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VALUATTONS ON MEROMORPHIC FUNCTIONS OF BOUNDED TYPE

Mitsuww Nakad
M=y
Nagoga Institute of Technology

We are concerned with the following question: When is it true
that any valuation on the field of single valued meromorphic
functions of bounded type on a Riemann surface carrying nonconstant
bounded holomorphic functions is a point valuétionv? In this note
- we mentidn the following four results on this,questioﬁ which are
natural growth of our personal.communucations with Professor
‘Frank Forelli at University of Wisconsin - Madison: l.iThe cqvering
stability, 2. Stable surfaces, 3. Mawimality and stability, and
4. Weak stability. Proofs for these will in geral be omitted

except one last spot.

We start by fixing terminology précisely. We denq;e_by M?(W)
the field of meromorphic functions 6f bounded type on an open
Riemann surface W so that M (W) 1is the quotient field of the
algébra H (W) of bounded hdlomorphic functuions on W. A
valuation v on M?(W) is a group homomorphism of the multiplicative
group Mé(W)*-= M?(W) - {0} onto the nonzero subgroup of the

additive group 1 of all integers such that
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V(£ +.g) 2min(v(E), v(g) (£, g ¢ M (DH)

where we make the convention‘that v(0) = 4,
We see that :v(Mé(W)*) =T{mé; m e Z} where e is the
minimum of the set of pbsitivé'humbers'ih V(Mm(W)*);'The valuation

¥ defined by
- -1 ©
V() = e Tv(f) (feM (W)

is referred to as the normalization of v. Two valuations \4 and
are said to be equivalent if v, = 2%

Take a local parameter z at a point a in W with z(a) =

Vo

Let . £ be meromorphic at a .and

v
v=k v

£(2) = I (e, #0)

be the Laurent expansioh of f. The number k is uniquely determined
by f and a and is usually denoted by~'3f(a) and called the

order of f at a. We can easily check that
d.(a): £ f+9f(d)"

’1s a‘;éluatlon‘on M (W) if' M?(W) # E (the complex‘number field),
or Qhat amounts to the same, 1f H (W) # t. Any valuation v on
M (W) is Sald ‘to be a pomt valuation on M. W) at a if v
is equlvalent to the valuatlon 3 (a) for a p01nt a in W.

. For convenlence we say that a Riemann surface Wis H —stable,

or 31mply stabZe, if H (W) # € and every valuation on M W) is
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a point valuation. Then our problem is to'clarify the stability
of Riemann surfaces under consideration.

A valuation v on M (W) is said to be distingutshed if the
followiﬁg condition is satisfied: If v(f). 2 0 for an f in Mw(W),
then thére exists a A in € such that vtf -2 > 0, Point
valuations clearly satisfy this condition. Except the last section
we do not a priofi assumé;the distinguishedness for our valuations
in this,ﬁqte which is one of important points to.be stressed in
oﬁr study. In this connection the following question is very

important and is probably very difficult to resolve:

OPEN PROBLEM 1. Is there any W such that M (W) carries
a nondistingushed valuation or is any vaZuation onany M (W)

automatically distinguished ?

s 1. THE COVERING STABILITY. -

We say that avRiemann surface R or more precisely é‘triple
(R, S, ) of Riemann surfaces R and S and an analytic mapping
m of R into 'S 1is a covering surface of S. The surface S.
and ‘ﬂ‘ afé referred to as ﬁhe base surface and the doVeting map
of the cbvering‘surface (R, S, ™), respectively. We say that the
covering surféce (R, S, T is unbounded if for any curve C on
S with iis initial point a in S and any o in ﬂ_l(a)
there exisfs acurve ' on R with a its initial poihﬁ such

that 7(T’) = C. Let a be in S and o in ‘W’l(a). We can
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always find local parameters z and ¢ about a and a
respectively such that the local expression of the covering map
z = w(;)‘ takes the form 2z = cm. Here the positive integer m, -
the muitiplicity of a, does not depend.on the choice of local
parameters z and c.’If m > 1, then o is referred to as a
b?anch poiﬁt of order m - 1. For_e#ch a‘ in S we let

p @) == £ 1l

(a) 1is an infinite set and #(ﬂ-l(a))

= n if the set ﬂ-l(a) consists of a finite n number of
points where a branch point of order m - 1 is counted as ﬁ
points. When. (R, S, w) is unbounded, #(w—l(a)) is a constant
n <= for evéry a in 8. If fn < =, then we say that (R,‘S, ™)
is  n sheeted or more roughly_finitely sheeted without referring
to the speéific sheet nﬁmber n. Note that there may or may not

be an infinite number df branch points in R. The following is

,the main and fundamental result in our study:

THEOREM 1. The unbounded finite covering surface R is

stable if and only if its base Riemann surface S .is sfable.

Identifying M?(S) with Mé(S)Oﬂ we cah view that M?(R)
is a‘fieid extension of Mé(S). By the finiteness of R over §
we can see by the standard symmetfic‘funcgion argument that
Mé(ﬁ);ié a finite separable aigebraic extension of M&(S). Using
thié we can prove the above theorem eaéily althoﬁgh we need a

long series of elementary discussions. In the course we-.also use



120

[o-]
the fact that there is a valuation V -on M (R) - for any given

valuation v on Mé(S) such that VJM?(S) is equivalent to v.

§ 2. STABLE SURFACES.

It is surprising " that not many stable surfaces are known.
0

obtained from a plane regién S bwith Hm(S) # T by removing

Nonstable plane regions are in plenty. Let S,. be the surface
a point a in S. Then the valuation v on M@(SO) ‘giVen by.
3.(a) is seen not to be ajpoint valuation om ‘MS(SO) and hence
S is not stable. If S is a suface of the Myrbergztype,’then

0

So ‘can be stable (cf. Example 2 below). The following is , in

‘e$sence; the only one known stable surface:
THEOREM 2. The unit disk A 1is stable.

Take any valuation v on Mé(A). One need to show that v
is a point valuation. We can fiﬁd a propf‘in an old paper [7]
of Royden under fhe‘assumption that v is distinguished. Thus
we need to show that v 1is automatically distinguished which
is accomplished by using Blaschke products.

An'm éheétedudisk Am' is an m\sheete& unbounded covering
surface of the open unit disk A. We élsqxcall A a finitely
sheeted disk without specifying the sheet number m. From

TheSrems 1 and 2 it follows the following

EXAMPLE 1. Any finitely sheeted disk is stable.
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Blahe regions bounded by finitely many mutually disjoint
nondegenerate continuum are finitely sheeted disks by the
Bieberbach~Grunsky theorem or more generally finite open Riemanﬁ
surfaées are finitely sheeted disks by the Ahlfors theorem and
therefore these are examplesof stable surfaces.

Let A, be the 2 sheeted disk (Az,'A, ™) with thé sequence

2

{Xﬂ}: of projections x of branch pointsiin _ A, ‘lying over

the positive real axis such that

1/2 < X] <y <l < xn’< ce. <1,

lim x = 1, and
n'n .

I - a- x ) =+

Let {ck}: be a sequence of disjoint closed disks contained in
AN {Re z < 0} converging to -1. We denote by E one of two

connected pieces of ﬂ—l(At] {Re z < 0}). Finally let

—. — ‘.‘-l 4 oo,,
U-A2 ENT (Uk=l on).

By the Myrberg type argument and the Blaschke theorem we have

H(U) =H (M) = H (A)or..

5)
Using this relafion we can see the following
EXAMPLE 2. The surface U is of infinite connectivity and

of infinite genus and not representable as a finitely sheeted disk

but stable.
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In these connections the most important and~interesfing
question is the following
OPEN PROBLEM 2. Is there any ‘stable plane region of infinite

connectivity 7

§ 3. MAXIMALITY AND STABILITY.

A Riemann suffacé )Wi‘ is an H —extension of é Riemann
surface W if W CW' and Hm(W')[W = Hw(W). A Riémann surface.
W isiéaid to be H -maximal when theifollowing condition is
satisfied; if there is an Hm—extension W' of W, then W' =W.
Because of Example 2 there can exist a stable Surface which is
not H -maximal. However, for pléne regions, the stability implies
the Hmfmaximality. What happens tb the converse ? It would be
very nice if the converse is trué but unfortunatelybwe have

the folloWing

EXAMPLE 3. There exists an H -maximal bounded plane region

which is not stable.

We will seek such a region améng (modified)‘Zaicﬁan L-domains

which are of the following form
X = AO —,L}k;l A(ck, rk).

Here AO. is the punctured unit disk 0 < lz|4< 1 and
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Zlck, rk) ={|z - ckl ;;rk}

where ’{ck}; and {rk}; are zero sequences of positive real

numbers such that

c + r <c

k+1 k+1

— T <c + r, <1/2 (k f 1{2,...).

k
First we observe that any Zaleman L-domain X is H -maximal. We
do not know whether X can be stable or not but we will see that
X can be unstable by a suitable choice of  {rk} for any fixed
qen;ers {ck}.

~ We need td consider the following auxiliary region
‘ L2 © - N -
Y b AO(O’ 1/2) - U k=1 A(ck’ pk)
where AO(O, 1/2) 4is the disk 0 < ‘zl < 1/2 and '{pk} is a
zero sequence of positive real nuﬁbers'suéh that

<c

1+ P, f 1/2 | ‘k =1,2,...).

‘el T P %k T Pk
We choose {pk}A convergent to zero enough rapidly so as to make

the following condition valid:

- [A] z = 0 <8 an irregular boundary point of the region Y

with respect to the Dirichlet problem.

Now we choose '{rk} in such a fashion that 0 < r, < for

, U S Tk S Pk
all k =l1,2,... and we further choose {rk} so small that

-8-
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[B] zk:l rk/pi < + (n = 1’2"f’)'-

The choice of r, = pt is an example. Clearly Y - {0} C X.

k
Because of the above condition {[B] we can see the existence L

of the formal ﬁth derivative f(n)(O) of f at 0 given by

£ (0) = 1m £ (5)

e Y-{0},2z>0

—(n+1)d€.

= Uz, £t

Concerning these formal derivatives we have the unicity theorem:
If f(n)(O) =0 for every n=1,2,..., then f is identically
zero on AX}’This is dériﬁed by a potential'theéretic argument by
uéing the condition [A].

For each f in Hm(X) we set

v(f) = min{n; f(n) (0) # 0}

if f 'is not identically zero, and set v{(0) = + =. For any pair
£, and f2 of functions in H (X) with £, mnot identically
zero we set

v(fllfz) = v(fl) - v(fz);
It is easy to check that the above value is certainly determined
uniquely by the ratio, 1.e;";fl/£2 =;f3/f4, implies V(fllfz) =
v(f3/f4). Thus v can be defined on M?(X). It is simply a matter
of checking formally to ascertain that v is a valuation on Mé(X)

. N ) o B
which is not a point valuation on M (X).



§ 4. WEAK STABILITY.

We say that a Riemann surface W iskwedkly Hm—stdble, or
simply weakly stable, if H (W) ¥ T and eQéry>distinguished
valuation on Mé(w) is a point valuation on vM?(W).»Hence the
stability of W obviously implies the weak stébility of W.
The converse of this is closely related to Open problem 1 and

we ask the following

OPEN PROBLEM 3. Does the weak stability automatically

imply the stability.?

A_boﬁnda:y point .g of é.bounded plane region S is said
to have an Hm-barrier bC on S if - bc"is a nonzero member
of Hm(S) and (z - c)_nbc(z) is bounded on 'S for every .
n=1,2,... . We élso say that bC is gn H -barrier at r on
S. The importance of Hm—barriefs lies/iﬁ the followiné-féct:.Lf
every boundary point éf akbounded'plané région S has an
H -barrier on S, then S ’iéywedkly stable. o

In view of the aboveAfact it is impdrtéﬁt to defermine.when
a boundary point ¢ of S has an Hm;B;rrief. Coﬂcérning fhié

the first conclusion easily proved is thérfollowing

PROPOSITION 1. If ayboundary point ¢ of a bounded plane
region S has an W -barrier on S, then § is regular with

respect to the Dirichlet problem for S.

-10-



It would be very nice if the converse of this is true but we
do not have eVen the faintest idea at this moment to attack this

question. Hence we mention the following

OPEN PROBLEM 4. Does a boundary point t of a bounded plane
region S which is regular with respect to the Dirichlet problem

for S have an H -barrier on S ?

The following result is very special and of auxiliary nature

but it is certainly in the>positive direction to the above question.

PROPOSITION 2. ILet F Abe a closed subset of the open unit
~digsk A such that S = A= F is connected. Then any boundary
point ¢ of - S lying on the unit circle has an H -barrier

On S.

This techniéal result‘isvnow used to prove the folloﬁing fact
which is‘the ﬁain résult in this seétion. At this point we stress
that weak stability is a conformally invariant property. Thus, if
we have a»true statement that A impliés the weak stability, then
the'statement that A{ implies ;he weak stability is also true where

A' is the conformal image of a property A.

THEOREM 3. If any connected component of the boundary of a
bounded plane region R 1is nondegenerate continuum, then the

region R s weakly stable.

-11-
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The above theorem assures the existence of a weakly stable
bounded plane region of infinite connectivity (cf. Open problem

2). The following is one such example:
R=A- UblKk

where {Kk} is a family of mutually disjoint closed disks Kk
in A converging only to the boundary point 2z = 1. Compare
this with Zalcman L-domains. There are also weakly nonstable

regions among L-domains (cf; Section 3).

As aniillustration of (omitted) proofs iﬁ this note we give
here a selfcontained:complete proof of the above tﬁeorem 3 since
it is.relatively simple and elementary. In order to make the
whole discussion self contained we also need t§ mention a proof

of Proposition 2 which is, however, extremely simple.

. PROOF OF PROPOSITION 2. Let T = —c"l‘s + 1 which is in

the right halh plane Re w > 0. The point w = 0 is in the

boundary 9T which is the image of *~ £ under the mapping
zmw= L (z - 7)

from S onto T. Consider the branch of Yw in Re w > 0 with

Y1 = 1. Then it is easy to see that

by (W) = exp (-1/Yw)

~12-



is an H%—barrier on T at w.= 0. Thus ¢ has aanm—barrier
b, (2) = bo(-t ™ (z - ©))
4 0
on- S. I::]

PROOF OF THEOREM 3. Let X ¢ & and v be a valuation on

/n

M (R). ‘Since nv()\l ) = v()\) shows that n divides v(}) for

all n=1,2,..., we must conclude that v(}) 0, i.e.

v(T*) = {0}.
Next let f € Hm(R) and take a positive number c¢ with c >

/n £ Hm(R) and nv((f + c)lln

“supy |£]. Since (£ + o)’ ) = v(f + ¢,
we must conclude , as above, that v(f + ¢) = 0. Thus v(f) =

v(f+ c=2c) 2 min(v(f + c), v(c)) = O; and we have shown that
v is nonnegative on Hé(R).

Néw fix an arbitrary diétinguished,valuation v on Mé(R)
an& we will{show that this v is a point valuation on Mé(R).
Fdr the purpose we may replace Vv by its normalization and thus
we may assume Vv as normalized from the very begining so that
v (R)*) = Z. |

Let I< be the identity ﬁunction{ I(z) = z identically. We
assumed that R is a bounded plane rggion, and therefore, I 1is
a member of Hw(R). Hence v(I) > 0. By the distinguishedness of

v there exists a point a in T such that

-13-~



v(IA— a) > 0.

If an a' in € different from a also satisfies v(I - a') > 0,
then we have the following contradiction:
0 =v(a -a")
=v((T-a) - - a)

min(Q(I -a'), v(I - a)) > 0.

v

Thus the point a in € with v(I - a) > 0 is uniquely
determined by v. Such an a is said to be the support of wv.

We claim that the support a éf bv satisfies a ¢ R. In
fact, if a ¢ R, then (I - a)_l £ Hm(R) and v((I - a)fl) > 0.
However, since v(I - a) > 0, we Have the following contradiction:
v((I - a)—l)_= - v(I - a) <0. Hence ae R or a e 3R,

Wé now assert that a-e R. Contrariwise assume that a is
in 93R. Let K be the component of 3R containing the point a.
By our assumption K is a nondegenerate continuum. Let ¢ be

a conformal mapping of the component of the complement of X

containing R onto the unit disk A. Then we set
S=yR) =A-F
where ¢ sends K to 9A and F 1is a closed subset of A. Let

u(f) = v(fop) (£ e M(S)).

Then u is a distinguishéd valuation on Mé(S). Let o be the

support of u which is now known to be in S.

-14-



We maintain that o e 9A. Suppose contrariwise that a ¢

A - F - 3A. Then , since o & A, there exists a point vy in

w_l(A) such that ¢(y) = a. Since ¥ € HQ(R),vwekhave

v - 9(¥)) = u(X - a) > 0.

Observe that (¢ - w(f))/(I - v) 1is zero free on the simply
connected regionl»w_l(A). Hence we can find .an fn in the

subclass Hm(wfl(A)) of Hm(R) such that
- veN/T -1 = £
for each> n=1,2,... . Then

V(W = YO/ T = 7)) = av(£)

for every n= 1,2,... and we can conclude, as before, that the left

hand side of the above must be zero. Hence
v(IL -vy) =v(® - v(y)) >0

and‘ Yy mnust be.the support of v. By the uniqueness of the
support éf v. we have a = v which must be in w—l(A). This
contradicts the fact that a e K.
Since «a ezaA, there exists, by.Propoéition 2, an H -barrier
ba at o on S. Hence we have
T-0T cH () (a=1,2,...)

and therefore

u((I - a)_nba) 20

-15-
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for every n = 1,2,... or equivalently

,u(ba) 2 ou(I - q)

1]

for every n 1,2,... ._Tﬁis is clearly a contradiction since
u(I - o) > 0. Thus we have éhown that a € R. |

'Take:an arbitrary £ in Hw(R) and let Bf(a) =n > 0.
et g = £/(I - a)”. Note that g(a) # 0. Since (g - g(a))/(I - a)

belongs to Hw(R), v((g - g(a))/ (1 - a)) ;=0v and thus

v(g - g(a)) 2 v(I - a) > 0.

Since v(g - g(a)) # v(g(a)) = 0, we must have the equality
instead of the inequality in:"

v(g) = v(g - g(a) + g(a) 2 min(v(g - g(a), v(g(a))) = O

and thus we conclude that v(g) 0, or equivalently

v(f) = nv(I - a) = v(I - a)af(a);

The relation can obviously be éxtended to f e M?(R) and, since
V(M?(R)*) = I, we must have v(I - a) = 1. Thus
v = 3.(a)

on M (R) and v is a point valuation on Mé(Rj, ' l::]‘

-16-~
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