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Let En(f) denote the best approximation of fé&c[0,2m], i.e.,
E (f) = inf £ - T | ;

where | - | is the supremum norm and T,(x) are trigonometric polynomials
“of degree < n. It was Bernstein [ 3] who first showed the close connec-
tion between absolute convergence of the Fourier series of f(x) € Lip&
and En(f). In particular, he obtained the following theorem which shows
his result being best possible. ’

Theorem A. For any given sequencé £,l0 such that
' [o2]
‘ngi en/in - oo.’

we can find an f € C[0,2Tt] whose Fourier series is not absolutely con-

vergent at any point at all and yet satisfies the inéquality En(f)s Em -

To prove this theorem, he invented the following lemma which may well

deserve an independent interest.

Lemma A. For any given natural numbef N, we can find a trigonometric
polynomial of the form

T, (x) = z: cos(nx + )
N N/2<n <N A

such that uniformly in x,

T (%) </ .
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Bernstein's original proof of this lemma is due to the theory of char-
acters, while Bari [1] applied Kuzmin's lemma instead and Kahane[“]used
Rudin-Shapiro theorem. Actually Bernstein considered the sum

| 2
(1) S = z: e(a(gﬁ— + xn)), ( e(u) = exp(2MTiu))
A<ngB
wHere a > 0, 0<x<1 and A,B,N€ N are such that 1<A<BZN.

First we remark that if we apply Salem's lemma(Lemma 2 below)to S, then
we obtain

(2) S K (fa + L/{z)fN,

which holds uniformly in x,A,B.
On the one hand, from a different stand point, there is a problem of
finding the polynomials '

(3) ez = 2L e g2t

N n<N n,N
with ]cn Nl = 1 and |z| = 1 such that
(4) VN < Pg(2) < /N,

‘for all z. Parseval's formula shows

(5) Max  [py(2)|2{¥ .
|2i=1 .

See e.g. Kahane[5] for recent results. The next example of (3) in the
literature seems to be the following one due to Hardy and Littlewocod([cf.
71 p'lgg]: » A '

(6) . PN(Z) = z: e(cnlog n + xn), z = e(x)
: n<N ‘ .

which satisfies PN(Z)‘KifN uniformly in x. However, as far as I know,
it seems open whether it satisfies PN(Z):>43$ for all x. We notice that
in their example the coefficients c = e(cnlog n) are independent of N.

The main purpose of this note is to show that the size of (3) may be
sometimes smaller than\/ﬁ-. We shall show it effectively by constructing

examples.
2.



(W

First we prove

Theorem 1. For any given N> 1, we can find a sequence ch. N € € with
3

,Cn,N‘ = 1 (1< n<N) such that

(7) Y e M« NY/E

for all z€ € with |z| =1, where « depends on z.

Proof. Consider the sum

n<N

(8) Sy = Z ev(xn - 2sym),

where 0<x<1 and s>1 will be suitably chosen(as a function of N)later.
If we put £(t) = xt - 2s4% (1<t<N), then

ST L £'(8)< 1 - sATE < 1 - sHN .
Therefore, if 4s°< t< N , then
ler(e)] < 1 - sN,

because then -(1 - s/yN) < -s/{T.
Now we shall apply the following known lemma due to van der Corput{ecf.2].
Lemma 1. If f(t) is monotone and satisfies

lerce) < 1-¢8 , (0<g<1)

throughout (a, b), then

b
Z e(f(n)) = ( e(f(t))dt + 0(1/¢),

a<n<b Y a

where the constant implied by O is absolute.

If we insert €= sAN in the above lemma, then we obtain



N
5 Z: e(xn - 2syn) = Ly , elxt - 2syEt)dt + O(YN/s).

Us“<n<gN ‘ Us

‘Thus we have

‘ N
(9) Sy = Z: 5 e(xn - 2sym) +\f{ e(xt-2svE)dt + 0(YN/s).
l1<n<hs us? g

We appeal to the known lemma below'to estimate the first sum in (9).

Lemma 2 (Salem[ef. 7, p.226]). If £''(t) > 0 is monotone, then

) - 1 m "
e(f(n)) = 0(Max ) + O(j~ﬁ/f (t) + f (t))dt),
asz;sb a<t<b\}f (t)

where the implied éonstants by O's are absolute.

s -3/2

Now for f(t) = xt - 2syt we have f“(t) #‘—§~ t” . Hence by Lemma 2

we have
. 4s?

: 1 3/4 -3/4

(10) e(f(n)) = O0(Max — t2 )+ O(Jﬂ Vst dat +
2 l<t<hs® Vs | 1 ~
lSrlsas.

Ms2

+ J. st737248) = 0(s) + O(s) + 0(s) = O(s).
1

Next we shall estimate the integral

N
I, = Jﬁ e(xt - 2syt)dt.

N
4s2
If we put t = u2, then
VN
IN = 2 J‘ u-e(xu2 - 2su)du
2s
N NN
éi. J( (e(Xuz—ZSu))‘du + 2%_ e(xuz-Zsu)du
X Jog 2s .

&
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= 28 Jﬁ e(xu® - 2su)du + 0(1l/x).
2s

Lemma 3 [cf.6 & 7]. If f”(t)z r>0 throughout (a, b)), then

J

where ‘& is:-absolute.

b I
e(f(t))dt « 1IANT ,

From this lemma we have -

_ YN

(11) ' uf ' e(xu2 - 2su)du = O(1l/vyx).
2s

Thus we obtain from (9)-(11)

sy = 0(s) + 0(sx™32) + 0(VW/s) + 0(1/x).
Finally, by choosing s = —%— Nl/u, we get
sy = oy,

N

where the implied constant by O depends on x. []

If the coefficients ch "are independent of N, then the situation in

,N
general becomes more difficult and we then have the following result.

Theorem 2. For any given € > 0, there exist a natural number NO =
NO( € ) and a sequence ch = c, (€) € ¢ with -!c‘nl =1 (l<n<N) such

that for all N2N, and z with |[z] =1,
2: c‘zn <& N2/5 +;8
n €52 '
n<N .

Proof. We only indicate the outline of the proof since it is similar

to that of Theorem 1. In this case we consider the sum

~



Sy = E: e(xn - n%/c),
n;sN
where O0<x<1 and 0<c<1l. If we put f(t)=xt - t°/c (2< t< N), then

we have by Lemma 1
N

z: e(f(n)) = J[ e(f(t))dt + O(Nl—c),
2<nsgN 2 ~ '

Next we apply a known lemma [7, p.62] in order to estimate the above
integral, say I(N). Then after simple calculation, we have for
N > 2(2/0) /(1)

I(N) - T(N/2) = o(Nt=3¢/3),

where O depends on ¢ and x. Hence substituting in N successively

and adding them all, we get I(N) = O(Nl—3¢/5).

Therefore we finally obtain

s, = o(tT3%/5) 4 o(niTe) = o(nt3¢/5)

on?/> *8y (¢ =1-5g/3).
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