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ON AUGMENTED SCHOTTKY SPACES ‘'AND INTERCHANGE OPERATORS

Hiroki -Sato 1% ﬁ? %*/tﬁf

Department of Mathematics, Shizuoka University

80. Introduction.

Problem 1. Let S be a compact Riemann surface with nodes.
Does there exist a point in an augmented Schottky space repre-

senting the surface S ?

Problem 2. We give a point ‘T  in an augmented Schottky space
E%é(fb) associated with a basic system of Jordan' curves Eb ’
which represents a compact Riemann surface S with nodes. Then
for any sequence of points' {T,} in the Schottky space (?é(ga)
tending to the point T , does the Riemann surface S(Th) repre-

sented by T, converge to S as marked surfaces as n > © ?

The answer to Problem 1 is affirmative:

THEOREM 1. There exists a point in an augmented Schottky

space which represents a given Riemann surface with nodes.

_iThe aﬁswer)to Prqbiem 2 is negative in the general caSe,
namely’in the case where Eb is a basic system of Jordan curves. .
However the answeriis affi;mat?ve‘in g.special case, namely in
the case where Eb is a standard sygtem pf’qugan curves. Now

the following question arises: To what Riemann surface does the



sequence of Riemann surfaces S(t..) converge as marked surface
n

as n » o 1in the general case ?

; ~ ,
THEOREM 2. Given a point T e(;é(zo). Then there exists a
sequence of points {1t} C G;g(Eb) tending to T such that

S(Tn) converges to S(t) as marked surfaces.

THEOREM 3. Let <Gg> and Eb be a fixed marked Schottky
group and a fixed basic system of Jordan curves for <G0>1'respec—

tively. Given a point T'EGI'J(EE(EB), where I DI(J) # §#. Let

33 , I* , and J* be a basic system of loops, a subset of I ’

and a subset of J , respectively, obtained from ZO I and J
I*x J* e

by applying certain interchange operators. Let e 87, G;g(zg)

be a point representing a compact Riemann surface with [T*] +

[J%, nodes. Then there exists the following sequence of points
{Tn} C @g(zo) :
T, > T and S(t,) = S(t*) as n >,

as marked surfaces.

§1. Définitions;

DEFINITION 1. Let Cj r Cgu1i Cp + Cgupi®®®*®i Cq s Cpg be

a set of 2g mutually disjoint Jordan curves on the Riemann sphere

€ which comprize the boundary of a 2g-ply connected region W,

Suppose there are g Modbius transformations Aq ,;....,Ag which

have the property that Ai maps Cj onto Cg+j and Aj(w)r\ w=0g

(1 £ 3J £ 9). Then Aj (j=1,2.+¢¢,9) generates a marked Schottky
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curves of <G>,

We say two marked Schottky groups <G> =< Al""'Ag> and

<> =,<£l""'ag> being equivalent if there exists a Mdbius

transformation _I such that 'Rj = TAjT’l (j=1,2,*¢°,9), and we

denote it by < G>~<TG>,

DEFINITION 2. The Schottky space‘of genus g , denoted by

659 , is the set of all equivalent classes of Schottky groups of

genus g 2 1.

DEFINITION 3. Let Cj ,"',ng be defining curves of <G>

=<A1'°"'Ag>"1f mutually disjoint Jordan curves Cl""'c2g7CZg+l'

"',C4g_3 on € have the following properties (i) and (ii),

~

then we call X =‘{Cl,'°',ng;C2g+1,---,C4§_3} a basic system of

‘(jzl,ooo,zg—:i) lie

Jordan curves (B.S.J.C.) for <G>: (i) C2g+j
Ca§-3

in W, (ii) < Each component of @\\ &rc2g+j is a triply connected
i=t

domain. In particular, if a B.S.J.C. X has the following property

(iii), we call T a standard system of Jordan curves (S.S.J.C.)

for <G >: (iii) For each i=1,2,***,g and j=1,2,¢+,2g9-3, C; and

Cg+i lie on the same side of CZg+j' See Examples 1 apd 2 on p.l1l3.

DEFINITION 4. Let S be a compact Riemann surface. We call

the set 2 = {al,°-',ag;Yl,°‘°,Y2g_3 } of loops on S having the

follow1ng property a basic system of loops (B.S.L.) : Each com-
23-3 .

ponent of S \ L}a \ L}Y is a planar and triply connected re-

gion. If, in partlcular, the number of nond1v1d1ng loops is equal
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to g;'webcall a B.S.L. I a standard system of loops (S.S.L).

Let Q(G) be the region of discontinuity of <G>. Let I:
Q(G) > Q(G)/<G> = S be the natural projection. If E = {Cl,°'°,
czg;czg+1;-~-;c4g_3} is a B.S.J.C. -(resp. S.S.J;é.),'then the c
projection I = () = {a1;55°{ag;Yl;‘°‘;ng_3} ' ai’=H(Ci)y and

Yy = H(C2g+j ’ is a B.S.L. (resp. S.S.L.). We call ¥ ' the pro-

)
jection of 3: See‘Examples 1l and 2 on p.13.

§2.  Introduction of new coordinates to @Gg-

We fix a marked Schottky group <Gp~>= <A1'0,"',Ag’0>. Let
Zo = {Cl,O"‘°7C2g,0;c2g+l,0";‘fc4g—3}0} be a fixed B.S.J.C.

- for <Gp>. Let <G> =‘<A1,"P,A§> be a marked Schottky group. Let

A (ijl > 1), p; and pg,j be the multiplier, the repelling

J
malize <G> - by setting pq = 0, Pgsel = © and py = 1. Then a

and the attracting fixed points of A; , respectively. We nor-

point in the Schottky space & ; is identified with

PURE

T = (MrterhgrPgy2/P3sPgs3s " PgrPag) € €973,
‘Now we will introduce new' coordinates with respect to Eb:
f = (tl’tZ"°'ltglp1!"'1929_3) € C3g_3.

First define t; by setting t; = 1/A\; (i=l,*es,g). Thus t;€
D = {z|lo < |z] ¢ 1}. Next in order to define Oj associated
with C2§+j = C(iO'il!""iu) & Zoy(j=l,2,‘°1,29-3), we determine

integers k(j), £(j), m(j) and n(j) whibh are 2 1 and = 2g as



follows, where C(io,il,---,i ). is the multi-suffix of CZg+j

U
(see [4) for the definition): k(j) = 1, Cz(j) = Clig,i7,°°°,

iu_lll—iulol...lo)ly Cm(j) = C(iOIill.f.liulol.;.lo) and Cn(j)
= c(io,il,"',iu,o,"',O). The coordinate pj is now defined as
follows:

(pk(j)lpl(j)Ipm(j)lpn(j)) = (Olllmlpj)rl
where (a,b,c,d) means the cross ratio of a,b,c, and d.

We define a mapping ¢ by ¢(<G>) = 1. We note that if <G>

~ <@8> , then ¢(<G>) = ¢(<a>). We denote by G;Q(Eb) the set
BTy = 17 = o(sen) | <we G,

Then @'g('zvo)s @y and @y(Ty) € D*I x (€\(0,1})29-3, we call

Q;g(zo) the Schottky space associated with ZO‘

§3. Augmented Séhottky spaces.

Let <GO> and Eb be a fiked Schottkyvgroup and a fixed

B.S.J.C. as in §2.

DEFINITION 5. We say Cpg.q = C(ip,***,iy) (resp. C; =
- , - A o Lo
C(jy1r***+Jg)) 1is behind C2j+£ = C(ll,"',l\')) if v <u and
) : i S ,
ik = lk (k:l,zlno-lv) (reSp. v < 0 and jk = ip (k=l,2,"',v)),

and denote the fact Cyg.q < Cpg4y (resp. Cag+f < Cj). Otherwise,

we say that CZg+j (resp. C;) 1is not behind C29+£ »and we denote

the fact by Cagss ¥ Cpgej (resp. C2g+2;¥ c;).

We define the ordered cycle corresponding to @i as follows.



We denote the shortest path from C; to Cg+i on the tree of

~

5 5 5
(1) cir 8 nys B8 2yt 8K (k) r Cgus

(see [4) &nd Fig. 1 on p.l3 in this paper for trees.) Here &(2)
(£=1,2,+++,k) are determined by 6(%) = +1 or ¢&(&) = -1 ac-

cording as C2g+2 < Cg+i or C2g+2 < Cye.
DEFINITION 6. The projection

@ 1 v el )

of (1) onto S\ = Q(GO)/<GO> is called the ordered cycle corre-

sponding to a5 , and is denoted by LO,i'

Let I be a subset of {1,2,*°°,g} and J a subset of {1,
2,°*+,29-3}. We denote by |I| and |J| the cardinarity of I
and J, respectively. Let LO,j(l)' LO,j(Z)"""'LO,j(t) be the
complete list of cycles containing Yg, and let ao,k be the "g-
loops" contained in Lo,k (1 =k =t), where t = t(j) depends

on j. We define the subset I(J) of {1,2,*¢¢*,g} by

I(J) = {i € {112:"'rg}l0‘0,i is contained in LO,j(k) for

some k (1 s k £ t(j)) and for some je J}. -
Remark. If 2, is a S.S.J.C. , then I(J) = .

We define the following sets X = SI“J@fg(Eb) with IDI(J):

(i) When I =J = ¢ , we define X as @;g(fa), the Schottky
o d

space associated with ZO."
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(ii) When I X @4, j = @, we define X as follows:

6I'¢@'g(20) = {Tz(tl'...'tg'pl’...'OZg—B}l t;=0 (ieI), t;%
0 (1§1), Ps% 1 (j=1,°°*,29-3), and T rep-
resents a Rienann surface with nodes such that

only a4 (i €I) are nodes}.
(iii) When I = @, J & @ , we define X as follows:

GglJ@’g(%) = {T =(tl, ooo,tg,pl, ooo,ng_3)| tl#O (i:l,-o.,g)'
P5=1 (3€J), P51 (3 £€J) and T represents a
Riemann surface with nodessuch that only Vs

J
are nodes!.

(iv) When IDI(J) % #, X is defined as follows:

GIIJGg(ZO) = {T =(tl,"‘tg,pl,“‘,ng_3) ]ti=0 (ie I), ti*
0 (1§ 1), P5=1 (3€J), Py¥1 (3 §J) and p rep-
resents a compact Riemann surface such that

only @ (i€ 1I) and ¥; (J €J) are nodes }.

DEFINITION 7.

~

~ ;
@;(Zo) = U {6I'J@g(zo)l IC{lIZI...Ig}I JC {lrzr".°r3g‘3}

with IDI(J)!}

fasd
is called the auqmented Schottky space associated with Zo.

Remark. Let - S(T)  be the’Riemann»surface represented by T.
N
{S(T)I re<g§(zo)} is the sets of all Riemann surfaces in Fig.2

and Fig .3 in the cases of Example 1 and Example 2, respectively.
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§ 4. Interchange operators.

For simplicity, we will only consider interchange operators
in the case of Example 1 (see Fig.4). For detail, see Sato [5]}.
Choose j with I({j}) % #. Let ie€I({j}). For these i and j,

we introduce the interchange operators Ig(i,j).

Remark. Since I(J) is always empty in the case where DX
is a 5.5.J.C., we can not define an interchange operator in this

case.

For simplicity, we only consider Ig(l,Z), which is defined

as follows (see Fig.4 on p.l5): For a B.S.J.C. ET,

~ ~
Ig(lrz)(z)': Z* = {C?,C;, C6 C7fc81C9} ’

where C] = Afl(cg), C; = ayl(cy), C3 = C3, Cj = Cg, Cf = Cg, Cf

= Cgr C5 = C7, C§ = C1, and C§ = Cq.

For a B.S.L. I = {89,05,03iY1,Y,¥3} + I4(1,2)(2) = {af,
o3,035¥F,v5,v3} » where O] = vy, oF = ay, oF = a3, Y] = Y3, V3

*
al’ Y3 = Y3o

For ordered cycles Ly, Lj and L3, LI =v1g(l,2)(Ll) = (d{;
Y3003 = Ig(1,2)(Ly) = (43iY5,¥],Y3) and L3 = Ig(1,2)(L3) =

(a3:Y3‘l,Y1—l), where we write Y§ for Y§+l for simplicity.

For a marked Schottky group <G> <AjrRA,,A3>, <G*> =

. _ * Kk k : * *x *
Ig(llz)(<G>) = <A1,A2,A3>, where Aq = A1r Az‘“ A2A1, A3 = A3.

We obtain Theorem 1 by using interchange operators. See Sato

[5) for details.
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§5. Relations between 1limits of Schottky groups and limits

of Riemann surfaces.

Here we will consider Problem 2. Lef S be a compacf Riemann
surface of genus g with or without nodes. We denote by N(S)
the set of all nodes on S. We assume that each component of
S\ N(S)_,has‘the Poincaré metric. The Poincaré metric Mz)|dz|
on S 1is defined as the Péincaré metric on each component of

S\ N(S).

- DEFINITION 8. If the following conditions are satisfied, a

sequence of Riemann surfaces {Sn} converges to a surface S as
marked surfaces: There exists a locally éuasiconformal mapping’
0p : S\N(S) =+ S \P(S,) such that (i) A (o,(z))|do,(2)]
uniformly converges to ¢(z)|dz| on every compact subset of

S\ N(S), where A,(z)|dz| and A(z)|dz| are the Poincaré metrics
on S, and S, respectively, (ii) * ¢, maps a deleted neigh-
borhood N(a;)\ faj} (resp. N(yj)\ {75} ) of qi‘(resp._yj) to a
deleted neighborhood vN(di,n,\ {ai’n}A(resp.kN(yj’nf\ {Yj,n}) of

o (resp. v. ) if a; € N(S) (resp. yjé N(s)), and (iii) o¢p

J.n

maps a neighborhood N(oj;) (resp. N(yj)) of a; (resp. yj) to a

i,n

neighborhhod N(ai'n) (resp. N(Yj'n)) of ®ji,n (resp. Yj,n) if
o;§ N(S) (resp. inlﬂ(S)), where P(S,) = fﬁl(N(S)) and f4% Sp

> S is a deformapion.-

By constructing locally quasiconformal mappings, we have

Theorem 2. See Sato [6) for details.



Let <Gp> and Eb be a fixed marked Schottky group and a
fixed B.S.J.C. for <Gp>, respectively. Set S\ = Q(GO)/<GO>‘
Given a point T€ §%sJ @’g('{o), where IDI(J) ¥ #. Then S(T) is
a compact Riemanﬁ surface with ‘Il + lJI nodes of genus g. Wex
define the following sets: Jy ={jea| Y4 is a dividing loop on
Solt s 32 = ahy subset of J\NJy , lEl = Ig(ik(l)'jﬁ(l))(gb) with
ix(1) € T0lig (1)})s 3g(1)€ 92 and Jyy = I\ {3g(1)}- Choose
je(2)€ J21 such that TI;({3y(2)})n (13N fig(q)}) % 8- Set
Ty = Tglika)rigc2)) B1) with igp)€ I(lg(2))) + ik(z) ¥ ix(n)-
We set Jyp = T\ {Jg(2)} = T2\ {3g(1),32(2)}+ By the same way,
we determined the following: Jg(3)r ix(3)r J23r E;, I3(Jy3)5°°°
oo jz(s); ix(s)r J2,s"zs : Here s bis the integer satisfying
the following (i) and (ii) : (i) Ig_3({ig(g)})NI(I)\

Ui (1) ri(2) e " rik(s1)) ¥ B0 (35) TJHGNETig)et e siy(s))

for any jeJ2\fjg(l):jz(z)r”"jz(s)}'

We set J3 = J\ (J]_U J2)r J4 = {jg‘(l),jg(z),°",jg(s)}, J5
= I\ Jg I = INIW), Iy = {dgqa)edg() et trig(e)ts I3 =
Ig(J3), Ig = I\(I;UI3VUI,), I = a subset of Iy , Iy = Ig\ Ig,
*

I" = I\I; and J*= J\ J4- Then we have Theorem 3. See Sato [6]

for the proof.

COROLLARY. Given T€8T+/7@ (Zy), where IDI(J) % ¢. Then
there exists a sequence of points {Tn}Ci@%(Eb) such that (i)
T, * tas n>® and (ii) S(t,) does not converge to S(T)

as marked surfaces.

Remark. By a similar method to the proof of Theorem 2, we

10
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have the following. If XI5 1is a S.S.J.C., then S(T,) converges
AL~
to S(7t) as marked surfaces for any point  Te G;;(ZO) and for

any sequence of points {t1,} C GZg(E;) with T+ T,

§6. Appendiées.

We will consider the following in the forthcoming papers

[7,8].

1. Properties of‘interchange operators. There are five kind

)

of interchange operators as follows: (1) Ig(di,ail)‘= Ig(Ci

. _ : _l Co '—
(2) Ig(vai'aj) = Ig(Ci,Cj), (3) Ig(Yj:Yj ) = Ig(cfgfj'CZg+j) ’

'Cg+i

(4) Ig(Yi’Yj) = Ig(c2g+i'CZg+j) and (5) Ig‘“i'Yj) = Ig(Ci:C ).

2g9+]

Here we only considered and used interchahged operators in case (5).

2. Relations between Nielsen isomorphisms and interchange

operators. Here Nielsen isomorphims are

Nl(AlIAi) : <A11A21...IAiI...IAg>‘ + <Aj_lA21."lA]_l"°lAg> .

Np(A1,ATh) ¢ <ApBgscenBg> > <AL Ap, 000 A

N3(A1,A2) . <,A1,A2,A3,"',Ag> - <A1,A1A2,A3,"‘,Ag> v.

3. Boundary behavior of the space of marked Schottky groups

of real type of genus 2. We say <G> = <Aj,A,> a schottky group

of real type if A,, A, € SL(2,R).
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Example 1.
| o )

25 &5 I Y

(¢,8) (1, 9) @2, ¢) (i3t, ¢) (1,2t 0) (2,34 9) q1,39)

NI LN

1,2,34¢) (1,34 d1,2,3400 41,2620 61,2,3020 42,3489 q1,2,3039

& 2 ég & et Saty

@,2,3,0,2) dr,2,3,2,30 (1,2,36L,3) ‘“'2'3"”.'2'3}’
Fig.2.

Example 2.

LA L LA

(8,9) (n, g) (121,9) (81,0) ,2,8) 62,306) (,3,0) (0,2,3,¢)
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(g - dya (124,119) (34,41 ¢1,2,919) @2,3411y) - dL,30n 61, 2,344

(429, d14i20), d2020, (34029, 61,202), 42,3429, (L, 3,129, ({L,2,3H2)

(#43), (89, (!21,53», @36,39, d1, 243, 62,3480, (1,33, (1,2,343)
(8.41,2b, du,@,2p, d244,2h, d@340,2h, @, 240,20, d@,369,2), 1,310,2),
{«1,2,ﬂﬁl,2p ‘

(02,39, @2,3, 62,3, @e.h, 0,223, @31%e,H, @, 1,3,
1(&,2,3LQ,3»

(¢.0,3), O5,3), 420,30, 6349,3), 61,240,30, @,30,30, d,3401,3,
(1,2,3b8,3) |
(¢.,4,2,3y, d1fi,2,3b, RSR,2,3p, (BLL,2,3), @,2A4,2,3), @,3n8,2,3D,
iu1,3),11,2,3h, ¢,2,3,1,2,3)

Fig.3.




T

~r * * * * *
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’ * * * * * *
Z‘: Ig(l,Z)(Z)={a1 ,(!2,(13;Y1Y,Y2,Y3}

Fig, 4.
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