al)=2k-2
and dR(ai)=2r+l for all i, i#1. Let R(1l), ... , R(2r) be

copies of R, and let bi be the vertex of Ri whose degree is 2k

-2 for all i. We construct a graph H with vertex set V(R(1l))

u...UV(R(Zr))U{cl,...,czr_2k+2,v} as follows. Join every bi to
all cj (1£j€2r-2k+2) and v by new edges, and add new edges ¢y

Cos CqCpsvvvsCor 214 1C0r_2k+2 (see Figure). Then dH(v)=2r
and dy(x)=2r+l for all xeV(H)\{v}.

C C
1 =2 Cor-2k+l C2r-2k+2 v

Figure Gmr;\ H.



Let Hl""’H2r+l be copies of H, and let A be the vertex
of H; whose degree is 2r for every i. We now construct a (2r
+1)-regular graph G as follows, which has the required property.
Set V(G)=V(Hl){/...L;V(H2r+1)u{w}, and'join each Vs to w by a
new edge. We omit the proof of the non-existence of [k-1,k]-

factor with regular components in G.
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