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TOWARDS A PROOF OF THURSTON’S GEOMETRIZATION THEOREM
FOR ORBIFOLDS

Teruhiko Soma, Ken—ichi Ohshika and Sadayoshi Kojima
ARERE NEAE- ) &R s
§ O Preface :

This is a very infaormal note based on our discussion concerning
Thurston’s geometrization theaorem faor grbifolds mainly at Topolaogy
seminar of Tokyo Metropaolitan University in 1984/85. The main
purpase of that seminar was to understand its proof. The discussian
at the seminar was based on the arguments Thurston gave in his
course of 1984 spring, which the first author had‘attended. There,
Thurston had described a basic idea for the proof and some details.

Our intention was thus to fill up logically and reasaonablly
uhderstandable details. However, we have quite ogften faced
difficulties of translating his idea to "usual" mathematics faor us.
The main cause seems ihe lack of terminologies to describe it.
Consequently we could not complete our original intention.

The purpose aof this note is thus to describe only our
understanging of Thurston’s idea until the deadline aof submission of
this article. We have tried to give a careful explanatian as much
as we can except §8. The argﬁments in the first five sectiaons are
faithfully based on Thurston’s lecture. The arguments in §é and §7
are rather selfish interpretation of his assertion. Faor example,

Proposition 6.1 is our translation of Thurstan’s'uord, one
rescalling factor will work everywhere". " UWe gave up to complete the
last section, since there are abviously crucial assertions of which

we have not been able to understand the proof. We just reminded his
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basic idea there.
Since our discussion was held without Thurston, any mistakes
are ovbigusly due to us. We are very willing to hear any

suggestions, comments, criticism, pointing gut mistakes «....

§ 1 Background and Thearem

‘We first recall the basic concepts of the orbifald and then
state the geometrization thearem for orbifalds.

Definition ¢ The agrbifold O 1is a topological space with a
structure locally modeled an R" modulo a finite group action.
More precisely O is an underlying topological space XO with a
system of laocal charts ((Ui, ?i)} in the sense that
(1) (Ui} is an apen cover of Xg closed under the intersection,
(2) for each chart (Ui’ ¢i)," there are an ogpen set Ui in R"
and a finite group Fi faithfully and dif?ecmorpﬁica]ly acting
on Ui so that ¢, : U, - Ui/ri is a homeomorphism, and
(3> if U C UJ; there are a monomorphism fij : Fi - FJ and an
into homeomorphism ¢ij : Ui - ﬁj which make the following diagram

cammute,
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The set % = { x = Xg | the i'sotropy subgroup of x # {1}} |is



~called a singular locus.
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Definitian ¢ The arbifold ‘O 'is a covering of an orbifald O
if there is a prajection p @ Xﬁ g XO such that for any x € XO’
u

there exists a neighborhoaod of x, = U/F, so that for each

compaonent _Vi af p—l(U), there is Fi cr satisfy}ng Ui = U/Fi-
Definition ¢ The orbiFald O 1is good if there is a covering of
0 without singular locus; It is bad otherwise.
Definition : Let (G, X) be a pair of a real analytic manifald
X and a group of analytic diffeomorphisms G.  The orbifald ‘0 is

a (G, X)-orbifold if its charts are laocally maodeled an (G, X).

Proposition 1.1 ¢ A (G, X)-grbifold is good«

Progf. See [T3 §13.

Assume that X is a smooth simply ccnnected manifold and G
is a group of diffeomcrphisms uhich acts transitiveiy on X with a
campact isotropy subgroup for each x € X. Then X admits a
complete G-invariant riemannian metric. By Montgomery-Zippen’s

theofeh tHGj;j'G becomes a Lié'graqp_ahd ‘x = G/Gx bécomes'an

[._.3_



analytic manifaold with analytic action by G. Assuming further that

G 1is maximal, we call (G, X) a gegometry.

Definition ¢+ O is a gegmetric arbifold if there is a geaometry

(G, X> so that O admits a (G, X)-grbifaold structure.

Definitiogn : When O 1is a (G, X)-orbifuld,.]et vol(0) be the
volume of XO - ZO Wwith respect to some G-invariant metric of X.
Notice that the condition "finite volume" does nagt depend on the

chaoice of a G-invariant metric.

Thegrem 1.2 ¢ A 3-dimensional geometry which possesses at least

one compact geometric grbifold is one of the Thurston’s eight

gegmetries.
Proof. See [S3.

Remark. Far any 3—dimensiona1.orbifc]d 0, the valency of a
vertex of 20 is 3.

Definition ¢ O ~» 0" is a fibration of orbifolds with generic
fiber F if it is based on a continuous projection f 3 X0 - XO’
such that each point x € 0’ has a neighbarhood U = U (with U
CR™ satisfying £ 1 =Ux F/T for some action of T on F
(where I acts by the diaganal action). The product structure is

consistent with f ¢ the diagram below must commute.

Ux F N R FON
P l i f
U A > U .

Theorem 1.3 : A 3-dimensional orbifold which fibers aver a

2-dimensional gecmetric orbifold of finite area belangs to Seifert



gegmetry of finite volume. A 3-dimensiaonal orbifold which fibers

gver a compact l-dimensignal grbifold with euclidean fiber belangs

to either euclidean, nilpotent ar saolvable geametry.

Proof. Apply the method in [S] ar [KJ tao arbifalds.

This thegrem will be used implicitly later without refer
whenever we find a fibratian. That is to say, when we find &
fibration, it will mean automatically that the orbifold in questian

‘is geometric.

DeFinition‘: 0™ c 0" is a suborbifold if it is a subspace
XO’ C XO Wwith an orbifaold structure sg that for each x € X
g such that U =0T , UNR" =
Vo ois Fx—invarlant and (Ux’ Ux N XO,) = (U, U)/Fx.

there is a neighbaorhood Ux in X

Definitign : A 3-dimensional nrbifcld 0 1is irreducible -if:

every spherical 2-suborbifaold of O baounds an arbifaold of the farm

83/F where [ C S0(3).
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Definition ¢ A non-spherical 2-subarbifaold O af O is
incompressible if a simple closed curve af 02 which baunds either

3 2

a disk or a disk with an elliptic singular point in 0O - O bounds

it alsa in 0Z.
The following is Thurston’s geametrization thearem for
orbifolds of which we shall describe the (unfortunately incomplete)

proaf in the sequel.

" The main theorem : Let O be g'cnmpact oriéntable irreducib}e

3-orbifold with (possibly empty) incompressible euclidean boundary.

If O admits no bad 2-suborbifold and - dim ZO~= 1, then there is a

finite (possiblly empty) collection af mutuallﬁ disjaoint




incogmpressible euclidean Z-subarbifaolds 01; ""On such that each

companent of O - O, u...U 0, is a geometric 3-orbifold. In

particular, O is goad.

This big theorem has a quite many corollaries, houwever we state

only one which is towards Thurstan’s geometrization conjecture.

Corgllary ¢ If a closed orientable prime 3-manifgld M admits

a nantrivial orientation preserving periodic map with nonempty fixed

point set, then M admits a geametric decomposition.:

Proof. Let O be the quotient arbifold of M by the periodic
map. Then by the theorem, O splits inta geometric orbifalds.
Pulling back these structures to M, we get a geometric

decomposition as desired.

§ 2 The first reduction and hyperbolic 3—-cone—manifaolds

In what follows, we denote by O the orbifold that satisfies

the condition af the main thearem. Let Ui be a small ball

)

neighborhood af each vertex. v, € ZO and denate XO - U Ui - {toral

boundary} by N and NN ZO by T The boundary of N consists

N.

of 2-spheres with three dar four punctures. Our first reductian is,

The first reduction ¢ If the theorem is true provided that

N -2 admits a complete hyperbaolic structure of finite volume with

N
totally geodesic boundary, then the theorem is true in general.

To see this, we refer to the following unifermization theorem

for Haken manifolds which is in our convenient farm [SmJ, [CS1.
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Theorem 2.1 ¢ Let M be a Haken manifald without boundary but

uithvinCumpressible taral end. Then M either contains a

ngnpefiphera] torus, is a Seifert fibered space or admits a Comp]ete

hyperbaglic structure of finite volume.

Proof of the first reduction ¢ Let DN be the double dfl N.

The complement M = DN - DZN is g Haken manifaold without boundary
but with incompressible taral end since G has no bad 2-subarbifald
(téardrap'in fact). 'Notice that M admits an obvious arientation
reversing involution T which reflects M along F = 8N - Iyt F
cansists of 2-spheres with three or faur punctures. By Theorem 2.1,
we have three cases far M.

Case 1 ¢t M contains an essential tarus Tl' We first think of
the case when T1 TN - ZN' 1 T1 “is compressible in Q. Then
there is a compressing disk D with a cone point and (Tl'— MDY
U DIFU D, becames a spherical subarbifold 0’ where D, and 0,
are frontiers of (D), Since 0 1is irreducible, 0° must bound

53/zn. This means that T

1 is either d-parallel or compressible,
and we get contradiction. Thus T1 must be incompressible in 0.
Then by cutting O along Ti, we get a new arbifold which sti?f
satisfies the condition of the main theorem. By Haken’s finiteness
property of incompressible sur?aces for N - ZN, we have reduted
hierarchy to get simple pieces, which is the last two cases in
Thegorem 2.1.

Ue next deal with the case when T, intersects F
essentially and:mfnimally{ We then‘haVe two cases. One is that

some intersection circle bounds a pdhctufe in F. The other is that

any intersection circle bounds two punctures in F. UWe first deal



with the former case.

In this case, we can find a praoperly embedded annulus A CN
which is a part of T1 and whaose boundary has that circle as a
campanent. The other.cumponeht baunds ane ar twao punctures. UWhen
it bounds two punctures, it is on a companent af F which inherits
an euclidean baundary of 0O, and also bounds a diskruith a cone in
0. This contradicts the incompressibility of @&80. Hence we may
asshme that the agther compaonent of &4 baounds a puncture on F.
Now fill up &8A by tuwo diéks with & cone in 0O, and get &
spherical suborbifold 0’ € 0 since O has no bad suborbifold.

Then 0O’ bounds B>

/Zﬁ in O since 0O 1is irreducible, and hence
A becomes parallel to aﬂtsz). Do the same argument to an
adjacent essential annulus again and again and we finally conclude
that T1 is 8-parallel. This is caontradictian.

Let us deal with the case when any intersection circle bounds
two punctures in F. In this case, any intersecting component of F
must be a four punctured sphere which inherits an euclidean boundary
of 0. Since Tl intersects essentially with F, we can again
find a properly embedded annulus A in N which is a part of Tl'
Fill up @&A by twa disks with tws cones an 30 and get an
euclidean suborbifold 0’ C 0. Suppase that 0 is incompressible
and not @-parallel. Then pushing O’ into the interior of O and
cutting O along it, we get a new orbifold which still satisfies
the assumption af the theorem. Thus we have reduced to the simple
cases similarly as before. If 0O is compressible or d-parallel,
then 0’ baunds a subaorbifald P to which the fibration : A = Slxl

» I extends. We next fill up @dA by the énmp]ementary regiqn of

_the disks used previously and get another euclidean suborbifold O"



e

Cc 0. 0" 1is a torus or Sz(z,x,x,x) according to whether 2A

stays on a compgnent of 30 or not. If 0" is incompressible and
not d—parallel, then we are dane similarly as before. Thus the rest
is the case when bath 0* and 0" are campreésib]e ar d-parallel.
If 0" 1is compressible or d-parallel, then 0" bounds a
suborbifald Q@ again to which the fibration : A = S'xI = I

extends. Maresver @ 1is the compiement of P in 0. This means
that 0 =P U Q@ admits a circle fibration as‘an orbifald. In
particular, 0O is gegmetric.

Case 2 : M admits a Seifert fibratian. Suppaose F # &. UWe
may assume that T preserves the fibration. Since F cannot be
fibered, a fiber must intersect transversally with F. Since F s
the fixed point set of T, T maps each fiber to itself. Thus N -
ZN has an I-bundle structure and hence (N, ZN) must be
hameomorphic to (82, 3 ar 4 pts) x I. This shows that O admits a
spherical or euclidean arbifald structure.

Assume F = ¢. Then M is disconnected and ZN farms a link
in N. Subcase a) when each fiber on dM 1is not homotopié ta
meridians of the link. Then the fibration extends to a fibration on
N and O becomes a fibered orbifold, and we are done. Subcace b)
when some fiber on 3M is homotopic to a meridian of a component of
ZN' If a base grbifold of a cﬁmponent containing this fiber is.

2 2

neither .D nor D with a cone, then by elementary cut and paste

construction using meridian disks, we get an essential spherical

suborbifold in 0. However since 0 was irreduéib1e, this is

impossible. Therefare a base orbifold must be either . 02 or 02

1 2

with a caone. Since it must be homeamorphic to S~ x DT, by

changing fibration, we can reduce this case to the subcase a).
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Case 3+ int M admits a'cpmplete hyperbolic structure of
finite volume: - Then T 1is hdmatnpic'to an isametry fo which
Fixes a surface hamotopic to F. Since this surface is the fixed
point ‘set of an orientation reversing isometric involution, it is
totally geaodesic and we may conclude that N - ZN admits a complete
hyperbolic structure of finite volume with totally geadesic boundary
F. This condition is the starting point af the whole argument in

what fallows.’

We have reduced the argument to the case when N - ZN admits a
complete hyperbolic struture of finite volume with totally geodesic .
baundary. We further assume for simplicity that O is clgsed, that
is to say, N 1is compact and 8N - ZN. consists of three punctured
épheres. This is just for simplicity and will not be essential
restriﬁtion. Let us emphasize our starting point under this

condition again.

Initial setting : N - ZN admits a complete hyperbalic

structure of finite volume with totaly geodesic boundary,ruhefe N

is compact and dN - ZN consists of three punctured spheres.

The main idea is to defarm a complete hyperbolic structure on
N - ZN to a geometric structure of O continucusly alaong geometric
(mainly hypéhﬂolic) spaces only with cone type singularities. To
say more precisely, we need explicitly to define the cone-manifold
structure. The cone-manifold structure is a generalizZed concept of
the orbifald étructure; It is locally mode]Ted on not necessarily

R"” modula a finite group action but on identification aof a



rotation along some axis with arbitrary angle and their caombinatian.
Mare visually for hyperbalic case, we have

Definition ¢ A hyperbolic 3-cgne-manifold C  is a topaological

space X- Wwith a singular hyperbolic structure locally modelled on
one of the following sets.

(1) A neighbarhood of an elliptic axis of cone angle «a (O<ag27).

o

A neighborhoad of an elliptic axis UF‘cane angle = 2xn
corresponds to a neighborhood of a naon singular paint. When
-« tends to zerao, the structure approaches a neighborhoaod of a
CUSP

(2) A neighborhood of the vertex where more than two elliptic axis
meet. The summation of their cone angles are assumed to be

greater than . 2(n-2)x wWwhere n 1is the number of axis which

meet there.
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(3) A half neighborhood of an elliptic axis splitted by a totally
geodesic plane which intersects perpendicu]aE]y. This is a
model far the paints an boundary and in particular the boundar‘yf

is a totally geodesic hyperbolic 2-cone-manifold.

The set ZC = { x € XC [ x 1is on some singular elliptic axis or a
vertex}) 1is called a singular locus.

Si;ce we are aonly interested in a special type of hyperbolic
3-cone-manifolds, we just describe such for better understanding.
What we are interested in is a hyperbalic 3—c0ne—mani?o]d of finite
volume with spherical totally geodesic baundary. Furthermare, the
case when exact]y three axis meet at each vertex, exactly three axis
meet at nontaral infinity (end) and exactly three axis meet each
component aof boundary, is in our exclusive concern. Let «, 8 and
7 be cone angles af three axis which are subject to the abave
situation. Then whether a+8+7 is >, = or < 2r reflects to
whether thase three axis meet at the vertex, at infinity or they
meet the comman boundary component; Although we get at the limit aof
deformation a cone-manifold with an end where four axis meet, uwe
always assume that our hyperbalic 3-cone-manifaold is of this type
without specifying otherwise.  We note that since our cone—mani?old

is of finite volume, its end is either a usual toral one or




Sz(a,B,T) x [0,») where a+B8+7 = 2x. The baundary must be a
hyperbolic 2-cone—-manifald based an vSQ with three cone points.

We leave the precise definition of another geaometric caone-—
manifold to the reader since what we need is fairly simpTe rather
than its complicated strict definitian.

Definitiaon : The haolanamy of C is a holonomy of a hyperbaolic
structure on. XC - ZC. That is a representatiaoan o ;tl(xC - ZC) -
PSLZC.

Definition ¢ A combinateorial type AC of a hyperbolic 3-cone-

manifald C 1is a pair of topological spaces obtained from (XC, ZC)
by collapsing boundaries and compactifying each nantarai‘ends toc ane
paint.

Remark ¢ If cone angles are large enaugh, then (XC, ZC) and

its combinatorial type are topologically same.

Exceptignal definitian : We shall define the combinatorial type
of a complete hyperbaolic manifold based an N - ZN in the first
reduction ta be (XO, ZO) Just faor our cagnvenience.

We first wish to see that any structure can be s]ightTy changed
along small algebraic deformation. Tag see this, we first need
lemmas in hyperbolic geometry.

Lemma 2.2 ¢ Let a and B be elliptic elements of Isomng

po }

‘with axis £ and EB. Then if Ba is elliptic, then there is a

(94

totally geadesic plane P in IH3 which contains ,za\Ufzﬂ.

Proof. Assume the contrary and chaoose the shartest geadesic
segment s =-xy which connects za and ZB. Let R be a plane
containing s and perpendicularly intersect with ﬁa .at  x, and

let Q@ be a plane containing s and perpendicularly intersect with
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28 at y. Let” vy “and v2' be geadesics an R which intersect s

172 at x and let 11 and 12

be geadesics an Q@ which intersect s with angle = rotation angle
1/2 . , , : . — N p—
: at’ y. “Again let tl = albl and t2 = 32b

shartest geaodesic segments which connect Ui and R

with angle = rgtation angle af ta

of =8 be the

2
' 1, u2 and 12
respectively. Then if we let r be a 180 degree rotation around

s, then r(tl) = t2 and also we have d(x,al) = d(r(x),r(al)) =
d(x,az). Therefore a(al) = a5 Similarly B(b2) = bl' Since

r(ti) = t2 and r{(Q) ='Q, the angle between tl and Q .= the

angle between t2 and Q.- Hence t1 and 'Btz -are an the same

geadesic. ~Simiiarly a_l(tz), t1 and hence B(tz)"are on the

1

same geodesic £. Therefore since B8a(®) N D a “(t,), Ball) =2.

2
This means that B8a is a loxodraomic transformation, which is

cantradiction.

Lemma 2.3 : Let « and B8 be parabolics with fix(a) # fix(8)

and suppgse «f is a parabolic. Then there is a totally gegdesic

plane P with «(P) = B8(P) = P.

Procf. By changing basis, we may assume that « = ,[é i] and
8 = [é ?}. Then aB = [lgb %} and trace(a8) = 2 + b. Since
a8 is parabolic, b = -4. Thus uwe can easily see that the plane on

the real line is invariant.

We now discuss: the existence of geometric deformatiaon in
general. -Let (X, £) be an underlying space of same hyperbolic
3-cone-manifald, let €1y +rs € be edges of X  and let Cis v
Ch be circle components of Z. Denote by Al’ cees Mpgn ~th¢
e]éments of nlcx - £) which correspaond to meridians af €1s o0

- 14 —



e Cys »00 Cp respectively.

Theorem 2.4 ¢ Let 'X{O gg a hyperbolic cone-manifold structure
on (X, £) or a complete hyperbolic structure on X - Z and let
Py be its holonamy representation. If p is sufficiently close tao
po in RGr,(X =) with sy elliptic (ar parabolic), then

there i1s & hyperbolic cane-manifold with the same combinatorial type

——e | ——

(1) its structure -4/1 ié close t Af% and

(2) its holonomy representation is 2.

EﬁEEi' Denate X - ZL@X U Z) by U. Then by [T1, there is a
hyperbolic structure ‘4fi on U which is close to ‘xfolU and
whose holanomy is 2. We will first show that if ’K/O~ is a cone-
manifold structure father than a cdmp]ete structure, ,{f; ‘actually
extends to a hyperbolic cone-manifald structure on thé topological
space (X, £) when the structure '*/O has‘no cusp end. Then we
Wwill sée that when _k/g has a cusp end, the structure '*fl extends
to a cone-manifald structure on slightly modified space accoﬁding to
whether a cusp comes into interior or blouws up at infinity. Lastly
we modify thase proaof to cover when /@po is a camplete hyperbolic
structure. |

Since 'p(ui) is e]liptic; ‘xfa extends to all of X except
an neighborhoods of vertices of £ and a3X. If the three edges
€1» oy  en intersect at v in the structure 0”p0’ then since
Ly, #,, are elliptic and the‘prdduct' Lty = £y is also elliptic,
there is a tota]fy geodesic plane P D ¢ U 2# under the

o, | , #1 2
structure ,kﬁl by Lemma 2.2. UWe may also assume that ﬁu
' . : ‘ 1
intersects with _Eﬂ because ,41 is sufficiently claose to ,Zﬂof
2

-15 =
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Thus three axis £, , 2 and ¢ meet at aone point. This means
that 52/1 extends to a neighbarhood of v. If eys &9 and es
do not intersect even at infinity but g is the product Kibo,

then theré are totally geodesic planes Pl’ P2 and P3 sa tnat\

P, N Pi = e {i,j,k} = {1,2,3} by Lemma 2.2. Again we may assume
that Pl N Py N Py =‘¢ since ‘kﬁl is sufficiently clase to ;doo.
Then by easy hyperbolic geometry, there is a unique totally geodesic
plane P which intersects perpendicularly to all of Pi’s. This
means that /)Ji extends up ta 22X where P comes down as a
totally geodesic baundary. UWhen ey e, and e intersect.at
infinity, they form a cuspidal end. Houwever mixing those arguments
according to how cone angles are changing, we can seé the claim.

When _kfo is a complete hyperbolic structure, we follow the last

argument using Lemma 2.3 instead of Lemma 2.2.

Let us go back to our situation. Ue had a topa]ogicallspace
(N, ZN); We first name their edges and circle components of ZN in
the same way as I above. Our starting point was that N - ZN
admits a caomplete hyperbalic structure. Let 2o be the holonomy af
this structure, then po(ei)’s and DO(CJ)’é all are parabo]ic.‘
By Theaorem 2.4, we have a small defarmation aof hyperbalic structure
keeping its combinatoria] type constant so that a cone angle of each
axis increases if there is such an algebraic defurmatiqn. Thus we
may expect to have defarmation Py to the structure so that the
cane angles around meridians are equal to 2n/n; where n; is the
order of the isqtrnby subgroup of the i-th axis of 20, proQided
there is an algebraic deformation. It is nofhing but a hyperpo]ic

orbifold structure on Q. This is impossible in general houwever
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this tells us the target of the deformation we construct. We thus:
wish to see how we can deform algebraically next.

Let us denote by [I the fundamental group ni(N - ZN) =
KI(XO - 20). Then Py can be lifted to a representation tao SLQE
by the argument in [CSJ]. Let R(I) be a complex affine variety
formed by all the representation of [I to SL2$. Then there is a

basic fact,

Theorem 2.5 : Let R0 be an irreducible component of R(D)
containing Lo Then
dimp Ry 2 ~3r@E) +m + 3

where m is the number of circle components of Z.

Procf. See L[T1 or L[CSI.

Let by be again a meridian of the i-th axis aof ZO. Then
since “, . is assumed to be elliptic during a small deformation o,
of Theorem 2.4, trace pt(ui) = 2 cos 8/2 where & is a cone angle
at t. Thus the final target should have the value 2 cos x/ni-

Let f ¢ R0 - Ck+m be a regular map defined by f(p) = (trace(ﬂl),
.+, tracelz, ). Assuming that pe,(;) all are 1ift to SLC

with trace = 2, we will find an algebraic path aof defcrmation
starting from such a representétion. Let L C Ck+m be a complex
line containing p = (2, .., 2) and , q = (2 cos x/nl, ceey, 2 cos

n/n > and let £(t) be a real line in. L parametrizea by t

k+m
such that £(0) = p and £(1) = q.

Theorem 2.6 t There are a complex algebraic curve D in R0

and a piecewise real algebraic curve 7 : [0, 1) » D (0 <t @)

- 17 -
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~
—
g
~

(0) 1is a holonomy of a complete hyperbolic structure,

(2) f(T(t)) = 24C¢t)  and

(3> 7 1is maximal under (1) and (2).

Proaf. Since #(edges of £\) = ks #(vertices of I,) = 2k/3
and hence Z(ZN) = -k/3. Since dimmRO 2 —3I(XN)+m+3, we have
dimCRO 2 k+*m+3. Now L 1is of dimension one, and hence each

-1

component of f “(L) has dimension 2 dimmRO—(k+m)+r 2 4.. Take a

companent C containing po. By Lok’s local rigidity CL1, a

neighbarhood of 6, in g1

(p) has complex dimension 3. We can
choose a camplex curve D in C which cnn{ains Pq and of uwhich
the image by f is Zariski dense in L. Then we are almost done
since F—l(ﬁ) M D foarm piecewise real algebraic curves with which

we can choose a required path.

By Theorem 2.4 and 2.6, we eventually get a deforhation o, of
hyperbolic structure along the path in the Theorem 2.46. The
defarmation stahts at the complete structure and stays in cone-
manifald structures keeping its combinatorial type constant. Let

t (£ 1) be the terminal time where we cannot go over by geometric

0
defarmation. That is the end of our deformation. If to > 1, it
means that we get a hyperbaglic orbifold structure an O.  The rest
of our task is to see what happens otherwise. Thus we will aluways

assume in the Eeque] that t0 £ 1.

§ 3. Limits of metric spaces

In this section, we quickly review Gromaov’s thebry uhich_ui]l

be used to anélyZe the 1limit of our deformation.
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Definition ¢ Let X and Y be compact metric spaces. A
re]atich RC X x Y is an g—-approximation between X and VY if
(1) prx(R) =X and pry(R) =Y and
(2) For any x, x’ € X and vy, vy’ € Y with xRy and x'Ry’, we

have [d(x, x*) - d(y, y’)| <&,

Definitign : Let Xi (i=1,2, ... > and Y be metric
spaées. Xi canverges to VY (Xi - YY) if for any €, there is i0
such that if 1 > iO’ then there is an e-approximatian Ri,a

between Xi and VY.

Propgsition 3.1 ¢ Let X and Y be compact metric spaces. If

there is gg g-approximation between X and Y for any €, then X

is isometric to Y.
Proof. Choose {xi} C X so that far any n € N, the subset

of the first k_ paints, {xl, ces Xy }, forms a 1/n-net, i.e.,
n

k
u,_" Bl/n(xi’ X) = X. Take yi(n) € Y so that x

. (n). Since
i=1

1/n”i
Y 1is compact, there is a subsequence {(n} D (nl} such that yl(nl)

canverges. Define I(xl) ta be 1im yl(nl). Similarly take a

subsequence (nl} o) (nz} such that yz(n2) converges and define

) to be lim y2(n2). This process eventually defines Il({x;}.

. R
i

I(x2

We claim that Il{xi} is-an isometry. To see this, fix Jj, k
€N sothat j (k. Then (n) D (n) and I(x)) = lim y. (") =

J
1im yj(nk) and I(xk) = lim yk(nk). For any n € {nk}, we have

. (n) (n)
relations kal/nyk and XJRl/nyJ

d(Yk(n). Yj‘n))f < 1/n. Since n can be arbitrarily large in

and hence Id(xk, xj) -
(nk}, we have that d(x,, xJ) = dly,, yj)'

Obvigusly 1 1is continuogus. Since {xi} is a dense in X,

we get an isometfy of X ta Y by extending I continuogusly.



Corgllary 3.2 ¢+ If Xi converges to campact metric spaces Y1

an Y2, then Yl is isometric ta Y2.

Definition : Let (X, ) and (Y, ) be complete metric

%0 Y0
spaces with base points. A relation R C X x Y °is an
e—appraoximation between (X, xo) and (Y, yo) if

(1) there is y € Y such that xoRy and d(yo, y) < g,

(2 prx(R) > B X), PPY(R) > B ¥) and

1/ %o 1/ Yoo

(3> RN (Bl/a(xo, X) x Bl/s(YO’ ¥)) is an e—apprqximation between

81/5<X0’ X) and 81/8(y0, Y).

Definition (Xi, xi) converges to (Y, y) if for any ¢,

there is i0 such that there is an g—approximation between (Xi’

x;> and (Y, y) for all i > iqe

Propogsition 3.3 : Let Xi and Y be tomp]ete metric spaces sa

that Br(xi’ X.) 1is compact for each 1. If (X., Xi) converges

ta (Y, y), then Br(y, ¥) 1is compact.

Proof. It is enough to show that Br(y, Y)Y is totally
bogunded. Let ¢ bé an arbitrarily small number. Then since (Xi’
xi) caoanverges tao (Y, y), there is an £/2-approximation between
Br(xk’ Xk) and Br(y, Y) for some k. For each x € Br(xk’ Xk),

take y(x) so that xRy(x). Then R(B5 Br)) C Ba(y(x), Br)'

72 (%
Hence if we let {21, .o zm} be a £/2-net of B_(x,, X, ), then
B .y, Y) s covered by szl Ba(y(zj), B.(y)), which shows nothing

but {y(zJ)} is an g-net of Bp(y, Y.
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Corollary 3.4 ¢ Let (Xiw %40, Yy» v{? and (Y be

o Y2)
campact metric spaces with base pgints. Suppase that Br(xi' Xi)

is compact fgr any r > 0 and i1 =1, 2, ..., and i (X., v.)

- 1 1

canverges ta (Yl, yl) and (Yz, yz), then (Yl’ yl) is isametric

_t__q (Yzi yZ)w

Proof. Br(yl’ Y,) and Br(y2’ Y2) are compact by Propasition

1
3.2. Thus by the previadus coraollary Br(yl’ Yl) and Br(yZ’ Y2)
are isametric. Since r was arbitrary, (Yl’ yl) and (Y2, y2)

turn out to be isometric.

Thearem 3.5 (Gramov [G1) : Let {(Xi, xi)} be a sequence of

complete metric spaces so that BR(x.

sa i? Xi) is compact for all R >

0 and 1i. Then the faollowings are equivalent.

(1) There is a subsequence {j} € (i} sg that <(X., xJ) canverges

to a complete metric space (Y, y).

(2) There is a subsequence {k} € {i} so that for any R > O and

€ > 0, there is a constant KR c satisfying
?
N(z,Bg(x,, X)) = min #{e-balls cavering Bp(x,, X0} < KR’E,

where KR c depends only on R and €.
’

Progf. That (1) implies (2) is easy. Let {k} = {j}. By
Proposition 3.2, BR(y, Y) 1is caompact for any R > 0. If k is
sufficiently large, there is an e/2-approximation between BR(xk’

X)) and‘.BR(y, ¥Y)., Then N(&/2, BR(y, Y)) 2 N(a, BR(xk, Xk)) and

k

we are daone.
Let us show that (2) implies (1). We may assume without lass

of generality that (k} = {i} and X, is compact with ‘diam(Xi) <

2R by lacking only at BR(xi, Xi)' Let €, = 27" and Kn = Kc R
n

which should be an integer. Let ,An rbe a finite set {amlmz"‘mn l

- 21 —
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mp is an integer with O ¢ mP < Kp—l where p =1, 2, «., n ).

Obviously # An = Kl,x ee X Kﬁ' There is & canonical embedding An

by identifying a with ~ a and hence uwe

have an increasing sequence Al‘C A2 C «vv Now let A= @ An’

Define a map Ii P A= Xi inductively sg that Ii(An) farm an

e _—net df X, satisfying 1I.(a )y CB (a_ ). Let F
n i 177 myeom Ea=1 Mi++Mm 4

be a set of real valued bounded functions on A with sup norm I 1,

and define a map h, : X; > F by 'hi(x)(a) = d

(x,1.¢a)) for x e
i . i

X
i
Xi and a € A. We claim that hi is an isometric embedding.

Because for X1 %o € Xi, we have

b

sup ld(xl, Ii(a)) = dix,, Ii(a))l

hh.(x,) = h,(x
1 1

1 2

g d(xl, x2).

On the other hand, we can choose Ii(a) arbitrarily close to Xy
and hence
sup Id(gl, Ii(a)) - d(xz, I¢a))| 2 d(xl, x2).

Thus we are daone.

Let K be the subset {f e F | lf(am)l { 2R for a, © Al

and ‘F(aml"anI) - F(aml.;mn)l e,y forall neN. Then K
is compact. Since d(li(aml"mn—l)’ Ii(aml"mn)) < €n-1’
Ihi(X)(aml'fmn—l) - hi(X)(amlo.mn)l <&, ,_; and hence h (X,) s

cantained in K. Thus there is a subsequence {il} C (i)} so that

{hillil(aml)} canverges for all am1 € A1 since A, is a finite
set. Taking the same procedure again and again, we get a chain of

subsequences (i,} D (i} 2 ... ~where {h, I, (a_ )}
1 2 71 Tmyms . emy

converges for all am1m2"mn €A Let {j} be the diagonal
sequence. Then [hjlj(am)) canverges far all a, € A, and hence

let us define ¢(am) to be its 1imit and Y to be the completion

of (¢(am) Poa e A}. Then aobviously X‘j conVerges to V.
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We go back ta the naotation af § 2. Let ﬁt (0 £t < to) be

the deformation of hyperbolic structures constructed in § 2. UWe use
Ct to denote a hyperbolic cone-manifold at time t and we simply
denate (Xct, th) by (Xt’ 2,0+ We wish to investigate what
happens when t = t, . Since C;y 1is not a riemannian but complete
metric space, we may apply Gromov’s theory to this situation. Let

{tn} be a positive increasing sequence which converges tao tO and

denate Ct’, XC and ZC again simply by Cn’ Xn and Zn

n tn tn

respectively.

Propgsition 3.6 ¢ Let %0 be an arbitrary pogint in Cn. Then

there is a subsequence (k} € {n} sg that (C,.» %) converges to a

complete metric space (C*,y).

Proof. We use Gromov’s criteriaon. We may assume that X0 ¢ Zn

since we may change L slightly. Let Pn be a starshaped

fundamental domain of Cn' Namely Pn is an expansion in [H3

along the shaortest geadesic segments from Xn Then

N{e, BR(xn, Cn)) £ N¢e, BR(xn, Pn))
3
{ N, BR(xO,IH )

The last term is bounded by a .canstant which depends only on & and

R. Hence we are done by Theorem 3.5.
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§ 4 Injectivity radius and when it is uniformly bounded

The purpose of this section is to define inJeétivity radius For
the hyperbalic caone-manifold in general and to sae that Cn must
have a thin part for sufficiently large n. Mare strictly, we shUQ
that if {Cn} has unifarm lower bound of injectivity radius, then
it converges to a hyperba]ic 3~cone-manifold, which cantradicts the
definition of terminal time.

Following the previous sectiaons, we let £ be-a hyperbalic
3-cone—-manifold, I = nl()(C - ZC) and £ be its holonamy.

Definition (Volume of o) : Assume first that 8C =¢. Let B
= XC - ZC and let p : B> B be the universal covering. Each

element « of 0 acts on B as a covering transiation Ta
Denote the fiber product §MH3/(Txp)(H) by E. Then the map q ¢ E:
- B defined by q([x,y1) = [x] (x e B, vy e1H3) becomes a fiber ‘

3

bundle aof fiber H with the structure group = IsumﬁHg. Let D : §‘

3

- |H be a develaoping map. Consider a section Sg ¢ B - E which

makes the diagram below caommute

id x D : B B ox 1S
1 /T l /Txp
50 : B 4 E .
This certaiﬁly exists since O+T_ =p +D. Define wvol_ (p) to be
«Q @ £
/B so*(dv) where dv 1is a volume form of a fiber IH3 af E.
Notice that va]S (p) = vol(B) = vol(C). In case 4dC # &, define
0
volso(p) -to be a half of voldso(dp) where dg and dso

carrespand to the double of (XC, ZC).
Let us think of another section s1 s B- E which stil}

satisfies the condition (A) : let U be a fundamental domain of B

~ 24 — i




in B and think of s, as amap of U to El, = Ux H3,  then

pr'Sl(X) = D(x)> for x € Ae = 2 which is very close to e

3 3

where pr 15 the secand prajection : U x H™ = H~ . Then again by

the same farmula, we can define the volume vo]S (p) with respect

1
to Sy However

Claim vols (p) = vo]S (e).
1 0

Proof. Since iH3 is contractible, there is a hamotopy Sy
cannecting 5o and 54 such that e stays constant an a

neighbobhcod of ZC. Then

I

* ’ *
vo]s (p) - vo]s (p) (dv) - ;B Sy (dv)

/o s
0 1 B °0

= f

*

aBxIy St (9Vv)
w
= S ds, (dv) = O,

Thus volumes of 2 with respect to a sectiaon are identical as

long as a section satisfies the condition (A).

Propgosition 4.1 : va](Ct) is unifarmly bounded on O £ t < tO'

Proof. Since vol(Ct) is a continuogus function on t, we
only need to check baundedness near tO' We may further assume that

c has no euclidean ends for t, - ¢ <t <ty with sufficiently

t
small & because of our assumption that O has no baoundary. Ue
may alsa assume by taking & sufficiently small that the
topalaogical type af (Xt’ Zt) stays constant. Let us denote this
topological space by (X, Z). Then there are homeomorphisms hy @
(X, ) - (Ct’ Zt).‘

Take a triangulation K of (X, £) so that the l-skeleton
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cantains . We further take a second barycentric:-subdivision K"
agf K. Then the intersection of X and a 3-simplex af K" is

cannected. Let us take ht ¢ (X, Z) = (Xf, 2.,) 'sao that for a

"t
3-simplex T which intersects with 2, ht(r)' is a hyperbolic
3-simplex, and let Kt be a topolagical triangulatian ht(K").

We now define a section Sy ¢ Bt - Et to compute volumes. Let

. 3
t ét

domain. Think first of a 3-simplex af Kt which does not intersect

D - H” be a developing map and let U{ C §t be a fundamental
with Zt. It can be 1ift to Et' Since we can choase Ut
simplicially with respect to the triangulation Kt, we further can
assume that it is 1ift to Ut' Fcr‘such a 3—-simplex, define Sy SO
that Pres, becomes a straight map in iH3 fixing 4 vertices.
Think next of a 3-simplex A which intersects with Zt. Since such
a simplex is already hyperbolic by the definitian of ht’ sy can
be canonically defined so that pr\stlA_zt’= DIA—Zt'

By definitioan, S4 satisfies the condition (A). Hence
vnl(Ct) = vols (pt) £ nvz, where n = # 3-simplices of K" and V3

t
is the volume of a regular ideal 3-simplex.

Definition : An e-ball Ba(X) in a hyperbolic 3-cone-manifold
is standard if it is one of the fgllouwings,

(1) around axis of elliptic,
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(2) % on the boundary,

(3) x 1is a vertex of ZX.

Definition ¢ Let C be a riemannian 3—c0ne—maﬁiF0]d.- Then the
injectivity radius at x € C, denoted by inji{x), 1is the supremum
of € so that there is an e-standard ball containing x. Such a
ball may not have x ras a center. Do not confuse ! For & > O,
define the e-thick part, Cinick(e)® to be all the unien of
standard e-balls in C and the e-thin part, Cthin(a)’ to be the
complement of the thick part.

Again g0 back to our situation. Recall that tn is a positive
increasing sequence which converges to t, and {Cn} is a
correspanding sequence of hyperbalic 3-cone-manifolds which
converges to a metric space C* in Gromov’s sense. Notice that C¥
is not a hyperbolic 3-cone-manifold with AC* = (XO, ZO) because af
Theorem 2.4, 2.6 and the definition of t

Theorem 4.2 : If there is an & > O 50 that C_ 4.y =9

- 27 -
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for all n, then there are a subsequence {(k} € {n} and a

hyperbalic cone-manifold C*  with AC* = (XO, ZO) such that Ck

converges t C* and also P, converges tg p* which is the

—

holonomy of C*. n .particular, this cannot happen.

Prgof. By the construction af Cn’ there are a uniform lower
bound of cone angles and a uniform lguer bound of ‘21—(a+8+7) Where
a, B, T are cone éng]es around & vertex. Thus there exists a
nanzerao unifarm lower bound of the volume of £/2-balls in Cn' On

the ogther hand, we have vnl(C{) < x by Prupusition 4.1. Let mn

be a number of £/2-balls which pack C,+ Then by taking e-balls
with the same centeres, we get an open cover and hence we have N(e, |

Cn) < m e This implies that N(e, Cn)v0 < m Vg < vo](Cn) £ x, and

0" This shows that diam(Cn) < 25x/v0.

hence N(¢, Cn) < x/v
' We now come to the situation where we can use Proposition 3.5.

Taking a sequence x € X, we get a subsequence {k} € {n} which
makes (C,, x ) - converge to c*, x*)- Then since diam(Cnﬁ R,
diam(C*) ¢ R. This shows that BR(x*, C*> = C* and hence C*
turns out ta be campact by Propositian 3.2. Furthermare C* dose
not deéend on the choice of a sequence Xn by Propositiaon 3.1. We

let Rk be an ak—approximation between Ck and C* uwhere € - 0

when k = «®, and for any vy € C", we let Y be a point of

-1
k

Rled(yk) between Bd(yk) and Ba(y).

R (y). Then for any &6 > 0, there is an ak—apprcximation

Case 1 : There is a subsequence {j} C {k} sao that d(yJ,‘vJ)

- O uwhere vj’s are vertices af Zj correspaonding to some vertex
v G_ZO. If we let aj, Bj and Tj be cone angles argund v\j in
Cj’ then they must converge to @, 8 and 7 respectively and

Bé(yj) approaches a standard 3-cone-ball i]lustrated below,
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lé) uK
) Ly

Since the limit is unique, Bé(y) must be isgmetric to this

standard 3-cone-ball.

Case 2 ¢ There is a subsequence {j} C {(k} so that d(yJ, ej)
» 0 when | =2 = where ej’s are edges of ZJ corresponding to

sgme edge e C ZO’ By the same argument as in the case 1, B, (y)

)
must be isometric to a standard hyperbaolic 3-cone-ball or a half

3-cone-ball according to whether 1im d(yJ, 8CJ) is positive or

zerg.

&

o oy
_ A X
§ = *

J N
\
]

~ T >
, ‘ /

Case 3 ¢ There is a canstant ¢ such thaf d(yk, Zk) > ¢ for

all k. Let m = mind,¢), then Bn(yk) is isaometric to a
possibly truncated standard hyperbalic ball. Hence Bn(y) also
must be a possibly truncated standard hyperbaolic-ball, and in

v

particular, vy .is in a standard 3-ball or a half 3-ball.
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Thus we have proved that C* is a hyperbalic 3-cone-manifald.

Moregver we have shaown that the relation R carresponds the

k
singular locus I, to Z. and the boundary ac, to ac* . Ue
then show that (XC*; ZC*) is homeomorphic to (Xk, Zk) for
sufficiently 1arge k  and in particular, AC; = (XO, ZO). Take a

“hyperbolic triangulation K of C* so that o« 1s contained in.
the l-skeleton of K. Then every four vertiées which span a
3-simplex is lacally in general position. Since C* is compact,
there are only finitely many vertices. Define 3 hameomorphism of
{vertices of K} to Ck’ by corresponding a vertex v to any w €
Ck which is related to v by Rk' Since {vertices of K} 1is a
finite set, the image of four vertices which form a simplex by this
map is still lecally in general paosition far sufficiently large k.
Thus they span locally a hyperbalic simplex in Ck and we get a
hyperbolic triangulation of (Xk, Zk) which are combinatorially

equivalent to K. In particular, (XC*’ ZC*) is homeomorphic to

(Xk, Zk). This completes the praocf.

§ 5 Noncompact euclidean 3-cone-manifalds

When thin part dﬁes not vanish, we must look at what héépens
when inj(xn) - 0. To see this, we look at the geaometric limit by
rescalring its metric by l/inj(xn).— In this case, the metric in
the limit beFomes flat. If furthermaore inj(xn)/diam(Cn) -» 0, then
as we will seé later, it becomes noncompact euclidean 3-cone-
manifold with cone angle { =. The purpose of this section is to
classify thase.

Let E be a noncompact euclidean 3—con§—manifc]d with cone

angle {® and p be a base point in E. Then let PPI be a



a2

a starlike fundamental domain C)E3 centered at op.

Claim Pp is convex.

Proof. Exercise !

Let Br(P) be an r~ball centered at p and let Sr be its

bgundary &Bp(p). We call ar‘ea(Sr)/r2 the visual area of S

.

Let A(t) be a visual area of Sexp(t)' Then it

nonincreasing function since PP is convex.

is monotaone

We call the following singularity a crease and their

intersection paint a valley.

CYease Crease

/]\ Crease

™ cvease valley

We will see haQ the crease and valley contribute to A(t).

Case 1 ¢ Crease. Look at the picture belgw.

Section
Ar 5

P ‘*’{ Sr «t s

We can see that tan a¢ approaches Ar/w when Ar = 0. Let s be

the length of a crease in question. Then ‘area R1 = area R2 = area’

R and we have



2.

Area(S = (area(Sr) - 2 area R)(r+Ar)2/r

reAR)

If we let V(r) = area(Sr)/rz,

V(r+Ar) = V(r) = =2 area(R)/r2.

On the other hand, area(R) 1is approximately equal tao sw and
hence <sAr cot a. That implies the derivative dV(r)/dr =

-2s cot a/rz. Since A(t) = V(r) and r = exp t, we have

1}

A(t) = -dV(r)/dy-dr/dt -25 cot a/r.

- area(R)/r2,

Case 2 : Valley. Again since V{(r+Ar) - V(r)

area(R) has the same arder as (Ar)z. Hence WV(r) 0 and the
valley does not contribute the change of A(t).
We have shawn by these aobservation that A(t) is

differentiable except when the crease is newly produced.

Proposition 5.1 ¢ If A 1is constant for all t, then E 1is

‘;)°( L:'
@ P
P ""—"—Dd ov E3
T~

Progof. Since the visual area af Sr is constant, the crease
cannot be produced in the process. This means that Sr intersects
with neither itself nar a singular locus. Hence the only possible
euclidean cone-manifald which possesses such a base point is the

above three.
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In what follows, we afe cancerned with the behavior of AC(t)
as t 2 = to see what the end of E Tooks like.

Let P be a (non geodesic) n—-gan in 1E3, K a Gaussian
curvature, dA an area farm, ’kg a gegdesic curvature of @4P.
Then by Gauss Bannet, we have

X,

- fp K da = / %

iHM>

3P kg ds + (n-20m - .
where a; is an angle of the i-th vertex of P. This is the
general formula.

Let us now divide Sr by n;-gans Pi’ 1 i< f, so that
each crease is contained in same aPi and each valley is contained
in the vertices of some Pi' Let I' be a l-complex which consists
of U gP.. Denote #{edges of Pi} by m., and #(edges of T) by
m. Then m =2 m,/2. Also denote #{vertices of T} by n. At
each vertex v af ', finitely many Pi’s meet., Let us denate
them, say, by le, oo ij and also denote each angle of ‘Pji at
v by ajic @y T aj1+"°+ajk is the total angle centered at vie
It is obvious that 2 a; ie equal to the summation of all the total
angles of Pi’s at iertices. Alsc notice that each o is 2n
unless v ‘is a valley. v

Again by Gauss Bonnet,

I

(i) n
-3 JfoK.dA, = T [, k ds + I (m,-2)x - Z ..
=y Pyl gz TPy =y 1 =1
We interpret each terms. Since -Pi is an Sr’ Ki = l/r2 and
hence
I, = —area(S )/r2 = —ACt)
1 r *



Think aof 12 next. On each nansingular edge of I’ where Pi
(i) (J)
g

needs only an the edges which are crease. Let I TEEEEER’ eq be

Pj meet, kg and Kk are cancel agt. Thus the integral

and

edges of I' which are crease and let Sy ot sq be their length.

Since the crease is aon the circle of radius r sin «, we have
= 1/r sin a. Thus kg(s) = —-cas « |Ir"l = (-1/r)cot a« and
q , q 2s. )
I,= 2/ - kg<1) = -3 —* cot @ = ACt).
i=1 e Ue, i=1

Finally we have

; §
I, = (m,-2)x - o,
SRR ETE j=1
n
= (2m-2f)n - 2nm + 2 (ZR—aJ)

n
27 (S ) + 2 (2n—-«.)
“r j=1 J

The follaowing is the derivative formula we have obtained.

- A(t) -

A A(t) = 272 (S
' J

n Mo

exp(t)) 1(27z--aJ).

Remark : Choose a base point p € E. For.a point x € 8PP,
let v, be the ray which runs from p tao x. If d(p,x) = =,
then BPP and v becames gradually parallel. Simultaneously

and aPP intersect gradually perpendicularly each ather.

Ir

S

Think of é polygonal division of SP naturally ariéen in the

"

we

r

fundamental domain. Let P be a fundamental polygon. of Sr which’

is contained in PP. We have by Gauss Bannet that

M3
o

o > —/P K dA = f&P kgds + (n=2)n - ;
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where m = # of vertices of P and 91 is an angle of the i-th
vertices. We claim that the first term approaches zero when t - =.
This is because kg approaches zero with order r"2  houever the
length of 3P approaches = with arder r. Hence we have that for
any € > 0, there exists tO sao that
n
.Z (n—ai) { 2n+e.

i=1
When ajl’ ooy ajk\ meet at valley v. an Sr C E where ai1+...

J
gy £ 2r, we must have

) 2 (k=2)x.

N Mx

(7["‘&--) = k;{ - (ail'*'..."‘a

1 J1i 1k

i
Thus if we take to sufficiently large, then the summation of the
left hand side in terms of | must be less than 2w+ by the

-

previous inequality. That means k «can be at mast 4 .and moreover

if k 4, then |

1 which means there is anly ane valley, and

if k

3, then j £ 2 which means that thé number of wvalley is
less than three.

We rewrite the formula by

A(t)‘= ZKZ(Sexp(t)

Y - ALY - P(t) - Q(t),

where P(t) is contribution of valleies which are not contained in
Z and Q(t) 1is contribution of Sr N ZE. Notice that 1lim P(t) =
0 (t »®), This is because when t goes to =, each crease
aPProéches geodesics and hence the total ang]eiaround the valley,

whase number is at most two, tends to 2x.

Proposition 5.2 ¢ E has at most two ends. If E actually has

Wa ends, then € i a product of a compact euclidean 2-cone-

—— —
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manifold and a8 1-dimensignal euclidean space. More precisely E igf

gne aof the followings.

s* ‘ S

x E x [E' TxIE
) o)
(xﬁ‘F>*'K”‘JNL

Proof. For each end of E, we can chaose a ray in Pp from
p to infinity. So given tws ends, we have two rays vy and Vs
which tend to each infinity. Suppase vy U Vs is ngt a straight
line, then since Pp is convex, a convex plane bounded by vy U Vs
is contained in"Pp and we cannat have a compact face which
separates given ends. This shows that E has at most two ends and
if E actually has two ends, then correspanding half lines #orm a
straigh{ line in PP'

Suppose E has two ends. Then since any face of Pp‘ dges nat
intersect with vy U Voo it must be parallel to vy U Voo Mareaover
since E actually has two ends, the faces of PP must surround vy
u Voo Let @ be a 2-dimensional paolygon which intersects
perpendicularly to the faces. Then 8Q must be glued with 3@ wvia
the identification of Pp to produce E because PP is starlike
and hence the identification does not contain the translation factor

along vl U u2. This proves the proposition.

In what follows, we will be exclusively concerned with E with

only one end. In this case, S is connected if t s

exp(l)

sufficiently large.
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Progpgsition 5.3 ¢ (1) There exists t such that z<(S )
0 — exp(t)

is nan negative and increasing faor t 2 to.

(2> If Z(Sexp(t)) =0 for all t 2 ty, then there is no axis of

ZE which tends tag infinity.

(3) If there is t 2 tO so that Z(Sexp(T)) = 2, then the number
af axis of ZE which tend tg infinity is { 4. Moreover if it is 4,

then their cone angles all are equal to =x.

Proof. Reca?l that we have s formula

A(t) = 221 (S - A - PO - Q)

exp(t))
where the last three terms are ngn—-negative.

First aof all, (S ) is constant when t is sufficiently

exp(t)

large because then 2% intersects with Pp in almast right

exp(t)
angle and there is no chance to produce or to reduce genus. If

¥ (S ) < 0, then‘ A(t) < caonst < O far all t > to and hence

exp(t)
A(t) becomes zero when t is sufficiently large. This means that
E 1is compact which is aut of our argument.

If 2(S ) =0, then A(t) ¢ - Q(t). If there is an axis

exp(t)
which tends to infinity, then A(t) { -(2r-a) { -x uwhere a 1is its
cone angle. then again by the same reason, E becomes campact |
which is out af gur argument.

Assume that we have the condition of (3). In general 1im P(t)
=0 (t-»>=), Since E .is noncompact, there is a diverging
sequence {tn} so that 1lim A(tn) = O. For this sequence, we have

@(tn)  4n+e (¢ = O when n =» =). Let el, R be edges of ZE

Wwhich tend to infinity. The summation of angles arcund

e n Sexp(tn)’ denoted by & is obviously more than the cone
angle ‘J of ej. Hence we have
. k k
dr+e > QL ) > 2 (2n-a.) 2 2 (2m-¢ ) 2 4m .
T =t T =t VT
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Hence k £ 4. Mareover if k = 4, then since 2z—zj =nx, the cone

angle of each ej must be ®.

We are now ready to classify noncompact euclidean 3-caone-
manifolds with cone angle {n.

Case 1 : ZE = ¢. E 1is then a noncompact euclidean 3-manifaold.

Namely, E =!E3/F where [ 1s a discrete subgroup of IsamGE3).
When I 1is trivial; then E =(E3. When TI' 1is cycltic, then E is
81 XIE2 where the product may be tuisted.» Far the rest case, there

is an abelian graup I’ of I aof finite indek which are generated
by translations. Since E 1is noncompact in our case, T’ |is
isomorphic to Z x Z. Also since ZE # @ and E has only ane.end,
E must be a twisted product of a Klein battle with the
1-dimansional euclidean space.

Case 2 : ZE consists of lines. Since there are at most four
axis which tend to infinity by Praoposition 5.3, ZE must consist of
one or two lines. Also we may assume that there is an increasing

2

sequence (tn} sa that S = g~.

exp(tn)
(1) UWhen ZE consists of a line. Take a base point p on

z Then since an e€-ball is standard if & . is sufficiently small,

£
we have A(log &) = 4n(a/2n) = 2. On the other hand, we do have
ACt ) = 4n - A(tn) - PCt ) - QCt ). UWhen n ==, At ) =0, Pt
- 0, Q(tn) - 4rn-2, and hence Alt ) - 2x¢. This shows that A
stays constan{ and we are done by Proposition 5.1.

(2) . When ZE cansists of two lines 21 and £2. The cane
angles both must be x by Proposition 5.3. Let p be the center

of the shortest path connecting 21 and 22. Since their cqne'

angles are =xn, Pp must be contained in the following picture in
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A lz

Since other face of Pp does not intersect either ﬁl ar 22, Pp
is actually equal to the picture abave if ﬂl is not paralilel to
Lo When PP does not have anather face, then Pp is still the
same even if £, is parallel to L,
Thus assume that Pp has another face and 21 is parallel to
Lot Let Q@ C Pp be a hyperplane cut which intersects vertically
with ﬁl and £2 éhd Wwhich cantains p. Then by the same reason
as before, 028Q 1is identified with itself by the identification tao
pqoduce ‘E. Let @ be a 2-cone-manifold obtained from @ by
identifying edges containing QN £, and @ N L5, @ is still
convex and hence Q must be a rectangle and further more each

2

vertex must have angle =x/2. Therefare @ becomes P with two

cones af angle =z after identfication. This impiies that E 1is a

twisted product of P2

uiﬁh two cones of angle x and the
l-dimensignal euclidean space.

Case 3 : ZE consists of circles. Take a base point p on a
circ]g of ZE with cone angle a. Since PP is divided at the

antipaodal point of p on the circle, it is contained in the picture

belouw.,
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When Pp does not have ancther face, then E must be the product
of a circle with a 2-dimensional open disk with a cone of angle «.
Suppase that Pp has anather face. If « # m, then since
a hyperplane cut 's illustrated in the picture becomes compact by
convexity of Pp, E itself also must be compact. This is out of
our argument. Thus we assume that «a =x. Let v be a ray from
to infinity. Pp is still convex after identifying faces along
singular locus containing p and hence anaother face must be
parallel to wv. Since a hyperplane cut which is vertical to these
faces has genericalTy no intersection with a singular locus, it
turns dut to be either a torus ar a Klein bottle after final

identification. Hence we can have the fallowing two cone-manifalds

as

Case 4 : %

£ consists af the union of circles and 1ines_and

hence it has no vertices. Take a base paint p on the circle of
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Sge Then we do have the same picture as in the case 3.

[ p
/

By Praopgsitian 5.3, the number aof axis of ZE which tend to
infinity is 2 or 4. Suppose we have tyo such. If we rechoose a
base point p an this line, then by the same argument as in the
case 2, A(t) stays cgnstant and ZE cannot have circle. Thus
assume that we have 4 axis which go to infinity. Again by
Prapaosition 5.3, their cone angles all must be =x. Since they are
on the face of Pp, they are parallel ta v. This shouws that a

2 Lith 4

hyperplane cut S which does not contain p becomes S
cones af angle vz after identification. We can draw the picture of

PP as fallous. s
S

it

Hence E must be

Case 5 ZE has a unique vertex v and moreover each edge



from v goes to infinity. If there is anather line which goes to
infinity, then we get at least 5 axis which tend to infinity. This
contradicts Propaosition 3.3. Hence any other component of ZE is a
circle. Let us -take 'p to be v and fet the cone angles around v
be a, B, 7T respectively. Then A(t) = q+8+7-2x for
sufficiently small t. On the other hand, as t = =, St
intersects only with three axis. Recal]l that there is a diverging
sequence {t ) so that A(tn) - 0 uwhen n-> e since E is
noncompatt. Far such a sequence, we have 4dn - A(tn) = Q(tn) - 0
when n -+ =. Since @(tn) - (2r—c)+(27-8)+(2x-7), lim A(tn) =
a+B+T—2x. This shows again that A(t) stays constant since A(t)

was monotone nonincreasing. Hence E must be

by Proposition S.1.

Proposition 5.4 : Let Q be §>spherica1 2-cone-manifold

Sz(a,B,7).

(1> 1f «a, B, 7 {®, then its diameter is {( x. In other words,

d(p, 9) { =/2 for any p, 9 € Q.

(2) If furthermaore a«, B < ®, then its diameter is < z. That is

to say, d(p, q) < & for any pP, 9 € Q.

Here we assume that the curvature of Q@ is 1.

Proof. Develop Q@ on 82 and enjoy your spherical geometry !
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Case 6 : Otheruwise.

(1) If Z contains an edge which is closed at the vertex v.

E
The other edge from v must go out to infinity. Take a base point
p on the center of the closed circle and we get a fundamental dmain

pp as follouws.

Y
o
u i
D

A

The lines vy and Vo in the picture, which come down to the other
edge fraom v, must intersect perpendicularly to the edge containing
p since atherwise Pp becomes campact. Alsa vy must be parallel
tao Vo again since otherwise Pp becomes compact. - Suppase that «
< ®. Then it produces a cone of angle > 2% after identification.

This is.contradiction and hence a = z.- Thus Pp is the product of
a fundamental domain of a 2-cone-manifold and [O0,»). A hyperplane
cut which does not contain p becomes an euclidean 2—cane—ménifc]d

and hence E must be

(2) ZE contains at least two vertices and.does n0t contéin

and edge which is closed at a ver{ex.

Claim ¢ There is an edge which connects two vertices.
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Proaof. Otheruiée either there are 6 axis which go to infinity.

Take a base point p on the center of the edge in the claim.

Then we have a picture of PP as faollows.

| é
\.,) Vv k’/ |

If B8, 71 < =m, then applying Praposition 5.4 ta an g¢-sphere

centered at v, we have that & < z/2. This implies that PP is
compact, which is out of our argument. Thus we may assume that £ =
x. Suppose «a < m, then again by Proposition 5.4, § < m/2 unless
7 ==x. Since the case & < m/2 1is out of our argument, we may
assume that 7 ==,

(a) When a« <x and B =7 =x : There cannot be anqther

face. Tbus E is
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yhere either Bl or T4 and alsa either 32 or 7, are m.
(b=1) when 71 = 72 =n. If vy is naot parallel to Vo
then there cannogt be another face and hence we have

2)1
T

—7 VZ “TC

- T

When vy and v, are parallel and there are no:other face, the
picture will be the same as abave and we are done. Hence assume
that vy is parallel tao Vo and with anofher face. Then such a
face must be parallel to a hyperplane cut cantaining vy and Voo
Thus Pp turns out to be a product of a double of a compact
euclidean 2-cane-manifaold along an edge and [0,®). Since the cone-
manifolds we discuss in _the next case have the same type of the
fundamental domain, we leave a classification of this case by the
end of (b-2).

(b-2) UWhen Tl <=z (72 = Bl = ). Then vy must be parallel
to Voo Because if not, and further if 75 ( z, then E becomes
compact, which is out of our argument. If To =X, then two lines
which are the intersection of the roof of Pp containing vy and
the base of PP’ is nat para]}el ta Voo Thus E becomes compact,
is

which is.again out of our argument. We have shoun that Ul

Parallel to Voo Thus PP is a product of a compact half euclidean
2-cone-manifold along an edge and [O0,=). Ue noQ classify
noncompact enclidean cone-manifolds having a fundamental domain of
this type. First notice that there are three compact half euclidean

2-cone-manifolds illustrated belouw.
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manifaold uith cone angles £ %«

Thus the possib]e’cases are the followings.

Theorem 5.5 ¢ Let E be a noncampact euclidean 3-cane-

—/ "

2x*+(3=-2Jcn

a(-&-f +T=2TC

Summarizing the arguments above, we have

Then we can choose a fundamental

in the faollowings.

A product of a compact euclidean l1-orbifold and

euclidean 2—cnﬁe—manifold.

(2) A product of a noncompact euclidean 1-orbifold and a compact

euclidean 2-cone-manifald.

One listed in Proposition 5.1.

noncompact

— 44 —



47

§ 6 Rescaling geometric Timits

The following propastion is a key for analyzing injectivity

radius gf cone—-manifolds. .

Propgosition 6.1 : Let C be a riemannian 3-cone-manifald with

constant curvature -1 £ K £ 0. Suppose there is a canstant Kl > 0
e ————— - - .
eg that the angle of each elliptic axis is greater then K1 and

than or equal t ® and the sum of three angles of elliptic

—
(]

es

emtra——

axis which meet at a vertex is greater than 2r + Kl' Then given R

pSAS—

and K2 > 0, there is a constant 4§ > O which depends gnly on R,

Kl' K2 and does not depend on C sg that if inj(x) > K2, then
inj(y) > & for any vy € BR(x,C).

Proof. We split the argument into three cases. The first one
is when y is a vertex of I. Let r, be sup r | B.(y) is
standard ). UWe then further split this case info two parts.

Case 1-a) UWhen BBrl(y) contacts some edge of X2. Let p be
this contact point and let q be a central point of the segment

connecting p and y. Develap C centered at gq. The following

is an abstract picture of this fundamental domain P _.

Y

F

"By Proposition S5:4, the both angles indicated in the picture are at

mast x/2. Now since inpj(x) > K2 by the assumption, there is a
paoint «x in C sao. that By, (x.) 1is standard and contains x.

0 K2 0
Think of a ball of radius r1+R+2K2 centered at q. This obviously

contains B, (xs) and we get the inclusion :
K2 0
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B (q) D BK (xo)

r‘1+R+2K2 5
The volume of the‘right hand side is bounded from below by some
constant which depends anly on Kl since that is a standard ball.
However the vaglume of the left hand side approaches zero when r4
goes to zero. That is contradiction and there must be a lower baund
of ry in terms of R, Kl and K2.

Case 1-b) When aBrl(y) contacts itself. Let p be this
contact point and develop C <centered at p. Then we get the

fallowing abstract picture and again by Proposition 3.4, we have

angle conditions indicated in the picture.

b 4

The same argument as in the above can be applied to this case.

We then discuss the second case when y is on the edge ey of
. Let r, be sup{ r | B.(y) 1is standard }. We may assume that
the distance between y and any vertex of X is bounded by a
lower bounding constant Sy of ry obtained in the previous case.
That is to say, o < 51/2. We further split this case into two
parts.

Case 2-a) BBPZ(Y) contacts an edge e, of . Let p be
this contact point and let q be the central point of the segment
a, connecting y and p. Then develop C <centered at q and
denote it by Pq. Imagine that the face F of Pq cantaining e,

is almost parallel to ey when the angle befueen e and the

segment connecting y and p 1is near =zn/2. Let €(r2) be the
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angle between O and =n/2 sag that cas'9(r2) = 2r2/sl. Then
9(r2) approaches =/2 when ro, goes to zerso.

Suppose that there is a sequence of o of this situatiaon
uhich converges to zero. Furthermore suppose carrespanding angles
g's all are greater than 9(r2)’s. Then since‘ F becomes almgst
parallel to ey the volume of BR+2K p (q) . approaches zero when

2 2
goes to zera. This is again in contradiction with the inclusion

r2
of the standard ball. Thus ro has a lower bound and we are done.
If corresponding angles &’s all are less than 9(r2)’s, then the
argument will be a little bit complicated, however we can deduce to
contradiction. Let a; be the shortest segment in !HS connecting
3

and eye We are thinking that Pq is in IH If there is no

€1
singular locus in the rectangle bounded by eys €5 3y and aj
then developing C <centered at the midpoint g’ of aj, we get a

ball Br +RHK (q’) whose volume converges to zero when length al,g

s gce52t0 zgro. This is in contradiction with the inclusion of a
standard ball. Thus there must be a singular laocus e in.the
rectang]é.r We may assume that the distance between the intersection
paint of hea and the rectangle and either e; or e, is £ ro/2.
Choose one that satisfies the inequality and do the same argument as
above to this locus and eé. The situation is completely same as
one at the beginning af the prévious argument except‘that the

distance‘betueen two edges is less than r2/2 < s5,/2, which is a

1
half of the original situation. Do the same argument again. This
process terminates by finitely many steps and we find the shaortest
segment a «connecting two singular loci in C within a small
distance from y. HMore precise]y,' d(y, a) < E sl/Qk = s Thus

k=1
by choosing the central point q of a and develdping C <centered
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at 4q, . we get a ball '82r2+R+K2(q) whose volume converges to zero
when r, goes to zero. This is in contradiction with the inclusian

of a standard ball within a small distance from vy.

We remark to clarify the situation that the length of a,

, . . . '
cannot be zerao in the above process since if it happens, then e

and e have a common vertex which is contained in Bs (y). That -

i+l 1

contradicts the assumption.

Case 2-b)  UWhen 8Br(y) _contacts itself. Let p be the
contact point and develop C centered at p. We get the almost
same fundamental damain PP as in the previaus case.  Actually the

P
Let 5o be the minimum of the lower bounds gbtained in the

same argument can be applied to this P_.

previous two cases. Then actually for any paoint vy in the
sz—neighborhood of Z£, 1injly) 1s greater than Sy The last case
is-thus the following.
Case 3) When y 1is in (C - #L_ ()) M Bo(x). Let
52 R 3
sup{ r | BP(y) is standard }. We may assume that r3 <»52/2- Thgn

be

Br (y) looks like the following picture :
3

P

Let « be a homotopy class of a loop indicated in the picture. «
represents some transformation g in the holonomy group. Let £
be the axis of g in case g 1is not parabolic. Suppose that
either g is parabolic or d(p, £) 2 s,/2. .Then develop C .

centered at . vy. The faces Q@ and Q" of P_y containing the
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deve1oped'images of p becomes almost parallel when ra is very
¢mall. In particular, if- ra is not bounded by some constant, then

the valume of B (y) approaches to zero when r5 goes to

r‘3+R+K2

zero. This is in conthadicticn with the inclusion of a standard
pball within a small distance from y. Thus we may assume that d(p,
g2) < 52/2. Then £ is freely homotopic to « in C because of
the distant assumption. In particular g 1is not elliptic. Thus by
developing C centered at a point an £, we get a thin fundamental
domain. The length of £ cannot be arbitrarily small by the same
reason. We thus get a lower bound aof ra which depends only an R,

Kl and K2.‘ This finally completes the praof.

We now follow the notation in the end of § 3. Namely we have a
positive increasing sequence tn which converges tg -to where a
cone—-manifald structure degenerates. That means Cn converges to.
some degenerate metric space . in Gromov’s sense.

Since we will deal with the case when thin part does not
vanish, by rearranging a sequence, we may assume that Cn,tﬁin(l/n)
# ¢. Chogse a base paoint X0 from the 1/n—-thin part aof Cn.

Rescaling Cn by a homothety of multiplying l/inj(xn), we get a

cone—manifaold (En’ ;n) of constant curvature ~(inj(xn))2. Notice

that inJ(§n> = 1.

Propasition 6.2 ¢ There is a subsequence {k} € {n} sg that

(En’ ;n) converges to a complete euclidean 3—c0he—manifn]d (E, v)

other than one listed in Proposition S5.1.

Proof. By the previous propasition, given R > O, there is 0

so that (BR(;n’ En))thin(é) = ¢. Think of a sequence of cone-



manifolds {BR(;n’ En)}. Then by the same way as in the proof of
Thearem 4.2, there is a subsequence which converges to a euclidean
3-cane-manifold with boundary. Since R <can be taken arbitrarily
large, we have the limit euclidean 3-cone-manifaold (E, y) by the
diagonal argument. Since 1inj{y) must be equal toa 1, E cannat

be one listed in Proposition 5.1.

§ 7 When thick part live

In this section, uwe dea1 with the case when there is ¢ so

that C # ¢ for all n.

n,thick(g)

Choose & base paoint X in the thick §art of Cn. Then
slightly modifying the argument in the proof of Theorem 4.2, we get
a subsequence {k} € {n)} so that (C_, x, ) converges to a complete
hyperbolic 3-cone-manifold (C*, x). Thus we assume fraom the
beginning that (Cn, xn) converges to (C*, x) and see how the end
of C* looks like in the belouw.

Case (i) : each component An of Zn stays in the thick part
or tends to infinity. HMore precisely, there is 6 > 0 and ngy 2 9]
sog that An is in the d-thick part of Cn for all n > ng or for
any & > 0, there is Ng so that An does naot intersect to the
6-thick part of Cn for n > ng* Then choose a decreasing sequence
{6n} which converges ta 0 and let B~ be the difference

c Then Cn converges to C" and the

n thintg) ~ Cn,thind )
6-thick part converges to the 8-thick part of C* and B,
converges. ta B where B is the §-thin part of C*. Since B
does not intersect with the singular locus, it consists of finitely
many taoral cusps. We will see in Prcpositich 7.2 that this case

cannot occur in fact.
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Case (ii) ¢ otherwise. That is to say, there are a subsequence
(j} € {n} " and a decreasing sequence (GJ} and a component Aj of
Zj so that 8(Cj,thick(6j)) N AJ # . Choose a base point yj on
B(Nj,thick(éj)) N ZJ. Then by the simi]ar method in the proof of

Proposition 6.2, we have a further subsequence satisfying

Propositian 7.1 : There is a subsequence {k} € {n} so that

(Ek, ;k) converges to a naoncompact euclidean 3-cone-manifold (E,

y) with non empty singular locus. E has the properties that

every cone angle of the singular laci is { m and that inj(y) = 1.

Recall that the fundamental damain of & noncompact euclidean
3-cone-manifold E of cone angles { # has one of the following
forms. Type a) (compact l-dimensional) x (nancompact
2~dimensioné]). Type b) (noncompact l1-dimensignal) x (compact
2-dimensional). We further split Type a) into two cases.

(a=1) UWhen (E, yY 1is isgmetric to (2-dimensional open disk
with a cone of angle { =) x Sl. For given R > O and ¢ > O,
there is k, so that there is an e-approximation betuween (BR(gk’
Ek)’ ;k) and (BR(y, E), vy} far all k >‘ko. They actua]]y
homeomarphic each other for sufficiently large k by the same
argument in the end of § 4. Take R to be very large. Then since
inj(;k) = 1, inj(y) =‘1 and hence 2’ has length 1. Since vy 1is
on £, B (v, E) is standard, that implies B (y,, C.) being
standard. Hence for any =z € Bl(;k’ Ek), we have inj(z) 2 1.

This means that inj(z) 2 6k far any =z € Bék(yk’ Ck)' On the

other hand, since Y was on the boundary of the ék—thin part of

Ck’ there is 2z € Bdk(yk’ Ck) so that inj(z) < dk. This is
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contradictions

(a-2) When there is an edge of ZE whaose cone angle is =m.
This means that the deformation along the path reaches to the final
target and c* is a complete hyperbolic 3-arbifaold of finite
volume. Thus by a theorem aof Margulis, there is 6 > O so thatfthe
6-thin part consists of finitely many cusps.

We now split Type b) into two cases.

(b~1) 82(a,B,T) XIEl» where a+8+7 = 27. UWe ma§ assume that
to < 1 because of the argument in (a-2). We further split this
case into two cases.

(b-1-i) When faor given 4§ > 0, there is k sag that the

0
d-thin part of Ck contains nancuspidal compaonent Ek for all k >

ko. Choose a base paint ¥, on 8Ek. Then (Ek, ;k) converges ta

2

é noncompact euclidean 3-cone-manifold. Assume that E = $(«,8,7)

1

x E as in the assumption of.the case (b-1). If we take k and R :

to be suFFicient]yllarge, then BR(Ek’ ;k) is hameomorphiq to

2

B, (57 (x,8,7) xtEl) which is homeomorphic tao Sz(a,B,T) x [a,b].

R
Since a+8+7 =27 at t =t

0 <1, the sphere of these three cones
originatéd from a spherical suborbifold in O (notice that the sum
of three cone angles at the final destination is supposed to be
greater than 2n). Hence by irreducibility of O, the sphere
baunds a standard cone ball and in particular three axis meet at the
vertex. Thig means that Ek is a cusp which contradicts the
assumption ofj(b—l—i), and hence this cannot occur.

(b-1-ii) When there is & > O and a subsequence {j} C {k}
so .that the d-thin part of Cj consists of cusps far all j. Then

the cusp can be deformed furthermore, which means C* is nat a

degenerate geametric limit. -
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(b-2) UWhen {here is an edge of ZE whose cone angle is equal
to m. Then by the same argument of (a-2), this is the final
"destination.

Summarizing those, wWwe had seen

Proposition 7.2 : The end af C*  consists of finitely many

CUsSpPsS-

Let C*  be the closure of C* - cusps.

Proposition 7.3 : Under the assumption of this section, C’

can be embedded in O as a suborbifold whose boundary is

incompressible.

Progf. UWe have a homeomorphism f, : (X, Z,) = (X5, Z4)
uhose‘homotopyﬁclass is canonically determined by the original
continuous algebraic deformation of the holonomy. Choose & so
that C’ 1is the 8—-thick part of C*. Then there is an
approximation between C’ and the 8-thick part of Ck' Chnﬁse this
by an ints homeomorphism &, : (Xo,, Z.,) = (X, £,) for
sufFicieniiy large k and moreover such that the images of Fk‘¢k
stay constant in XO while k wvaries. (We assumed here that ihis
can be done since it sounds réasonab]e, however we may have to prove
it.) Passing subsequences, we may further assume that Fk'wk maps

.a component of axc, to a constant surface in XO while k
varies., Identfying XC,' with the image of fk'ék’s, we regard
XC’ as a subspace of X5. Then the map f +¢, ~will be a self
homeomorpﬁism of XC; ']eaving the componenf'af boﬁndary invariant.

We should noticé here that the homotapy class of Fk'ék depends an
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what k is. From now on, k 'is always assumed to be large enough.
We have already shown that a companent af 4C* is either a

torus, 82(z,z,z,x) ar 82

(a,8,7) with a+B+7 = 2t. We will prove
this proposition by showing that XC, does not have a toral
boUndary, C* 1is embedded in O by Fk-¢k as a suborbifold and it
has an incampressible boundary. » |

Let us first show that C’' does not have a toral boundary.
Suppose XC’ hasfa toral boundary which is not é-parallel but
incompressible in XO - ZO’ then it contradicts to the simp]icity
of our initial setting. Hence we can assume that ali of toral
boundary is either &—-parallel or compressible in XO - ZO. Choose a
a loop £ on a taral boundary of XC’ sg that it bounds a disk
passibly with a cone in XO' Since it bounds a disk in XO’ fhe
holonamy P of Ck must map - fk_?(£)~ to a trivial efement or an
elliptic element with bounded rotatgan angle. We dengte

-1

’(fk‘¢ ) T ()Y by ﬁk. Notice that every ﬁk represents a{parabo]ic

k
element in C’. Suppose that there is a subsequence (i} € {k} so
that all ﬁi rgpresent the unique class £* in x1<xc, - ZC,).
This means that Fi—l(ﬁ) cunQerges to the laop representing this
class. In particulaf, pi(fi—l(ﬂ)) must converge to p(ﬁ*) where
p 1is a holonaomy of C’. However this is contradiction since
pi(Fi_l(i))’s are trivial or elliptic of bounded rotation angle and
cannot converge to a parabaolic element #(2*). Hence we have the
other case. That is, Ek all are distinct in nl(XC, - ZC,). Then

think of a homegmorphism gJ H XC’ - XC’ defined by .

-1 . . _
(Fjgéj) -Fk ¢k for > k. Obwviously gj(gk) = EJ. vTake a double
of XC’ along its sphericl boundary and denote it by DXC,. Then
M= DX, - DE, is an irreducible and Haken manifold and hence it
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admits a geometric decamposition. By doubling thé maps gJ’s, we
get a family of self homeomorphisms of M which leaves the |
Componenf of the boundary invariant. Futhermore the restriction of
the family to the components af &M containing a copy of £
provides infinitely many distinct homotopy classes as maps. This
can happen only when a geometric piece af M <containing a cnpy of
g an its boundary is a Seifert fibered space. S. Moreaover S

must have anagther bgundary component which is a boundary of - M and
to uHere the restriction of our homeomorphisms provides infinitely
many haomatopy classes.  This is because the restriction of a
homeomrphism of M +tao the taorus appeared in the torus decompaosition
can provide only finitely many homotopy classes. Nou,vthe gther
boundary component either inherits a toral boundary af XC’ ar a
boundary aof a tubular neighborhood of a component of DZC,. In the
:second case, a fiber.of a Seifert fibration restricted to 34{(DZC,)
must be hamotopic to a meridiona]_}oop since otherwise we cannot
have infinitely many homotopy classes of maps which extend to a map
af DXC,. We now have a saturated essential annulus A cdnnecting
these two boundaries. Cutting A along the central surface of N
Wwhich was the spherical boundary of XC” we get as a part of A

an essential annulus A’ in X -2z

C’
on the toral boundary aof XC’ -»ZC, cantaining £. This represents

cr* One companent aof @&A’ is

a parabglic element in the holaonomy of C’.. The aother companent is

either on a toral boundary of - X - EC’ or on a spherical boundary

C’
of XC" Thus in any case, it represents a parabolic or an elliptic
element in the holonomy of C’. Hence A' turns out to be an
essential annulus in XC’ - ZC’ which joins a cusp with either a

distinct cusp or an elliptic axis in C’. This is imposssible and
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hence 'C* <cannot have a toral boundary.
Now, 8C’ consists of S2(n,m,x,x)'s and S2(a,8,7)'s uwhere

a+8+7 = 2r. We next show that the inclusion XC’ C XO becames an

inclusiaon of orbifolds C* € 0. To see this, assume first that acr

cansists anly aof Sz(a,B,T)’s Wwhere a+8+7 = 2r and none of of, 8,:

7's is equal to =®. Then every companent of 8XC, must bound a

cone ball in XO since O 1is irreducible. By Theorem 2.4 and 2.6;,

we can further deform this cone-structure towards the final target.
This means that C’ is not the geometric limit, which is
contradiction. Thus we have at least ane cone point on 48C’ with
angle = x. This shows that our deformation reaches to the final
destination. Hence a cone-manifold C* is an orbifold and the
inclusion XC’ C XO by the map fk-¢k supports an embedding of

C* to O as orbifaolds.

Let us identify C’ with the image of the embedding to O and
regard C’ .as a subaorbifold of 0. Last of all, we shou that oC’
is incompressible. The argument is quite similar to the above ane.
Assume if not, then there is a disk paossibly with a cone in XO*
whose boundary is a naontrivial and nanperipheral logop £ oan
BXC, L ZC,. Thus this represents a parabolic element in C’. Sincé
it bounds a disk possibly with a cone in XO’ the halaonomy Py of

Ck must map Fk—l(ﬁ) to either a trivial element or an elliptic

Ly

ellement of bounded rotation angle. We again denate (Fk'¢k)—
by £,. Suppose that there is a subsequence (i} € {k} so that all
ﬁi’s represent the unique class £* in zl(XC, - ZC,).

we Jet p be the holonomy C’, the sequence pi(fial(z)) must
converge to p(2%) which is a parabolic element. However this is

impossible. Hence we have the other case. That is, all £;’s

Then, if



represent distinct classes in’ ni(xc, - ZC,).' Define a -

L. . -1 : ,
hgmeomorphism gj : XC’ - XC’ by (Fj'éj) ka'ék for § > k. |
Notice that gJ(ik) = ﬁj. By simple argument, we can see that M =
DXC’ - DZC, is irreducible and atoroidal. Thus it admits a

complete hyperbolic structure of finite volume by the unifarmization
theorem. On the ather hand, we can canstruct infinitely many

homotopy classes of self homeoemarphisms of M by doub]ing-'gj.
This is again contradiction and we have shown that &C’ cannot be

compressible.

We have shown up to here that we get a hyperbolic 3-suborbifaold
¢c* of O and a torus decamposition af 0. Since Haken’s
finiteness theorem even holds for this situation, we can reduce the
arguhent to the other case by induction of the maximal number of

compaonents splitted by incompressible euclidean suborbifaolds.

§ 8 When thick part die

We first see how geometric limits without rescaling look like.
We see it locally by thinking of the gegmetric limits of

3 Uhich

H3/<¢m> where {¢m} is a sequence of elements of IsomﬁH
canverges to the identity element.
Case 1. UWhen ém’s are elliptic, then its Timit is a

half-plane.
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Case 2. UWhen @ ’s are parabolic, then its limit is M2,

Casé 3. When ¢m’s are hyperbolic, then again its limit is
H2. |

Case 4. UWhen ¢m’s are loxodromic, then there are mainly
three cases. To see this, let us define the twisting angle &

m
abm by

2

It Sm approaches =#/2, then its limit is H<, if 9m approaches

0, then its limit becomes a half-line. Otherwise, the limit is

homeomorphic to Rz whose metric looks like

vy — ~4
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The computation of the metric on the 1imit shows that it is a
surface of reveolution.
Go back to our situatian, that is, for any ¢ > O, there is

Ng sg that the e-thick part of Cn is empty for all n 2 Ny Then

we may choose a decreasing sequence {an} canverging O so that

the sn—thick part of Cn is empty. Choose a base paoint X € Cn'

Since the sn—thick part aof Cn is empty, if € > €. then Ba(xn’
C ) is not standard. We then have twgo cases a) B (x , C)YNZE #
n e 'n n n

¢ and b) Bs(xn, Cn) N Zn = 9.
We will see here that if b) is the case, then <En, §n>
converges to a nancaompact euclidean 3-manifald (E, y) with inj(y)

= 1. The existence of the limit has been already done. E does not

(x , C ) does
n

have singularity since Ba(xn) and hence B n

a/an(xn)

not have singularity. E cannot be compact since atherwise, (XE 5
n

ZE )y is homeqmorphic to (XE, ZE) for sufficiently large n and
n ,
hence E must caontain thersingularity. This is contradiction.
We thus have a fairly clear picture for E. That is either

g3z, €3/z+7 or [Es/xl(Klein bottle).

Proposition 8.1 ¢ Fogr any R > 0 and € > 0, there i é

which depends only on &, R (and does not depend on n) so that

(1> RS < ¢ (2) if xe C an B (x, C) is a

and n,thin(s) 20d B M
proper subset of C, then ~(BR-inJ(x)(x’ C.0» x? is homeomorphic

to ,(BR‘inj(y)(E)’ y) for some noncompact euclidean 3-cone-

manifold.
Proof. We are given R and ¢. Let us assume contrary that

for any & = 1/k satisfying R/k <&, there is x, < C  uwith
| k



inj(xk) < 1/k so that an R-inj(xk)—neighborhood of Xy in C

n
k
never be hameomorphic to BR-inJ(y)(y’ E) for a noncompact
euclidean 3-cone-manifold E and a base point y. Let (En" §k)
k .
be a metric space obtained by rescaling Cn by multiplication of
. k :
- Y
1/inj(xk). Then inj(xk) = 1 and sectional curvature is =

a/inj(xk)(xk’ an), xk) converges

to some noncompact euclidean 3-cone-manifold (E, y) with inj(y) =.

-inj(xk)z. Then the sequence (B

1. If k 1is large encugh, then a/inj(xk) > ek > R, and hence
(BR(;k’ Enk), ;k) is homeomorphic to BR(E, y) for further large
ke The first one is homeomcrphlc‘tn\ (BR.inj(xk)(xk’ an), xk),

and we get cantradictian.

Corollary 8.2 ¢ For any R > 0 and e > 0, there i 8 >0

so that if and B, (x) NI =¢, then

%€ Lo thin) .
(x, Cn)) is isomgrphic to either Z, or Z+Z.

%1 BR.inj(x)

Proof. This is a direct‘curollary to Propositiaon 8.1 except
for the.?att that the Klein bottle‘group daes nb{ appear. Assume
that Ty is isamorphic to the Klein bottle group. Then Cn D

C cantaines a twisted I-bundle over the Klein bottle K.

n,thin(s)
Since Xn - Zn was simple, 8K must either be parallel to a

component of a&mczn) or bound a solid torus in Xn - Zn. In both
cases, we get contradiction with the initial setting.

Let us call B Xy Cn) a local neighbofhcod of x -and

Reinj(x)°
its fundamental group a local hl of x. Fix R > O wvery large

and take a decreasing sequence {sn}. Then for any m > O, there

is N > 0 so that &(1/m, R) > £, » We remark here that 6 is
m

less than 1/Rm and hence 1/m. To make notation simple, let us

o T AR



denote the new sequence {C_ '} by (CJ. In relating notions, we
replace all of n_ by m. "

Let us denote C_ - ﬁil/m(zm) by C . Since 1/m>8 >¢ >
inj(x) for any x € Cm’ the neighbarhaood of Zm we take is fairly
thick. We then have two cases.

Case a) C’m # ¢ for infinitely many m. Then the geometric
1imit of (C’m, xm), denoted by (C*, x), 1is isometric to the
geometric limit of the original sequence (C,» %) since there is
a 1/m—approximatiaon between Cm and C’m' for each m.

Case b) There exists my S0 that C’m =¢ for a]i m > My
Then ﬂﬁﬂ/m(zm) and hence Zm caonverges to the geametric limit C*
which is expected to have dimension at most one.

To see what happens more precisely, we analyze a relation

between O and C* by assigning some foliatian structures on C’m

and 411/m

For each paint of C’m, we associated the lacal fundamental

(Zm).

group Which is generated by nearly straight short loops. Thus each
generatcr‘carresponds to a nontrivial element in the haolaonomy group.
Let us foliate this region C’ ~ first.

Think first of the part whose local fundamental group is Z+Z.
Since abelian group of rank twg in PSLQC must be generated by two
parabolic elements with the séme fixed paint at =, or twa loxodromic
elements uiﬁh common axis. Thus in both cases, we have a cangnical
neighbarhood consisting aof a family of equi-distant euclidean tori
from the fixed point or the axis respectively. Fo]iate this part by
these tori.

The remaining is the part of which the laocal Ty is Z.

FirSt, we show that a component of this part has a unique generator
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for the local fundamental groups. This means that any local ., is
generated by some power of the unique element in the holaonaomy group.
Because, for any x 1in this part, a loagp zx representing a
gnerator of a local fundamental group in a local neighborhood
represents a nontrivial element in the holonamy group. If we lef «
be its primitive element in the holonomy aroup, « has a family of
equi-distant euclidean tori from its cusp or axis according to
whether it is parabolic or nat. UWe may assume that - ﬁx is
homotapic to a loop on this torus. If we take x'* in a small
neighborhood of x, then the corresponding loap ﬁx, is. alsao
haomotapic to a loop on the parallel torus to oné far zx. Since
| 2*, is nontrivial in the holonomy group, it represents some power
of «a. By taking the method analogous to analytic continuation, we
can see that «a is a unique element for generating each local
fundamental group within a component of the part of local ry = Z.

Faor each nontrivial element in the halaonamy, we have an
equi-distant euclidean torus in Cm' For a component of the part
whose local Ty is Z, we have associated the unique nontrivial
element « in the holonomy group. Let us first foliate this part
by equi-distant tori of «. Then choose one torus whose diameter is
greater than € Such one must exist since the local fundamental
group is generated by one elgment. Foliate this torus by intrinsic
shartest geodesicé. Then extend this faoliation ta all of the part.
The extension may have singular leaf as in the Seifert fibration at
the axis of «»

We have to worry about another singular fashon. That is, a
equi-diatant torus may not be embedded in C’m. We will see that

this cannot occur in fact. The equi-distant tori form g'continuous



ramily which starts from the cusp ar the axis of «a according tao
whether «a is parabaolic or not. In both cases, we have an embedded
torus near the start positiaon. Hence if it will be a singular tarus
as growing, iheré must be a critical equi-distant torus which
touches to itself in C’m. Take a base point near the start
position and think of a based loop which stays in a family of
equi—distant tori up to the critical time and passes through the
touched point. Let B be its homotaopy class. Now let £ be a

loogp which represents the laocal x of the touched point: Since (£

1
was on this critical torus, £ and B must commute in the holanomy
group. In particular, « and 8 commute and hence they have an
common axis. This shows that the action by 8 <cannot produce a
touched point of an equi-distant torus of «a. Thus the
1-dimensional fgliation we constructed becaomes well-defined.

Summarizing the above, we get a foliatiaon én C’m by tori,
circ1e§ and a part of them.

We next construct a 1- and 2-dimensional foliation on
¢%1/m(zm)' Since it is a part of Cm’ the injectivity radius is
bounded by €, for any point in there. By Proposition 8.1, each
point there has a small but nat very small neighborhood which is
homeomorphic to a neighborhood of some noncompact euclidean 3-cone-
manifold E. Also this homeomﬁrphism can be chosen almost
conformal. That is to say, each’cone ang]eércF Zm is very near to
that of ZE' Since our not small neighborhood is not standard, E
has a fibered structure. Furthermore if there is an edge of ZE
whose cone angle is "m, we may assume that E 1is an euclidean
orbifold since that is the final déstination of our deformation.

We can check that this is the case by the classification of



6b

noncompact euclidean cane-manifolds. Hehce a fibratiaon becomes a-
fibration of orbifolds. The follaowing is the lgcal picture of

Fibra{iuns to a 2-dimensional abject :
[N

dyﬂe wver  / 3 / civde action

T i ) "
e————— \ ! Y, \
d ~ ‘K/~
Ed

Choose a circle .fibration in this case so that a fiber is the
shortest loop on the torus illustrated in the above picture. The
followings are local pictures of fibrations to the 1-dimensional

objects ¢

’ I
SZ(TT.'H,W.K) xIg' S(d,(@.)') xIE'

L . ' L d+F+k-ZK
IE’ ' A |
Thus pulling back these local foliations tao ?QX/m(zm) by
approximation homeomorphisms, we get a foliation there. We actually
need some compatible arrangement of the foliation along paching
part, houwever this looks easy.
We thus got foliations on C’ - and 671/m(2m). Let D and

m

Jm be the arbit spaces of such faliatiaons aon C’m and ‘th/m(zm)

respectively. Both Dm and Jm admit a metric naturally induced
by the leaf distance. The set of x € Dm contained in the 6-
standard ball is called the d-thick part of Dm' We can éasily
verify that there is an em—approximation bethen Dm and Cfm.

There is also a 1/m—approximation betuween C, and C e Hence we i




haQe an (em+1/m)—approximation between O~ and C_ and therefaore
D, converges to the geometric limit €* of C,+ The geometric
1imit of Jm is obviously a part of C* provided the distance
petween Cm,thick and Zm is uniformly bounded, because of the
uniqueness of the limit. When C* 1is of 2-dimesignal and with
boundary, the boundary is a part of the geometric limit of _Jm.
Now, what follows is the unfortunate part of this note. Since
there are several assertions of which we have nat been able to
understand, we just give up to check details and describe only an
ontline. However, since we uritebsevera1 paragraphs without being

convinced, it may be unreasaonable even as an outline. Hence we wish

the reader to regard it only as ogur working hypothesis;

Propositian 8.3 : The 2-dimensional area of Dm is bgunded by

a constant B for all m.

Praoaf.  7? 7

-~

Assumeing this proposition, we go forward.

Case a) When there are ¢ > 0 and sg that the e-thick

"o
part of Dm is nonempty for all m >'m0. A component of the thick
part corresponds to a componept of the part whose local o= Z.
Since the geometric limit of D, 1is the geometric limit c*

of Cm’ it is going to be a hyperbolic 2-cone-manifold or a surface
of revalution as was observed previogusly. Notice in this case that
if aCc* # ¢, it is a geometrié limit of a ccrrésponding component
of Jm. Suppose C* is a surface of revolution, then by its
creation manner, the boundary if any must be geodesic and must go

out from the center of C* (recall that & . inherits alm .
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Since there is only ane center on C*, the area of C* becomes
infinity. This contradicts Proposition 8.3. Thus C* must be a
hyperbolic 2-cone-manifold of finite area. Then as we have obserwved
befare, the tuisting.ang]é of a generator aof a local Ty of C’m
approaches n/2 and the direction of a fiber in C’m approaches 4the
direction af a fiber in 4711/m<zm> when m tends to infinity.

Thus we may assume that we have a fibration p : Xcm - C* for
sufficiently large m.

Subcase a-1) When the d-thin part of bm is empty for all m
> My Then C* is a compact hyperbolic 2-cone-manifold with
nonempty boundary. Because if it is closed, then a fibration p
becomes a Seifert fibration of N - ZN' which contradicts the
initial setting. Now since C* has the boundary, there must be
a singular locus whose cone angle is =z. Then XCm is haomeomaorphic
to XO and p becomes a Seifert fibratiaon of orbifalds ¢ 0 - C*.

Subcase a-2) When for any & > O, there is m so that the
6-thin part aof Dm is nonempty. Then C* 1is a complete hyperbalic
2-cone-manifold with cusp. Since the preimage of cusp has a circle,
fibration, it szt be either a torus cusp or its quotient by fiber
preserving involution. The section is Sz(n,x,n,x). Suppaose either
one of the ends is the last one or C* has a boundary, then by the
same reason as above, p supplies a Seifert fibration of the
orbifold which is the final destination. So we assume that C* has
no boundary and every cusp corresponds to a toral end. Then
actually. N - ZN admits a Seifert fibration which cantradicts the -
initial setting.

Thus our fibered structure on X’ = XC - p—l(cusps) bgccmes

m
an gorbifold fibration of the final destination. Hence X' can be



regarded as an underlying space of a proper subaorbifald 0O* of O
at the beginning. Suppase 4d0' is incompressible in 0O, then it
gives a torus for the torus decomposition. If it is compressible,
the fibration an @80’ extends to a fibration on Dehn filling
resultant arbifold. Thus again’ue get a Seifert fibration on 0 U
(solid torus) C O.

. Case b) UWhen faor any & > 0, there is my SO that the
g-thick part of Dm is empty far z2ll m > Moy This is equivalent
to say that C’m is thin for all m > My Thus C* will be of at
most 1-dimensignal. Since the sequence of rescaling cone-manifaolds
Em converges to a noncampact euclidean cone-manifald with at most
two ends, C* will be a manifold. This means that C* is either a
circle, a closed interval, a half open interval, an open interval or
a point. By Proposition 8.1, a neighbrhoaod of any point in Xm is

homegmorphic to SQ(a,B,T) x(E1 with a+8+7 = 2% or sz(n,n,z,x) X

1

E far sfficiently large m. Thus we again have a Fibratiqn p

XC > C* for sufficiently large m.

m
Subcase b-1) When C* is a circle. A neighborhood of

2(a,B,T) x E1 with a+B+7 = 2x

p_I(point) was homeamorphic to S
or Sz(z,x,z,x) XIEI. The first case‘cannot happen since every
homeomorphisms of Sz(a,B,ﬁ) is homotopic to a periodic map and
hence N - ZN admits a SeiFeEt fibration which contradicts the
initial setting. Thus we do have onfy the last case. This shows
that we have reached the final destination since it contains a
singular locus of cane angle x. This can be seén to be a solvable
orbifold because if naot, O must be an euclidean or nilpotent

orbifold and hence N - ZN cantains an essential torus, which

contradicts the initial setting.
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Subcase b-2) When C* 1is not a circle but 1-dimensional. If

C* 1is a closed interval, then the fibration gives an euclidean
2-orbifold bund]é over I. If C* 1is a half open interval, {hen N
should be the followings ?
. o ,
r T LYAN

TC ™

R

T < X » ‘ O'?' Vb) = 00

T

euqlic\ew

If C* 1is an open interval, then we have

S mmT) x &

| oWt ocew”
S?Cd,(?.k) x E'

Subcase b—-3) UWhen C* 1is a point. Then again enlarging Jm

te J so that diam J_ = 1.
m m

b-3-1) When there is & > 0 so that j # ¢ for all

m,thick(e)

m. Then by Praposition 6.1, there is & > O sa that Jm,thin(d) =

@®. Thus jm convérges to a compact euclidean 3-c0ne~manifold E.
If ty =1, then E is nothing but 0. Even if tg < 1, the

combinatorial type of E  1is the same.as that of O.

0

Theorem 8.4 : If t, <1, there is a deformation of a

0
euclidean metric on E to a metric of O with positive Ricci
curvature.

Proof. 2?2 7 7
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Assumé this theorem, then by the orbifalé verSion‘of Hamiltun;s
thearem [H1, such a metric on O can be deformed to a hetric of
‘cgnsfant #dsitive curvature. That is to say, O 1is a spherical
orbifald.

b-3-2) UWhen far any &, there is sg that J

Mo m,thick(s) =
¢ for all m> Mey Then jm converges to an euclidean cone-
manifold E as in tﬁe case al.

When E 1is an euclidean 2-cane-manifold, then to =1 and O
must be an euclidean or a nilpaotent orbifold. Notice that E
cannot be a surface of revalution since diam E = 1. UWhen E is

gne dimensional, then E 1in this case must be a closed interval ar

a circles. In any case, 0 is a so]vab]e orbifald.
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