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On BMO property for potentials

Yasuhiro Gotoh (‘fé‘ﬁ’%ﬁﬁ) ;

(Department of Math. Kyoto University)

We can consider the following two BMO spaces naturally for
functions on the unit disk D.

(1) BMO space with respect to dm(z) (= dxdy).
1 1 ' :
BMO(D,m) = {fGELloC(D): Ume= sgp ﬁTﬁ)gB}f—f(B,m)ldm <<x},

where f(B,m) = E%F)SB f dm and the supremum is taken for
every disk B (B<D).
~ BMOH(D,m) = BMO(D,m) \H(D),  BMOA(D,m) = BMO(D,m)(\A(D).
(2) BMO space with respect to dA(z) (=dxdy/(l—lle)2).
BMO(D,\),  BMOH(D,A),  BMOA(D,\),
are defined similarly.
The following relations are known ([1),[4],(9]).

BMO(D,X\) & BMO(D,m),

BMOH(D) BMOH(D,A) < BMOH(D,m) =

!
Y
o

~ .

BMOA(D)

Il
=
o

BMOA(D,X) ¢ BMOA(D,m)
‘where (B(D) (resp. (QH(D)) is Bloch space (a space of all harmonic
functions of Bloch type) and BMOA(D) (resp. BMOH(D)) is a usual BMO
space, i.e., a space of all analytic (harmonic) functions whose
boundary functions are BMO on 9D. Therefore BMO(D,m) and BMOH(D,X)
are well-known spaées.' On the other hand, it seems to be not well-
known about these’BMO properties for potentials on D. Here Qe
investigate the fundamental property of potentials of BMO on R", D,
and Riemann surfaces in‘§ 1, 2 and 3 respectively and give some

remark on BMO spaces on plane domain in 8 4.
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§ 1. BMO property for potentials on R".

Here we give the characterization of measures of Newtonian
potentials (resp. logarithmic potentials in case n = 2) of BMO(R"™).

The following theorem is fundamental.

Theorem 1. Let 0< &< n and § be a function on R™ such that
(i) Plax) = §Kx), a > 0,><e]Rn (ii) [§(x)- dy)l € Klx-y|, Ixl=1ly|
= 1. 'Let )M. be a positive measure on R. such that' |

S]Rn 1Bl 1™ ape(y) € L (R and sup M(B)/(xad(B)) < oo,

where the supremum is taken for every ball B in R®. Then

Ag']Rn §(xfy)/lx-y|ﬂ-u ’d/u(y) € ;BMO(]Rn) .

(proof) Let B "= {x:é]Rn: |x-%x,1< r}. "By direct célculation,

o,
B(x-y) _ BCy) | o g lxex| L n
- - - ~ - b X é B 9 YG]R \B ’
\X-yln L lXo_yIn o | 1 IX.;Y‘% ari Xyt X, , 2T
theiefbre when vx é‘BXD’; , |
& n ' E(X-}:\zo\_ gl }-,n)lx d/u_(y) £ K g £<-‘L—Ln_m'rl /M y)
R \BX 2r V| x-vy} [ %l R" NB_ ,2r -1
0’ e
< K
Similarly, we obtain
g S li_bi-_%‘)_i T (dx € Kyr®
on,r on,Zr (x-yl L

By these two inequalities above,

| _<z<..z_d<>_g R 1¢°52] (y)dx < K,
SBX’ \SR |x-y ™ /L Rp”\BX_ 27 \x;yﬂ‘ /A ‘ 4
0 0° ,

T

9

Since B, 1is arbitrary, the proof is complete.
0 ’

Cofolléry'l.‘ Let /A beba'positive measure on R%, n > 3, such
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loc(]R ). Then N belongs.’

that NY(x) =g L1/ [x-y )| du(y) € T

R / 2

to BMO(R™) if and only if sup /M.(B)/(ra_d(B))n- < oo
B

(proof) Let ¢(x) be a non-negative C™-function on R" such
that (i) @(x) =1, | €1, (ii) $(x) =0, |xI»2 . Since

AN’M= -K/,c where K > 0 1is a constant, we have

/“'(Bx,r) < g¢((y-x)/r)dﬂ(y) = (-1/Kr?) gAjé((y-x)/r)N/lty)dy
- (-1/ked) gA¢((y—_x)/r) (v v, , 0} ey
2 ‘ M A
$ (1/Rr )lIA?‘Ha,gB [ N7(y)-N"(B, , )| dy
X,2r
2 SN M M n-2
¢(1/ke?) BRI, k., ™ | N < K, N r
Ep o ) 2 | oo (™)
where - N'M(Bx,zr) is the mean value of N on Bx,Zr with respect to
the n-dim, Lebesgue measure dy . Q.E.D.

Since (a/a_i)T"u'= -Tt/u. , and AG'“= -ZTC/& for the Cauchy
1 ,

-2 |

G'M(z) = g log(l/ |z -3 )d/ﬂ(§) of a measure /U~ on R

transform T/A(z) = g d/A-(E) and the logarithmic potential

2
» We can prove

the followings as above.

Corollary 2. Let M be a positive measure on ]Rz— such that

gl/lt—z\ d/M(E) S L%OC(]RZ). Then T'M(z) belongs to. BMO(R?) if
and only if sup /A(B)/(rad(B)) < o0
B

Corollary 3. Let /"L be a positive measure on ]R2 such that

g llog(l/ lz-%] )ld/"l(B') ‘ & vL%OC(]RZ). Then G'U(z) belongs to

BMO(]RZ) if and only if /‘A' is a finite measure.

Using this result, we can prove the following estimate of BMO(]RZ)
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norms of the Green functions on plane domain.

Corollary 4. Let SC be a hyperbolic plane domain and gﬁ_z,S)

the Green function on §? with pole % ¢ §¢ . Then

c, < g~(z,3) < cC
1 lee “BMO(IRZ)

where we extend this function as 0 to Rz\SE and Cl’ C2 > 0 are

2 s

universal constants.

§ 2. BMO property for potentials on the unit disk D.

We note that BMO(D,m), BMO(D,X\), BMO(2D) are conformally
invariant. We say a space Y of functions on D or on 3D with norm
'} is conformally invariant when there exists a constant K 21

such that for every S & Mob(D) and f € Y ,
Ly < oSt < KU .

BMO(D,A) is obviously conformally invariant with K =1 , on the

other hand, the conformal invariance of other two BMO spaces 1is not
trivial (seel[9]). By this property, if the Green potential on D of
measure /k. belongs to BMO(D,m) or BMO(D,X), then /u< must have some
conformally invariant property. Carleson measure has a conformally

invariant property as below.

Proposition 1. For a positive measure /PL on D, the following

conditions are equivalent.
(1) (l-\zlz)d/L(z) is a Carleson measure.
(2) sup {<v,m> : VEMQI] < 0.
(3) sup {Q*(2) : 2 eD} < o0
(4) sup{gD(l;\zl%d»(_z) cyew) < o,



oo

where Q*(z) =§ k(z,3)dm(3),  k(z,¥) = (1-121 H)(1- 812z - 519
D
-1
ngo ={v s v= psh s cuspo §
ooy = § € gz3)dp (2
b-D
For (1)€>(3), see (3] . And this proposition follows from the
equation g g(z,%)dm(y) = ;%;(1-lz|2), z € D . Our main result is
D

Theorem 2. For a positive measure /M- on D, the following
conditions are equivalent. |

(1) PP e BMO(R?) when we extend this function as 0 to RZ\.D.

(2) (l-lzlz)d/Aiz) is a Carleson measure,
‘e

moreover, if fi satisfies(l) (and(2)) then P BMO(D,X\), where p#*

is the Green potential on D of measure /u_ .
We need the next proposition to prove this theorem.

Proposition 2 ([7]). Let f be a function in L%OC(D) such that

1
sup ETF)SB]f—f(B,m)Idm < o8 ,

where the supremum is taken for every disk B in D whose hyperbolic
radius is less than some given constant. Then f ¢ BMO(D,m). 1In

this sence, BMO(D,m)-property is a local property.
We can restate this proposition as follows.

Proposition 2'. Let 0 < r0<<~1 and f Dbe a function in

1
Lloc(D) such that

. ‘
Sup{ng lg-g(D_,m)|dm : 0<r<ry, g = fOS, S éM5b(D)} < o0

where Dr=ﬁz;< r} . Then f belongs to BMO(D,m).




(proof of Theorem 2) First we prove (2)—>(1). Let (l-lz\z)Qﬂ(z)
be a Carleson measure. Fix Tis Tos 0 < rl<< r, < 1. By Proposition
1 (4), \
| g‘(z;g)d);(g) < Ky , 1z’|\<" Ty v éﬁ(/'A) ,

g{rz < 131‘< 1}

dy(g) < K, , oy € M
{Bmsry} 2 A
By the second inequality, we,have
I ORIV <KL Lepw
{msx,) BMO(D,m)

Above inequalities and Proposition 2' imply P# é BMO(D,m) . And

this proof shows that for a fixed constant ag > O , 

supi:PﬂkB,m) : the hyperbolic radius of B equals to ao} < ©0
Therefore, we can show that

| %’ _ _ ie k 4 g

sup{ P"(S,m) : S —{z =re : l-h<r<l1, 6,<8<0+h < o ,
where P*%S,m) is the mean value of P/L on the set S with respect
to dm. Hence it is easy to prove P*e BMO(R?).

Next we prove (1)—>(2). Let }A satisfies (1) of this theorem."

Since BMO(R?) is invariant under MBb(R?) (seel9]), there exists a

constant K, > 0 such that || P)"II BMO(]R y €K, )JéM(/A)‘ , where

we extend pY as 0 to Rz\yD. Therefore, if/1)€j19u) then

1 v v
K, 2 . g - |P"(z)-P7(D,,m).|dm
4L 7 mZDZ) D2 2

- g 1P¥(2)- —1p¥(D,m) |dm(z) + 1o g N Tl PX(D,m)dn(z)
1 1 Ly _ 3
2 0+ 47— 3T —P (D,m)»— T F (D m) ,

therefore S ﬁPy(z)dm(z) = ﬂ:PD(D,m) £ lg¥EK4_, And (1) = (2)

follows from Proposition 1.



We now prove the last statement of this theorem. Since dm and

DN are comparable on {[zlé 1/2} , BMO(D,m) property implies that

1 v v
r
Further if 1/2 <r <1 and L/éj19u) then

1 g 1PY(2)- 0 |da(z) € —= S P¥(z)dm(z)
x(DrS D m(D_) D

r

T T
< %SDPD(z)dm(z) < K,
A
and so P°~ & BMO(D,)\). Q.E.D.
d J
Since <y ,m) < (m,noz<v,lz>’ for a positive measure )V on D,

Corollary 5. Every potential on D with finite energy belongs to

BMO(D, V) .

2
If {zn}gil is a interpolating sequence on D, then %;(1-\znj)d Szn

~is a Carleson measure, where S:Z is Dirac measure at P hence
n

Corollary 6. If {zn}gil is a interpolating sequence on D, then

R
g(z,z ) &€ BMO(D,\)
n=1

On the other hand, there exists a positive measure./u. on D such
that P € BMO(D,\) and /u. does not satisfy the condition of

Theorem 2.

Example. Let f£(z) = log(l—\zlz), fr(Z) = f(rz)-f(r), 0<r<1,

then fr’ 0<r<1l, are potentials and we can show that f , fr .

0 <r<1l, belong to BMO(D,N and their BMO(D,A) norms are bounded



3

above. Let r , 0<lrn<’1 be a sequence which tends to 1. Since

D Tn

o0 ; .
and {A Y2, , A € M8B(D), such that 2 o(ﬂ(ffc;Aﬂ} is a

potential of BMO(D,A) which does not satisfy the condition of Theorem

S f_dm — © , n — o« , we can choose sequences {O(n\§=1 R O(n >0

2 .

The necessary and sufficient condition for potential to be in

BMO(D,m) is

Theorem 3. For a positive measure /M— on D, its potential
belongs to BMO(D,m) if and only if;/A satisfies the following two
condifions.

(1) M is uniformly locally finite.

(2) sup \ g (1—\z|2)cose d))(z)l <00 s Z = reie R
where theVsupregum is taken for every VY & N (M), and we say a
positive measure /u; on D is uniformly locally finite if

sup { /a(B) : hyperbolic radius of B is less than ao} < oo R

for some constant ag > 0

See [5] for the detail. Compare this condition»with the condition
(4) of Proposition 1.

For the last of this section, we study whether Riesz.
decomposition of superharmonic function preserve these BMO

properties or not.

Theorem 4. Let h be a harmonic function on D and /A be a
positive measure on D such that s = h + pM belongs to BMO(D,M\),
then both h and pM belong to BMO(D,)). That is, Riesz

decomposition preserve BMO(D,\). property.
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The proof of this theorem is almost the same as the proof of the
reiétion BMO(D,\) = BMOH(D) (see [4]). On the other hand, Riesz
decomposition does not preserve BMO(D,mf property. Ihdeed}we can
construct a positive superharmonic function of BMO(D,m) whose
harmonic part does not Belongs to BMOH(D,m) using the function

1og(1—tz|2) (see (5] ).

§ 3. BMO property for potentials on Riemann surfaces.

Let R be a hyperbolic Riemann surface and 77 :D — R be its
universal covering map. We can define the space - BMO(R,m) by
BMO(R,m) = {f : foT € BMO(D,m)} .
BMOH(R,m), BMOA(R,X), etc., are defined as the same way. The

following result is known about BMO property for potentials.

Proposition 3 ( [7] ). Potentials of positive measure with

compact supportsbélong to BMO(R,\).

We shall extend this result. Let [' be the covering transformation

group associated with T :D — R . VWe define a function kR on

RXR by ,
ko (M(z), T(3)) = 27 k(z, AY) , z, 5 € D,
R AEp
where k is the function defined in Proposition 1 . Since k(z,3%) is

conformally invariant, 'kR is well-defined. Our main theorem is

Theorem 5. Let be a positive measure on R such that
zheorem J p

suprg k‘(P9Q)d (q) < oo ’
pER JR N # ,

then its Green potential ng belongs to BMO(R,)\).

This theorem is the consequence of Theorem 2 and the following lemma
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which we can prove by direct calculatién.

Lemma 1. Let /u, be a positive measure on R and /MD be a

positive measure on D such that PMD = Péﬂ9ﬂl , then
sup g‘k(z,S)d (¥) = sup gx (p,q)d M(q) .
z€D JD /AD perR JR Y /A ‘

For the boundedness of kR 5 we have

Lemma 2. kR is bounded above if and'dnly if there exists a

constant K > 0 such that for every q & R , the domain

{p€R= gg(P>q) > K}
is simply connected, where gr is the Green function on R.

Especially , compact bordered Riemann surfaces satisfy this condition.

Corollary 7. Let R be a Riemann surface which satisfy the

condition of Lemma 2, then potentials.on R of positive finite
measures belong to BMO(R,)\). Especially, compact bordered surfaces

have this property.

On the other hand, there exists a Riemann sﬁrfacé‘R and a
positive finite measure M on R such that its potentiél aPﬁi does
not belongs to BMO(D,m). Indeed, we can construct such a meaéﬁre on
R - {0 <zi< 1] .

Also, we can extend Corollary 5 as follows.

Theorem 6. Let R be a Riemann surface which satisfy the
condition of Lemma 2, then potentials on R of finite energy belong

to BMO(R,\).

_10_
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(proof) For a positive measure /WL on R, we can show the

following inequality by direct calculation.

sup <uomd € T Gy ikl

where <y“’/“>R is the energy integral on R and /MD be a measure on

D such that P © = P§%JI and the supremum is taken for every )/

z
R

€ J{(/UD) . Hence, this theorem follows from Theorem 2.

8 4. Remarks on BMO spaces on plane domain.

Let §? be a hyperbolic plane domain. In this case, we can
define the following BMO space with respect to the 2-dim. Lebesgue
measure dm = dxdy on 2

1
loc

®) : s pr;n-}—g)§B|f-f<B,m>|dm <oo} .

u

B |

where f(B,m) = ﬁ%ﬁ)g f dm and the supremum is taken for every disk
B

B on 52
A~ N SN N
BMOH(§¢,m) = BMO(G2,m) N H(S), BMOA(S,m)= BMO(R,m)NA(R)

BMO(R,m) = {fé L

The following characterization is known.

Proposition 4 ([l)). For a harmonic function h on S¢ ,

(1) h éj&aﬁﬂf&m) if and only if there exists a constant K > 0
such: that |Vh(z)| € K/d(z,2f) , z € {2
(2) h € BMOH(2,m) if and only if there exists a constant K >0
such that |Vh(z)| € K (Pq(2) , z € $¢ ., |
where d(z,o) 1is the distance between z and 392 , and ng(z)\dz]

is the hyperbolic metric on §¢.

N
Since  [{(z) £ 2/d(z,®) , we have BMOH({,m) C BMOH(R,m) . Further
we obtain HD(R) C ﬁﬁbﬁ(ggm) as a corollary of this proposition. On

the other hand, HD(R) ¢ BMOH(%,m) 1in general (see (4]).
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Reimann(8) and Jones[6) have proved the following remarkable

result.

Proposition 5. Let ‘Ql and QZ are plane domain, f: ‘Ql-_)QZ

be a conformal map and h be a function in %(%,m), then hef

belongs to f&ﬁ()(@l,m) and

Wheofll " < ¢ lnll
BMO (52, ,m) | %(Rz,m)

where C 1s a universal constant.

-

Our main result in this section is

Theorem 7. Let G be a hyperbolic plane domain with universal
covering T[:D—*R. Then BMO($?,m) Cgﬁ’o(ﬁ,m) . furth{er the
following conditions are equivalent; ‘ “

(1) BMO(Q,m) = BMO(R,m).

(2) BMOH(Q,m) = BMOHG2,m).

(3) 1/d(z,o%) € A R(z) , z € 2.

(4) There exists a constant K > 0 such that for every zoe;gz .

the domain {z €qL: Fh(z,za) < K } .is simply conneéted.

(5) log TC(z) € BMOA(D,m) (= (B(D)).

(6) log R(z) € BMO(G,m),

where Pﬁ(z,zo) is the hyperbolic distance between z and z, .

S~
(proof) The inclusion BMO(%,m) € BMO(S¢,m) is the consequence
of Proposition 5. "(1) —>(2)" is trivial.
((2)y— (3)) 1f SZ does not satisfy the condition (3), then there
exists sequences {zﬁ}gil in @ and {;n ;:1 on 2§ such that
1/|zn—5n\ P n.f%(zn) . Set u (z) = logl|z-Z | then

K

I un“BMOH(R,m) € Ky,
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because loglzl € BMO(}RZ). On the other hand,

1 1
u 2 K suVu(z)—ﬁ—y’>K (z )| —=F7—
| nllBMOH(SZ,m) 7 226%\ n l ez 2 7 2 ‘qun “n , QZ(Zn)
Zz Ky(1/|z -3 1nlz -3 ] =Kon = &0, m-— o0

hence we can construct a harmonic function of %(Q_,m) \ BMOH (5?,m)
by taking some infinite linear combination of u - |
((3) —>(4)) We will show that if we choose the constant K such that
K > T/A then (4) is valid with this K. If there exists a point z,
€ R such that Q= {z € R Rlz,z,) < K} is not simply
connected, then there exists a closed couve C in 520 ~such that

S 1/d(3,3%)|dsl < 2T and C surrounds some point %, € K.
C

Hence,

i d'l;i’%alﬂ > SC ~_—l£33‘ol > SC ——i——r |d6) = 27T,
where 3 —’50 = reie . This is a contradiction.
"(4) = (1)" is the consequence of Proposition 5 and Proposition 2.
"(4) €3 (5)" is well-known result. Since 1/(1-1212) = é’z(T[(z))ITE/(z)l,
"(5)<«> (6)" follows from the fact log(l-lzlz) € BMO(D,m).
Q.E.D.
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