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ABSTRACT

We consider a 2-dimensional analogue of Sharkovskii's
theorem on the existence of periodic points for
l1-dimensional maps. For a periodic point of an
embedding of the plane into itself, we define its
"braid type". We find some pairs (o,B) of braid
types satisfying the property that any embedding

of the plane with a periodic point of braid type w
also has a periodic point of braid type B.

1. INTRODUCTION

In [13], Sharkovskii proved a theorem on the existence of periodic
points for l-dimensional maps. He introduced an order relation =< on
the set of all positive integers, and showed that if a continuous map
from an interval to itself has a periOdichoint of period n, then it
has a periodic point of period m for every m —< n (for an/English
language version of the proof, see Stefan [14]). Kloeden [5] genera-
lized Sharkovskii's theorem to some specific 2-dimensional maps.

Recently, Boyland [3] has presented an idea to obtain a 2-dimen—
sional analogue of Sharkovskii's theorem. The essential points in
his idea are to specify a periodic point by its'"braid~type" and: to
define an order relation on the set of braid types. . However, his
definition does not seem to be suitable for the problem of finding

periodic solutions for systems of ordinary differential equétions.

9



In this paper, we define an order relation 2 on the set of
braid types which is a generalization of BoYland'S ordering and is
suitable for the above problem. We also determine, for some sets V

of braid types, the structures of the ordered sets (V,2).

2.  ORDER RELATIONS ON BRAID TYPES

Let n be a poSitive integer. Let wn be the space of unordered
n-tuples of distinct points in the plane. Akgggii group Bn is the
fundamental grqup of the space Wn;x An element of Bn is called an
n-braid or simply a braid. Bn is a finitely generated group with
generators 0j,..., on;l (see Fig.l) and defining relations (see e.g.

[2, Theorem 1.81):
0.0, =00, Cif |i-j] =z 2

g.0. 0. =0, ,0.0.
i7i+l7i i+l i i+l

i=1,..., n-2."
The center C(Bn) of Bn is the infinite cyclic subgroup generated by

8 = (0,0,-.. on_l)“ (see e.g.[2, p.28]).

1 i;l i i+l i+2 n

Fig. 1

Define a homomorphism P from Bn to the symmetric group of

degree mn by P(oi) = transposition of i and i + 1.

Definition 1.  An n-braid type (or simply a braid type) is the

conjugacy class of an n-braid which is mapped to an n-cycle under the

2



245

homomorphism P; (In the remainder of this paper, the conjugacy class
of a braid b 1is denoted by [b].) Let BTn denote the set of

n-braid types, and let BT = {J BTn' The center ‘C(Bn) acts on
nzl

BT by 6[b] = [8b] (8 €C(B)).

Let M= R® or D? (the disk). Let Emb(M) (resp. Diff(M)) be
the set of orientation preserving Cl—embeddings (resp. C}—diffeomor-
phiéms) of M to itself. In the remainder of this section, we fix
an arcwise connected subspace E of .Emb(M) ‘containing id, the
identity map on M. For f € E, denote by §(E,f) the set of isoto-
pies F : [0,1] + E with F(0) =id, F(1) = f. Let Per(f,n) be the
~ set of n-periodic points (i.e., periodic points of least period n) of

f, and let Per(f)  be the set of periodic points of f.

Definition 2. Let f &€ E, F&€ Q(E,f), and x € Per(f,n). The

conjugacy class of the braid represented by a loop
(0,113 £ —> {F(t)(x), F(E)(E(x)), ..., F(e)(E"(x))}

‘in Wn is called the braid type of x with’respect to F, and is
denoted by B(x,F). Let B be a braid type.' Then a periodic point

x of f is called a (B,F)-periodic point if B(x,F) = B. The set

of (B,F)-periodic points is denoted by Per(f,B;F).

Clearly if B is an n-braid type, then Per(f,BR;F)C Per(f,n).
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Definition 3. We define an order relation 2 on BT as |

follows:
Bl 3'82 if and only if
any f € E and any F € Q(E,f) with Per(f,Bl;F) # 0 satisfy

er(£,8,; i.e., any with a ,F)=-periodic point
Per(£,8,;F) #0 ( f<E ha (B),F) d i

for some F € Q(E,f) also has a (BZ,F)—periodic point).

Remark. It is trivial that 2z is reflexive and transitive, but

it is not known whether it is antisymmetric.

Consider the case of E = Diff(Dz, relaDz), the set of diffeomor-—
phisms of D2 fixing the boundary pointwise. - Then B(x,F) is
independent of the isotopy F. Thus 2z is precisely the ordering
defined by Boyland [3]. In the general case, it is not difficult to

verify the following:

Proposition 1. (1) For any F, F'€ Q(E,f), there is an element
8 of the center’ C(Bn) such that B(x,F') = 68(x,F).
(2) 1If Blé BTn’ Bzé BTm, and Bl 2 62, then

k

enBl

w

k .
Smﬁz for any integer k.

Remark. Boyland [3, Theorem 4] has shown that there exist some
braid types B satisfying B 2 infinitely many braid types,in the
case of E = Diff(Dz, relBDz) (see also Kobayashi [6],[7]). For our
generalized ordering, a similar result seems to hold, while we have

not verified it yet.
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The ordering on BT has’an importance in the study of periodic

solutions of periodic systems of ordinary differential equations.

Let £ :JR3 +iR2 be a‘Cl-map and consider the following system:
' 2
(2.1) x' = f(t,x) teR, x€R".

We assume that

(1) f 1is periodic in t of period 1,
(2) every solution of (2.1) is defined on an interval (a,«),

where a 2 -o may depend on each solution.

A solution c¢ of (2.1) is called an n-periodic solution for a

positive integer n if it is a periodic solution admitting the period

n and no smaller integral period. c¢ 1is a periodic solution if it is
an n-periodic solution for some positive integer n. For an n-periodic
solution c¢, define a braid type B(c) as the conjugacy class of the

braid represented by a loop {c(t), c(t+l),..., c(t+n-1)} in Wﬁ.

Proposition 2. Let E = EmbCRz). Suppose ¢ 1is 'a periodic
solution. Then for any braid type B s B(c), there exists a periodic

solution c¢' with B(c') = B.

Proof. For t 20, x€& ]Rz, let F(t)(x) be the value at the

time t of the solution starting x at the time 0. Then a point x
is an n-periodic point of the map F(1) if and only if the solution
F(t)(x) 1is n-periodic. Since F(1) € E, F € Q(E,F(1)),

C(O) € Per(F(1)) , anq B(c(0),F) = B(c), we have Per(F(1),B;F) # @

5
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for any B s B(c). This completes the proof.

Let e be the unique element of the trivial group 'Bl. Then we

have:
Proposition 3. [e] s any braid type.

Proof. This is trivial in the case of EC Emb(Dz) (in fact, any
element of E always has a fixed point). In the case of E CZEmb(]Rz),

this follows from Massera [12, p.460].

3.  BRAID TYPES B WITH B = A GIVEN 3-BRAID TYPE
In the remainder of this paper, let E be one of the spaces
Emb(M), Diff(M), Diff(D?, reldD?), where M = R, D°. First we show

that there exists a combinatorial algorithm which determines all the

braid types s a given 3-braid type. Let 60 = 83 - (0102)3. Let 8,
and 8, be horseshoes indicated as follows:

A

82(A)

g, and g, have attractive periodic points p;, p,, P3 (p; = (1,0)).
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Suppose a d-tuple J = (jl,...,‘jd) of integers and an integer m are

giveﬁ. Then, défineba‘3-braid 06(J), conjugacy classes pP(J), P(J;m),

and a hdrseshoé' ¢J by

J J J
1-1-72 -1 d -1
o(J)=ol 02 ql 02 ~--ol 02 ,
p(J) =

[0, psm) = 8%(J),
ig i

¢J = g; 08,008 08,
These are denoted also by O(jl,..., jd) etc. Also, let QJ,m be an
element of Q(DiffCRz), (%) such that the 3-braid represented by the
loop {0 (£)(p;), ¥ (£)(p,), @J’m<t)(p3)}‘ is equal to p(J;m).

For an integer k not divisible by 3, let pk = [(Gloz)k]. It is

clear that there are no braid types < pk other than [e].

Theorem 1. Let BO be a 3-braid type with BO # pk for any k.
Then
(1) BO = p(J;m) for some integer m and some d-tuple J of non-
negative integers.

(2) For a braid type B, the following two conditions are equivalent:

(i) B s BO.

(ii) B = B(x,@J m) for some periodic point x of ¢J.

Since the'structure of the set of periodic points of any horseshoe

is completely known, this theorem gives an algorithm to determine the

{
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braid types B with B s a given 3-braid type. (In Theorem 1, we may
replace the map ¢J by an appropriate pseudo-Anosov map, as is seen by
the arguments in the proof of Theorem 1, however it seems difficult to

~ determine the braid types of periodic points of pseudo-Anosov maps. )

Remark. Suppose a 3-braid type B satisfies B # pk for any

k. Suppose f 1is an element of Emb(Dz) satisfying f(BDz)(\ BDZ =

@ or 3D2. Then, if f has a (B,F)-periodic point for some F, it
has positive topological entropy and infinitely many periodic points

(Kobayashi [6],[7],[8], Boyland [3]).

As applications of Theorem 1, we give some results obtained by
carrying out the algorithm. (We omit the proofs.) First, for any

3-braid type B, we completely determine 2-braid types < B.

Proposition 4. Let m be an integer, i an odd integer, and

J = (jl,...,jd) a tuple of non-negative integers. Then

p(J;m) > [Oi] if and only if

d

2m -d sis2m+ ) Jy -
k=1

A

Next, for some 3-braid types B, we determine all the 3-braid
types < B. For a non-negative integer d, define subsets BT3 d and

Vd of BT3 by

BT3 q° {BEBT3I B = p(J;m) for some integer m and

a d-tuple ;J of non—negativeintégers}, d > 0,

g
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: d
k
BT, ¢ = {0°]3 ( k},‘ v, = \;éBT3’k.

It is not difficult to see that if BGEBT3, B'GEVE, B = R' , then

eV Hence for BEVZ, we can determine all 3-braid types < B by:

9
Proposition 5. The order relation 2 on the subset V2 of

BT is generated'by the following inequalities:

(l) p(isj) > p(i‘P,j‘2§Q) (P,Q) = (O,O)’(2s2)7(4:3)9

izp+1,jz3,

(2) p(i,3) > p(i+j-1) i, jz1,
(3) o(i,1) > p(31+1)/2 21,

(4) p(1,1) > p72

(5) o(i) > p(i-2;p) p=0,1, iz3,

6) o(1) >p, o+

(7) the inequalities obtained by multiplying both sides of
the inequalities (1) - (6) by o™ (m 1is an integer),

where i, j are odd integers.

For example, the order 2 on the set {BE& BT3[ B = p(3,3)} is
generated by the inequalities indicated in Diagram 1. Also, the
order on Vlv is generated by the inequalities in Diagram 2.
4.  PROOF OF THEOREM 1
. -1 -1
Proof of (1). Let a = 0102. Since o1 02, 02 are expressed
as products of 6, 6_1, @, o, and the equality o = 0,00, holds,
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0(3,3)

N

p(3,1)

N

p(l 1;2) | vo(l,l)

A 4

\ p<s>
(3 1) / (3)

Al

p(1; 2) o(l 1) p(l)
p8 1 p-z
Diagram 1
\\ ,' “ ,' ~_\‘ /.r
o(7; 1) ‘ 9(7) - p(7 -1)
o(S 2) p(5;1) p(5) o(5; —1)
/ AN
p(3;2) p(3;1) p(3)
SN SN SN S
p(1;3) p(1;2) p(1;1) (1)

lg// \\\ 8 7¢// \\N 5 4/// \\N 2 %// \\q -1

Diagram 2

In these diagrams, "8 —>B'" means that B 2z B'.

[0



251

: i , i
Bo is equal to [ep(claoll)°--(clacls)], where - p 1s an integer,

il,..;,is are non-negetive. 'This and the equality oido{ =

-1 j-2 . _abts . S
80,07 imply that Bp =8 p(ll 2,000, i 2). Therefore the proof

is completed by the equalities (cf. [10, (5.15)]):

0(j,-2,k) = 6 To(G+k+2), 0(j,~1,k) = o(j-1,k-1).

Proof 9§>(2). Our proof is similar to that of Boyland [3,
Theorem 4] and is an application of the result of Asimov and Franks
[1]. We wi}l prove the theorem only in the case of E = EmbCRz).

The other cases can be proved similarly.
We may assume that m = O without loss of generality. Let ?J =

)

70 Since B(pl.®j) = p(J), it is clear that (ii) follows from (i).

We must prove (ii) implies (i), that is,

o(J) =2 B(X,QJ) for any periodic point' x of ¢J.

Fix a periodic point x. of QI of period n. Let f‘E E, F GSKE,f),

0

and assume that f has a (p(J),F)-periodic point. We may assume that
P; is such a point and fn(pl) = ¢§(pl) for any n. For the proof,

it is enough to find a (B(xO,QJ),F)—periodic point. When n = 1,
such a point exists by Proposition 3. Also, when Xy = Py» Pys OT Py
the existence is trivial. Thqs we assume n 2 2 and g £ pl, Pys» Pg
in the following. Since B(pl,QJ) = B(pl,F), thére is an isotopy

G' : [0,1] - E such that G'(0) = ¢J‘, G'(1) = f, G'(t)(pi) = f(pi)

for any t ,i. Identify 82‘ with ZRZLJ{w} and let Py = - For

I
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i=0,...,3, choose small disks Di’ Di yith IntDiD Di, Int D;Lapi.

3 ,
Let X = 82 - U Di’ Let G(t) : 82 > 82 be an isotopy such that
3
i 1]
(a) G(t) = ¢J on LJ Di for any t,
: i=0 ,

(b) G(t) =G'(t) on X forvany t,

(©)  6(0) = o).
Let g = G(1). We denote a unique extension of ¢J " to S2 by the

2

same symbol ¢J. Let K = {po,...,pB} and Y = S° - K.

Lemma. X, is the only point in its Nielsen class with respect

to the map ¢3 ]Y.

Proof. Let I be the involution on T2 defined by I([(x,y)])
= [-(x,y)], x,y € R . Define a subset K' of T2/I to be the set
of the orbits of [(i,j)], i,j =0, 1/2. Let Z (resp. Z') be the
surface obtained from Y (resp. T2/I - K') by compactifying each
end with a boundary circle. Let B : B3-+ SL(2,Z) be the

homomorphism defined by

1 1 1 0
(4.1) B(oy) = »  Bloy) = .
: 0 1 -1 1

Then A = B(o(J))™ induces a homeomorphism f, of Tz/I. Let ¢j

A

(resp. fi) be the homeomorphism of Z (resp. Z') induced from ¢

(resp. fA). We may assume ¢3 has no fixed points on the boundary

of Z. It is easily verified that there is a homeomorphism h from

|2z



Z to Z' such that (¢3)n is homotopic to h_loonh; Therefore

N((¢3)n) = N(£}) = traceA = #Fix(d)3) = #Fix((cbj)n),

where N( ) aenotes the Nielsen number (for the definition, see [4]).

Thus the proof is cbmpleted.

Note that the fixed point index ind (x0,¢§)'# 0 and every P;

is an attracting or a repelling point of G(t) for any t. Thus, by
Lemma, using a slight modification of the Asimov - Franks result [1],

we have an element x, of Pef(g,n) with (xo, ¢J]Y) and

1

(xl,gIY) in the same strong Nielsen class, i.e., there exist an iso-
topy H from ¢JIY to g]Y and a path u in Y joining Xq to X4

such that u(t) € Per(H(t),n).
Consider first the case n # 3. We claim that Orb(xl,g), the

orbit of x under g, 1is contained in X. Indeed, if not, then

1

x, and g3(x1) are close together and an argument similar to [1,

1
p.27] leads to a contradiction to Lemma. Thus xq € Per(f,n).
Since (XO,QJ) and (xl,g) are in the same strong Nielsep class,
B(xl,F) = B(xo,®J). So the theorem is shown in this case.

‘Now assume n = 3. Then Orb(xl,g) C X, or Xq and pj are

close together for some j = 1,2,3. In the former case , the proof

is completed by the argument given above. In the latter case, we have

B(PI,F) = B(XO,§J) and the proof is completed.

I3
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5. PERIODIC SOLUTIONS OF PERIODIC SYSTEMS

As a byproduct of some arguments in the proof of Theorem 1, we
have an improvement of the estimates for the nember of beriodic
solutions of the system (2.1) given by the author [9, Theorem 1],

[10, Theorems 2 and 5, Proposition 4], [11, Theorem 2].

Suppose Cy» Cys Cg are periodic solutions of (2.1) such that
{cl(O), cz(O),‘c3(O)} = {cl(l), cz(l), c3(l)}. Let Py be the period
~ of the periodic solution cye Let % denote the 3—braid represented
by a loop {cl(t), c2(t), c3(t)} in W,. AFor a positive integer p,
let M(p) be the number of p-periodic points of the subshift of

finite type correspbnding to the matrix B(GO).‘(B is defined by

(4.1).)

Theorem 2.  Suppose % is conjugate to 'emc(jl,,;.,jd), where
m is an integer, jl,...,jd are non-negative, and ‘%cg 1 for some
k =1,...,d. Then, for any positive integer p # 1, Pys Pys P the

number of p-periodic solutions of (2.1) is not less than M(p).

Proof. Let( L =‘R2 - {cl(O), c2(0), c3(0)}. Since p # 1, Py
some arguments similar to those in the proof of Theorem 1 shows that
there exists an injective map from Per(¢J,p)(\Y to Per(F(l),p)r\L
where F 1is defined in the proef of Proposition 2. Thus we have the

conclusion.

Remark. It is obvious that the estimate in Theorem 2 cannot be

-sharpened any more.
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