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1. Introduction.

Let A be the unit disc and let D (#C) be a plane domain con-
taining the origin. Set Dp = D\ {p} for peD\{0}. Then there
exists unique holomorphic universal covering fp:AéDp satisfying

f = ’
p(0) g, fp gy > 0,

Our aim is to derive the variation of the coveringfp bf moving
the puncturé p in the domain D, Such a variation is called a
puncture variation. Theorem 4.2. is the main result of this
paper which gives explicitly the variation of fp, As a corollary
we have a puncture variation of the Poincare metric.  To obtain
the formula we use quasiconformal mappings and apply a-well-known

representation theorem for quasiconformal maps with small dilata-

tion.



2. Construction of fp+e from fp,

For sufficiently small peR let N = {z|0<|z-p|<e®} be a punc-
tured disc contained in fp(A) with 0¢éN. Let A, be a fixed com-
ponent of fgi(N). Note that A, does not contain the origin. Let

' be the covering group of fp. The following Lemma is well

known,

'LEMMA 2.1. There exist a parabolic element Bel' and a Mobius
transformation A with the following properties,

(1) A maps the upper half-plane onto A,

(2) A(»)edA is the fixed point of B and A;‘°3°Az = z+1,

(3) 8, is simply connected and contains a disc A(U_) with
Uc = {zeC|Imz>c} (c>0), and

(4> two points z, and z, of A, are equivalent under I' if and
only if z, = Bn(zl) fof some integer n, |

PROOF. See Kra [3, p.521 or Ahlfors (1, Lemma 1] where more

general Kleinian case is considered. q.e.d

Let T be the cyclic subgroup of T generated by Bel.

Expressing f;’(N) as a disjoint union of the components, we have

ET N = U ra, S
P rel /T,

where I‘/l‘o denotes the’set of left cosets, Let MN:L»N be a

universal covering given by

z2+p

’

M(z) = p + e

where L is the left half-plane {(z|Re z<0}. By the theory of cov-

ering surface we can find a conformal map ¢:A09L such that

@8 = p+2ni (2.2)
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and

£ =T ond,. (2.3)

LEMMA 2.2. For tceC small, there exists a quasiconformal map

¢€:L96 such that

¥ (z+2ri) = p_(2)+2ri on L - (2.4)

and

e*n°¢€ =0T .on 3L (2.5

"with complex dilatation

-ce?TP 4 0(52) (2.6)

for zelL., The eStimate is uniform for zel.

PROOF, Taking a branch of the logarithm, we set

¥, (2) = z + In (1-¢e® "),
It is eaSykto see that;this is 4a desired quasiconformal map.

qg.e.d.

Define a map T:a5D by

pte

-1
fp(z) , ,izefp (N)

e+lep_eper” (2) , zers,  (rel/Ty).

It is seen from (2.1)-(2.5) thét f is a well-defined (topologi-
cal) covering of Dﬁ+€. Let gﬂ‘denote the quasiconformal automor-
phism of A yith,complexmdilatationku which 1is  holomorphic near

the origin and satisfies g#(ﬂ) = 0, g#'(O) > 0,
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LEMMA 2.3. We have the identity

— = - l .
fp+e = f°geu on A

where the complex dilatation u is ‘given by

[ o
| -1
ﬂ |0 , zefp (N)
ulz) = | L x (2.7)
, ‘ }e“(¢,r D) “¢e(2) , Z€rh (rer/r,)
L

Here, ¢*u denotes as usual the~pull—back~u-¢-%; of the Beltrami
coefficient u.

PROOF. Computing the Complex dilatation we have

M? - = 0 a,e. on A, Hence ?°g;L is a holomorphic covering ,of
°g£
M
Dp+e such that

-1 _ ~° -1 ’
%~g€#<0> =0, (f-9,,)'(0)>0.

Since these conditions determine a holomorphic covering unigquely,

we conclude that fp+e = ?°g;;. g.e.d.

3. Integral representation of the variation.

Let f# be the quasiconformal automorphism of A with complex
dilatation g which leaves 0 and 1 fixed. The following perturba-

tion formula is well known [2, p.1051,
LEMMA 3.1. For e¢C small and Leh, feu is given by

-— . 2
fen(t) = g+£(g) + 0Ce”)

where

£Cg) = - %f!;ufz)R(z,t)dxdy + %[fAu(z)tzR(z,1/f)dxdy

- 4 -
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and

L D)
R(z,8) = 050287

The estimate is uniform for compact subsets of A.

It is convenient for our purpose to have a lemma with dif-
ferent normalization. " The next lemma is a wuseful perturbation
formula for g#. Récall that u vanishes near the origin and that

g”(0)=0 and gu (05>>0.

LEMMA 3.2. For e¢eC small and Lea, gek is given by

g (£) = £+g(£)+0(e?)

Eu

‘where

§(¢) = - %ﬂ

1(2)0Cz £)dxdy + 55[[ 1(z)0(z, 1/ dxdy
JA

A

and

Qz,5) = —2H&
z (z-%)

The estimate is uniform for compact subsets of A,

PROOF. Observe that

gg) = £¢&) +'%§<E'(o)-é'co)).

" LEMMA 3.1. yields

-
i) “ _g&dxdy -g” G gy
A z (z-1) A Z(z-1)

Combining these identities, we obtain the Lemma. g.e.d,.

From Lemmas 2.3 and 3.2 we héve, for‘&tf;I(N),



pte

where

1¢g) = n(z)QCz,t)dxdy

£ N

and

Jg)y = -1¢1/8).

Eoye = Ep(E) # LET(E(eICEI+EIEI) + 0Ce™)
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(3.1)

(3.2)

Since (2.1) is a disjoint union, I({) is expressed as a series of

the form

CTtE Y = s ¥ b
rer/T, T

where

Ir(g)'ﬁVEEIITAnu(z)Q(z,C)dxdy.

4, Evaluation of IT(C).

By (2.6) and (2.7) we have

rr

1.(g) A Puczracz, grdxrdy
0 -

S

-1 % * N
b€ ey ()7 0z, 0)dxdy
Y, 0 €

A=

v

- - *
¢ ’u¢ (2)(ree )70C2,L)dxdy
uuL € : .

1

where 7¥Q(z,8) = Q(rcz),§)<§§>2 is the pull-back of Q

- EE[[ eZ P (r-o T ) (2, trdxdy + 0Ce),
x£0

(3.3

considered
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as a quadratic differential of z. }Therefore,
I =1 + 0Ce) (4.1)

"where
1= - El_rj eZ P (rep %0z, 8 dxdy.
TJJy<o

Our task is to evaluate the dduble integrél I by using the cal-
culus of residues. For convenience we‘introduce the functions u-
‘and w with the fﬁlldwing properties,

(1) ¢ = uew,

(2) w:A>L is a Mobius transformation onto L such that
weB = w+2ri, and :

(3) wuiw(a )L is a conformal surjection such  that
u(z+2ri) = u(z)+2ni,
Obviously, such u and w exist but nbt‘uniquely, We fix once and

for all a choice of w.
LEMMA 4.1. For fixed gef;‘(n),
'(r~¢71)*Q(z,§) = 0(2_4) as z»», zel,

PROOF. Setting r, = r°w-1 and u, = u-l, we have

Tee =7, ey

where 7, !L»A is a Mobius transformatioh and“ud;LeL is holo-

morphic, Clearly,

r,(2) = 0€z7%)  (zom), (4,2

On the other hand, by expanding the function  u, (z)-z, which is
periodic with period 2ri, in a Fourier séries, it is not hard to

see that
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u (z) = 2+0(1) and u, "(z) = 0(1) (z3%), ' (4.3)

since u (z) is analytic on 3L and u, maps L into itself. (4,2)
and (4.3) show that (r°¢—1)’(z) = 0(2-2) (z2*), This immediately

gives the Lemma, g.e.d.

Cauchy’s integral theorem and - Lemma 4.1, imply that the

integral

I e 2P (rep " r¥a(z,2)dy
-0

is independent of x=Re z; Thus

no o
_ 1 2x [ -2-p “1y¥
I = - e““dx e (ree ) Qdy
ZE._@ o , ) ‘
RN
—iv=p . -1 % .
= - & PG ey, ay
& -0
= - _47%_{ e—.z—p('rtw-1 )*Q(z,t)dz
"L ’
I | (r'g-l)*Q(Z'C) dz
in 1 u(z)+p

Y0 wu'(z2)e

where £ is a vertical line contained in w(Au). Since the func-
tion fp‘w°!(z) is periodic with period 2rni on L, it is of the
form fpew"(z) = F(e?) where F(z) is regular in A with F(0)=p.

Differentiating both sides of the identity F(e?) = p + eU¢Z’*/

1]

we have
uf(z)eu<z>+p = F'(ez)ez.

Hence

. -1 )*
I = - 1 [ (r W ZQ dz.
8 F'(ePe
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By noting the estimates

(rew ' y¥*g = 0(z™d), (zow)

and

1_ . 1 = 0(1), (z3®)

' Ce? F'(ez)ez

with C=F’(0), a standard application of Cauchy’s integral theorem

yields

1
4niC

! e-z(rowcl)*Q(z,C)dz.
Q .

Although this integral can be evaluated by computing the residues
in the right half-plane determined by ¢, it is easier to evaluate

the integral by changing the variable z to w-r-l(z). Thus

-1

1 [ e VT (z) 0z £d

I = = —=rx z, 2
AiCh hy Cuer Yy (2

where h is a circle in A which is tangent to 3A at the fixed
point of 8. Denoting the residue of the integrand at z by

Res(z), we have
I = 5<[Res(f)+Res(0)+Res(®)],

Observe that w'r‘?(z) is of the form

al=1, Re t<0.

{ 4w«r-l(§)+iur - | sinh t
e + (weyr  (g)-iu, )——mp—T
| - Y t

L Y

(wer 17 ()
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bt “iu bt Yoo o
cos r] e sin T} (4.4)

: -1 _ . .
with wer (0) = tr+1ur (tr’ uTeR). Since
wer P (1/8) = - wer ' (z), tea,

identities (3.1)-¢(3.3), (4,1) and (4.4) give wus ' the following

final form of the variation of fp.

THEOREM 4.2. For sufficiently small ee€C, the universal cov-

ering fp+€ of Dp+€ is given by
r = 1]
Eoee(2) = £,(2) + fp'(z){%l1 - £1,| + oCe’y, zeA
~ Cc
where
{ “lu g T 2+ sinh t
1, = 5 {—= {e + (wey T (2)-iu )—— T
rer/ru{(w-r Y (z) r
- 1o Ty
cosh trl ze Slnhth}'
and
[ iu r -1 . .
| r wey (2z)-iu _ sinh t
I, = > £ !e T~ (uery Yez)-iu)
2 -1y, | Y t
reF/Fal(w-r ) (z)L r
L .
iu
- | 1
- cosh tr ze sinh tr}

& J

with w,r"(O) = tT+iuT {tr, ureR). The constant C _ denotes the
derivative F’(0) of the function F satiszing the identity
fp°w-’(z) = F(e?). The estimate is uniform as long as z stays in
compact subsets of A.

- 10..



Let Xp(z)le[ be the Poincar€ metric of the domain D

definition kp(z) satisfies

1 .

A_CE (2N E_"(2)] = ———s,

A_(0) =

In particular, we have p

1 "(0),
/fp :

gives the following

COROLLARY. p+e(0) is given by
(
: le —1ur sinh t
In Xp+€(0) = 1ln Ap(O) + 2Re {(—:- P e (cosh t'f - —E——L)
~ | “rer/r, Y
L
+ 0Ce?),
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