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Certain modulus estimate

on arbitrary Riemann surfaces
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8§ 1. Definitions and main Theorem.

Let R be an arbitrary Riemann surface and c be a simple

closed curve on R . Set

D(c,R) = f?: o ='p(z)idz\ is a measurable
(conformal pseudo-) metric on R with

2 0 such that 21 f

P(z) suc a gc' e or
every closed curve c' fréely hbmotopic
to ¢ on R};

and call the quantity

M(c,R) = inf o pcc ) ALP)

the modulus of the free homotopy class of ¢ on R , where A((>)

=‘§§ Q(Z)zdxdy is the area of R with respect to the metric
R | . .

p(z)ldzy. Recall that the quantity l/M(c,R) is the extremal

length of the same class.
Similarly, we set

- 'D'(c,R) =‘{P: P = P(Z)‘dz‘7 is a measurable
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metric on R with p(z) 2 0 such

_ that g N ()21 for every 1-cycle
s o ,

~¢" ~homologous to ¢ :on R },
and call the quantity

M'(c,R) = inf peD' (c,R) ACP)

the modulus of the homology class of ¢ on R.
Here, if D(c,R) and/or D'(c, R) ~are/is empty, then we assume |

that M(c,R) and/or M'(c,R) are/is equal to +00.
Now it is clear that
M'(C;Ry;:ZEM(C;R)‘,

for D'(, cR) is contalned 1n D(c,R) . But in general, we can
not bound M(c R) from below by any quantlty dependlng only on
M'(c,R) , which can be seen by an easy example. So, it seems

interesting to find another quantity which is related closely to

~the homology class of ¢ on R , but behaves like ‘M(c,R)

For‘thiexpurpose, first we recall that M(F,R) and M'(c,R)
ean be.represented as norms.of3certain.(extremal) differentials
on§”R>, when they are f1n1te. ‘ ” |

| The dlfferentlal for M(C,R) ié the so;called Jenkins—Strebel%
differential, i.e. a holomorphic quadratic differential | ¢i='

¢(c,R) on R with closed trajectories such that Pc =‘¢\1/2

belongs to D(C,R)_ and M(C,R)_=‘A((>C):; And, from geometrical
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viewpoint, M(c,R) is the supremum of the (geometrical) modulus
of all ring domains "homotopic" to. ¢ on R , and:the above -qﬁ

gives the extremal ring domain for ¢ on R (, cf. [2] and .[4]).

On the other hand, the differéntial for Mi(c,Rj is'the
period reproducer for c . Némely,rllet &= G(C,R) be a square
integrable real harmonic differential on R which is uniquely

determined by the condition that

- (w,68), (= *s
gcw (w,8)p ( “Rw/\ )

for every real square integrable harmonic differential w on R .
Then Accola's theorem ([1]) states that the extremal length
1/M'(c,R) of the homoiogy‘class of ¢ on R 1is equal to “Gi\é
= (S, S)R , OT more 'pr\e;cis;ely,, ‘that Pé = g+ i*§ \;/‘\\5\'\121 Do

belongs to D'(c,R) ‘and M'(c,R) = A( Pe)

Here, & =0 if and only if M'(c,R) =~+0O. In the sequel,
we assume that &(c,R) £ 0 (, i.e. "M'(c,R) < +e0), and call c
homologically non-degenerate. Then it is known ([7, Proposition
21) that " ©(c,R) = &(c,R) + i*g(c,R) ‘has closed tréjectrieé. |

Here a compact reguiar:frajectdryfof;aEBGIOmofphic abelian

differential ©( # 0 ) is a simple closed curve § such that

1]

© has no critical point on f and ImB® = 0 alohg ¥ . And

We say that © has closed trajectories if the.complement“ofvall
compact regular .trajectories of © has area 0 v
And it is natural to consider the ring domain W(c,R) on R

swept out by all compact regular trajectories of ©(c,R) freely



homotopic to ¢ (with suitable orientation). Let M"(c,R) be
the modulus of W(c,R) (, where we set M"(c,R) = 0 when W(c,R)
is empty), then M"(c,R) relates closely to the free homotopy
class'of‘ c , while 9(;,R)‘ itself depends only on the homology

class of ¢ . Actually we can show the following

Theorem 1 ([8]). There is an absolute constant A such that
for every Riemann surface R and evefy homologically non#degene-b

rate ¢ on R , it holds that .

M"(c,R) < M(c,R) € M"(c,R) + A .

Remark. ' Even in homologically degenerate (but homotopically
non-degenerate) case, we can show a similar result as Theorem 1,
by considering suitable meromorphic differentials of the third

kind instead of ©(c,R) . See [8, § 3].

An outline of proof ofvTheorem 1 will be given in § 2.

And an applicationAof Theorem 1 will be considered in § 3, .
where we will give a characterization of convergent sequences in
the finitely augmented Teichmyller spaces (, i.e. a characteri-
zation of the conformal topology. See Theorem 2 and Remark at
the end of § 3).

~ Finally, in § 4, we also include some remarks concerning on

continuity of differentials..
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8§ 2. Proof of Theorem 1.

To prove Theorem 1, we first recall certain metrical property’
of period reprodﬁceri,

Fix R and ¢ as in Theorem 1, then it ié well-known that
*g(c,R) has:integral periods, i;e;ﬁthé period of - *6(C,R)‘ aldng

any l-cycle is an integer . Hence we can consider a mapping
v . p
u(p) = exp( 2mi- " *s(c,R) )
from R. into the unit circle Sl-= E\z\ = 1} (, which is, in [5],

called a circular function for *((c,R)), and we know the following

Proposition 1 ([5]). For every -tesﬂy let Lt be the set

of all (not necessarily compact) regular trajectories of ©(c,R)

contained in u_l(t) (, which is called the set of level curves
of ©(c,R) for t ), and m(t) be the total length of L, with

respect to the metric {8(c,R)}, i.e{

ne) = f 18Rl (= Aserl).
t t

Then ( m(t) € “6(C,R)“§ for every t:ES1 , and) it holds tha?

m(e) =hse,RN (= ( se,R))
¥ : E ¢

for every teSl. except for at most one value.

Corollary. Let t:eS1 be fixed. 1If Lt contains a compact

regular trajectory, say 'ctr, of G(C,R)’ freely‘homotopic to ¢,

then it holds that L, = fc }.
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PROOF. The assertion follows from the above Proposition 1 by

noting that

m(t) =
: C

ls@Rl 2| s@ER| 28Rl
t ¢ ,

under the assumption in Corollary. , ’ qg.e.d.

Here we recall the following

Definition ([8]). Let Vr = {1<}z\<r% for arbitrarily given

r (>1). We call a harmonic function u(z) in a neighbourhood -
of V;"asheight function' on er if u(z) satisfies the follow-
ing conditions;

(1) - lf' *du\ = 1 for every non-trivial dividing curve c

c -

in ‘V_ , '

T .

(2) it holds that g {*dul € 1 for every t , and

L

. : ; Tt o _
(3) if Lt "conatins a simple closed curve, say Ct s then

L, =»{ct}, where L, is defined as before (for the differential

t
*du ).

Then the following comparison theorem for height functions

i$ known.

Proposition 2 ([8]). There is an absolute constant B such

that for every V. and every height function - u(z) on V., it

holds that
M(u) € (1/2T)-log r € M(u) + B ,

where M(u) 1is the length of the maximal interval "I such that,
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for every te&I , Lt consists of one simple closed. curve.
PROOF OF THEOREM 1. The first inequality in Theorem 1 is

clear from the definition of ‘M”(C,R) and Jenkihs4Strebel’s theorem.
TQ show the second inequality, fix é positive ¢& arbitrarily,

then from' the gebmetrical-Characterization of Jenkins—Strebel's

differgntial ¢(c,R)-, we can construct a ring domain Wg such

fhat any non-trivial simple closed curve on We is freely‘homotopic

to ¢ or -c on R , and that the modulus M(Wé) of W¢ is

not less than M(c,R) - &. ‘

Next consider a harmonic function
u (p) = (1/M&(e,R)Up )  *s(c,R)
Py

on W with a fixed pdé:wg . Then, mapping W¢ onto a suitable
annulus, we see from Proposition 1 and Corollary that ué(p) can
be considered as a héight function on some Vr with '(l/ZK);ldg‘r

2:M(W£) - €. Hence by Proposition 2, we have that
M) + B 2 (‘1/27()\~ylljog o2 M(W;) g #,_‘M(C,R), - 2E .
And from the definition of uc(p) , it is easily seen;tha¥
M (e, R) > M)
Since ¢ is arbitrary; we have that

M_"_‘(‘c,R)” + B 2 M(c,R)



8 3, An application of Theorem 1.

Fix a Riemann surface R* such that the (reduced) Teichmiiller
space T(R*) of R* is non-trivial. And consider the finitely
augmented Teichmiiller space 'QRR*) of R* ., (For the details,
see [7, § 1.l°j].) Here we recall some of definitions.

First, QIR*) , -as a point set, is the set of all marked Riemann
surfaces R with at most a finite number of.nodes that admit
marking-preserving deformations (£f;R*,R)

" Here a deformation ,(f;Rl,Rz), of R1 to R2 ; Where R1 and

R2 are Riemann surfaces with at most (a finite number of) nodes,
is a continuous surjection from RI onto R2 - such: that
(1) f_l(p) is a node of R1 or a simple closed curve on R1

for every node p of Rz‘, éﬁd |

(ii) kf_¥_,is quasiconformal on sz-,U for‘every-neighbor—
hood U of N(Rz) , where and in the sequel, N(R) 1is the set
of .all nodes of R .

Next, following Abikoff, q%R*) is equipped with the conformal
topology. Recall that a sequence SRn%iil iﬁ ?IR*) converges
to ‘R061?(R*) if énd’only if there iéyan admissible sequéhce
ﬁfn;Rn,ROﬂgil of;marking-preservingAdeformationskof Rh to R0 ,
i.e., such a sequence that, for évery £ >0 and every neighbor-
hood U of N(Ry) , there is an N such that :(fn)_1 ié'(i+€)-

-quasiconformal on Ry - U for every n2N .

Now we return to the modulus M"(c,R) , and fix a homologically
non—dégenetare curve. ¢ (on R* , hence on every R in T(R*) )

arbitrarily. Then we know the following



Proposition 3. :The modulus M"(c,R) is continuous on T(R*)

PROOF. The assertion follows from geometrical continuity of

period reproducers ([6, Theroem 5]). E qg.e.d.
And Theorem 1,gives the following

Proposition 4. Denote

A ‘ L :
SET(R*) = &QGTTR*): N(R) consists of a single node

p(R)‘ corresponding to ¢ },

and set M'"(c,R) = +o for every RéaCT('R*)._
N\
Suppose that Rne T(R*) converges.to - ROGEBCT(R?) , then
( CT(R*) = T(R*)\’;CT(R*) contains Rn for every sufficiently

large n , and) it holds that

lim 1> +00 M"(c,Rn) = +00,
PROOF. Since M(c,Rn)A cléatly’teﬁds to +o (, which can be
seen from the definition of the cohformalvtopology),’the assertion

follows from Theorem 1. o o qle.d.

In particular, letting {Rn\;:D be as in ‘Proposition 4,
W(C,Rn ) 1is non-empty for every sufficiently large n . So we
set -

S. = {RJET(R*): W(c,R) is non-empty, or equi-
valently, M"(c;R)> 073, ‘



then there is a neighborhood V of R0 in T(R*) 'such that

VAT(R*) = S_
Moreover, for every RGESC , there is a natural surgery #
from S_ onto QCT(R*) defined by the following three steps.’
1) Cut R along the center trajectory, say CR , of W(c,R).
2) Paste two copies of once punctured disks along the borders
of R - CR corresponding to CR so that ©(c,R) restricted on
R - Cp can be extended to a holomorphic differential on the
‘whole resulting surface, say R'
Sjv Fili two punctures of R! cbrrespondihg to thésé of
pasted disks with one pointv p(R) | |
The resulting surface R# , with the natural markiné, can be con-
sidered as a point of ;CT(R*)‘(with the node p(R) corresponding
to- ¢ ), and set #(R) = R# . | :

Using this operation # , we can show the following

Theorem 2 ([9]). Rne.T(R*) converges to ROé QCT(R*) in the
sense of the conformal topology if and only if

i) lim Ny 460 M"(C,’Rn) =+Oo , and

ii) #(Rn)w converges to R0 in ahT(R*) (, or equivalently,

#(Rn) - N(#(Rn)) converges to R, - N(RO) in the sense of the

0
usual Teichmiller topology).

i : , : ~ .
PROOF. Suppose that Rn converges to R0 in T(R*) , then

the assertion i),foilowsEfromiProposition 4. The assertion ii)

can be shown by using Proposition 2 and [6, Theorem 1] (, but we

omit the details).

-10-
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Conversely, suppose that i) and ii) holds. Then by using [6,
Propesitions 5 and 6 and Lemma 7], we cab easily construct an

. . o0
adm1551b1e sequence f(fn,Rn,Ro)}n=1 . , q.e.d.

The case of homologically.degenerate (, but homotopically non-
—degenerate)‘cufve c can be treated similarly. For example,
suppose that R¥* admits Green's functions. (The.caee that R*
‘admits no Green's functions is parallel.) Then ¢ is dividing,
and one of components, say S , of R* - ¢ 1is a subregion of
type SOHB (, i.e. a parabolic end) which is not simply connected.
In this case, distinguishing one point (on SC:R*, hence on every
inéé?IR*) ), and writting by gx Greep's funcpion on R (€T(R¥*))
with the pole at the distinguished point, we can consider the
characteristic ring domain W(c,R) of the differential _—*ng+ing
(instead of ©(c,R) ) for ¢ on R for every RE€T(R¥) (, cf.
[5, Corollary 1]). Using this W(c;,R) ,_wevdefine M"(c,R) and
the operation # , and conclude a similar charaeterizatioh as
Theorem 2 of convergenoe*éeQuehces in ;?(R*)

Finally, we note here that, in any case (of a homotopically
non-degenerate curve), the operation # is just the inverse of
Schiffer-Spencer's variation by reopening aihode (» which is

investigated in [3] in.case of finite Riemann surfaces).

Remark. Generaliéing“above inVestigatiOn, we can give a charac-
terization of the: conformal topology on the whole f1n1tely augmented
Teichmilller space (as the topology induced from varlatlon by

reopenlng a finite number of nodes, which will appear in [10]).

-11-
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§ 4. Closing remarks,(on'continuity of differentials).

1) As another application of Theorem 1, we can show certain
locally uniform boundedness of Green's functions on the finitely
augmented Teichmiiller space. (Here, for every Ré&%(R*) and every
q€R - N(R) , Green's function g(p,q;R) on R with the pole q
is, by definition, equal to the usual one or identically zero on
the éomponent“S of R - N(R) containing q , according as S
admits Green's functions or not, and is idéntically zero on R-S.)
And using this, we can show the following continuity of Green's

functions. -

[}

’Proposition 5 ([9]). Let an admissible sequence {(fn;Rn,RO)Hn=1

of marking—preserving deformations and a point qe:R0 -fN(RO) be
given. SuppOSe‘that g(p,q;RO) Z 0 and that there i$ a neighbor-
hood Uq of  q on RO n,

is conformal on Uqa’for‘every n2:n0'. Then

- N(Ry) and an such that (fn)_l

€ = dg (-, (£,) T(@)iRy) + i%de (-, (£) 7 (a)3R,)

converges to
SFO = dg("q;,RO) + ;i*dg(-gq;RO) '
strongly metrically with respect to {fnﬁ, i.e. it holds that

. . -1 \ T
lim =y +6a \ ano(fn) - (PO\\RO_U —0

for every neighborhood U of N(RO) , where <P°f"is‘thé pull-
-back of $ by £ . ‘ -

-12-



‘Remark. Several results on (strongly) metrical convergence
of differentials (including period reproducers) have been obtained

in [7, 8§ 3].

2) The essential part (, i.e. the '"only if" part) of
Theorem 2 can be restated, again, as a theorem on metrical conti-

nuity of certain differentials. To state it precisely, set
O(R) = ©(c,R)/ IS (c, Ry

for every R & T(R¥*) ; And letting pl(R) and pZUU be punctures
of R' = R - N(R) corresponding to c¢ for every RéiaET(R*) R
weVset | o | |
R) = . ;
BR) = K w),R T B, )R OT

¢p1’(R) ,p, (R),R"

according as R admits Green's functions or not, where ¢$ R
‘ . — , et p,

and ¢P1 ,pz ’

are so chosen that {ﬁ e(R) =1
- 'c

R are definéd in [6, 8 3], and pl(R)‘ and pz(R)‘

Then we have the following version of the '"only if'" part

of Theorem 2.

’Propoéition 6-([9]). Suppose that Rnb converges to R0 in

A .
CT(R*) , then G(Rn) converges to Q(RO) strongly metrically

. . . \ Co
(with respect to any-admissible sequence {(fn’Rn’RO)}n=1 ).

-13-
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3) One may cqnsider that (strongly) metrical continuity of
prescribed differentials is a much weaker result than any
variation formula for them., But in several typical cases, if
the differentials satisfy a certain orthogonality condition (and
natural boundedness conditions, which sometimes hold ovbiously),

we can obtain certain kinds of first variation formulas for them,

Some of variafion formulés underunasiéonformai deformation
of Riemann surfaces can be derived on this line, and have been‘
investigated by Y. Kusunoki, F. Maitani, the author, and others
(, cf. References df [7]).‘ |

The proofs of variation formulas given in [9] ( for period
reproducers and Green's functions under classical Schiffer-
-Spencer's variation by reopening a node) can be coﬁsidered as
another case in which the above principle is available.

Finally, the author announces that more general variation
formuias under a certain kind of pinching deformation (which
can be shown on the same lines as above) will be investigéted

in [10].

-14-
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