<table>
<thead>
<tr>
<th>Title</th>
<th>Brownian Motions on Riemann Surfaces of Inverse Functions (Function Spaces on Riemann Surfaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YANAGIHARA, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 571: 11-15</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1985-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99179</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
Brownian Motions on Riemann Surfaces of Inverse Functions

Hiroshi YANAGIHARA

Department of Mathematics
Tokyo Institute of Technology
Oh-Okayama, Meguro-ku, Japan.

§1. Introduction.

Let $B = (B_t, t \geq 0)$ be a complex Brownian motion starting at 0 defined on a probability space (Ω, F, P) and f be a non-constant analytic function in the unit disc Δ. Define φ_t and W by

$$\varphi_t = \int_0^t |f'(B_s)|^2 ds,$$

up to the first exit time σ of B from Δ and

$$W = (W_t) = (f(B_{\varphi_t})).$$

Then the process W is also a Brownian motion up to the time φ_σ. It is known that $E[\varphi(\sigma)^p] \approx \|f\|_p$ for $0 < p < \infty$ (Burkholder, Gundy and Silverstein [2]). In 1979 Davis [3] noted that φ_σ is the first exit time of the Euclidean Brownian motion W from $f(\Delta)$. Precisely let S be the Riemann surface of f^{-1} such that S is a covering surface of $f(\Delta)$ with the natural projection p and that there exists a one-to-one onto mapping f^{-1} with $f^{-1} \cdot f = p$. Such a surface is called the Riemann surface of inverse function. The
Brownian motion $W = (W_t^*)$ can be lifted continuously on S. Let $\tilde{W}^* = (\tilde{W}_t^*)$ be the lifted Brownian motion on S. Since the generator of \tilde{W}^* is $\frac{1}{2}$ times the Laplace-Beltrami operator corresponding to the pull-backed metric on S from the Euclidean metric on $f(A)$, \tilde{W}^* is a Brownian motion corresponding to this metric and φ_σ is the first exit time of \tilde{W}^* from S.

In the present paper we shall study analogously spherical Brownian motions on Riemann surfaces of inverse functions.

§1. Result.

Let $w = f(z)$ be a non-constant meromorphic function in the z-plane to the w-sphere. We may regard f and its restriction $f|\{|z|<r\}$ as one-to-one onto mappings from the complex plane \mathbb{C} and $\{|z|<r\}$ onto Riemann surfaces of inverse functions S and S_r respectively. We may assume $S_r \subset S$. Now we can define a spherical metric on S by

$$\rho(\tilde{w}^*) dw^* dw^* = \frac{dw dz}{(1+|w|^2)^2},$$

for each local coordinate \tilde{w}^* with $w = p(\tilde{w}^*)$. Let A denote the spherical area on S, then

$$A(r,f) = A(S_r) = \int_{|z|<r} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} \ dx dy.$$

Define the Ahlfors-Shimizu characteristic $T(r,f)$ by

$$T(r,f) = \int_0^F \frac{A(x,f)}{x} \ dx.$$

Then it is well-known that

$$T(r,f) = \frac{1}{2} \int_{|z|<r} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} g(z) \ dx dy,$$
where \(g \) is the Green's function of \(|z|<r\) with a pole at 0 and \(z = x + iy \).

Let \(\omega^*_0 = f(0) \in S_r \). The spherical metric \(\rho \) does not only define \(A(r,f) \) and \(T(r,f) \) but also generates a Brownian motion \(\omega^* = (\omega^*_t) \) starting at \(\omega^*_0 \) on \(S \) defined on some probability space \((\Omega^*, F^*, P^*)\) such that

\[
\lim_{t \to 0} \frac{1}{t} E^*[u(\omega^*_t) - u(\omega^*_0)] = \frac{1}{2} (L^*_\rho u)(\omega^*_0),
\]

for each \(C^2 \)-bounded function \(u \) on \(S \) where \(E^* \) denotes the mathematical expectation with respect to \(P^* \) and \(L^*_\rho \) is the Laplace-Beltrami operator corresponding to \(\rho \). Let \(\sigma^*_r \) be the first exit time of \(\omega^* \) from \(S_r \). Then we have,

Theorem. For each \(r, r > 0 \), it holds

\[
E^*[\sigma^*_r] = T(r, f).
\]

§3. Proof. We can construct \(\omega^* \) by the standard time change-argument (Blumenthal and Getoor [1] p.212). Define \(\varphi_t \) by

\[
\varphi_t = \int_0^t \frac{|f'(B^*_s)|^2}{(1+|f(B^*_s)|^2)^2} \, ds,
\]

and put \(\psi_t = \varphi_t^{-1} \). Then \(\omega = (\omega^*_t) = (f(B^*_t)) \) is a spherical Brownian motion on the \(w \)-sphere. Let \(\omega^* = (\omega^*_t) \) be a lifted process of \(\omega \) such that \(\omega^* \) has continuous paths a.s. with \(p(\omega^*_t) = \omega^*_t \) and \(\omega^*_0 = \omega^*_0 \). Without loss of generality we assume \(f'(0) \neq 0 \). Then a simple application of Itô's formula (Ikeda and Watanabe [4] p.66) shows \((2.1)\). Since \(\sigma^*_r \) is the first exit time of \(\omega^* \) from \(S_r \), we have

\[
\sigma^*_r = \inf \{ t : \omega^*_t \in S_r \}
\]
\[= \inf \{ t : \phi_t^{-1}(W^*_t) \in f^{-1}(S_r) \} \]
\[= \inf \{ t : |B_{\psi_t}| \geq r \} \]
\[= \inf \{ \sigma_t : |B_t| \geq r \} \]
\[= \sigma_r' \]

where \(\sigma_r' \) is the first exit time of \(B \) from \((|z|<r)\). Hence we have

\[E[\sigma_r'^*] = E[\sigma_r'] \]

\[= E[\int_0^{\sigma_r} \frac{|f'(B_s)|^2}{(1+|f(B_s)|^2)^2} ds] \]

Let \(p(s, z) = P(s < \sigma_r, B_S \in dx dy) \) is the density function of the random variable \(B_{S \wedge \sigma_r} \) with respect to the Euclidean area element. Then it is well-known (Itô-McKean [5] p.237) that

\[\int_0^{\infty} p(s, z) ds = \frac{1}{\pi} g(z). \]

This shows

\[E[\sigma_r'^*] = \frac{1}{\pi} \int_{||z||<r} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} g(z) \, dx \, dy \]

\[= T(r, f). \]

REFERENCES

