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ABSTRACT

We construct another counterexample which is differ-
ent from Pixton's and, using this example, we const-
ruoet countably many distinct counterexamples on

£ x g (m > 3).

81, INTRODUCTION

Suppose that y is a flow on Rm+n

that satisfies the following
conditions:

(1) The origin {0} is an isolated invariant set for Y which has the

isolating block B = D™ x D" (cf. F. W. Wilson [6]). Fi Jure 1

(2) The structure of B is

b R"
bT = ap™D", T .
b = D™3p", -
T =b'h b = ap™ap® = s™ Ixg? L, A 1
A" = D"™{0}, e I KL
A" = ‘[O}XDn’ /
) -
al = ap™{0} = b+r‘A+a A
Q* b—
and




a~ = {0}x3D" = b naA",
(See Figute 1) | | v ‘
B+ is the‘ingreésing’set {pGBBIp.(—e,O)ﬂB = ¢ for some €>0},’b-‘is the
egressing set {pEBBIp.(O,e)nB =‘¢ for some €>0} A+ is the stable mani-
fold {p€B|p.[0,w)¢B} of {0} in B and A™ is the unstable manifold
{peB|p. (=,0]cB} of {0} in B. Here p.I means {w(p,t)JteI}‘fqr any inter-

val 1I.

C. Coleman [1] raised a conjecture at Sth International Conference
on Nonlinear Oscillations (Kiev 1970). The following is the reformulated

one in terms of the isolating blocks by Wilson [6].

Coleman's conjecture: If the flow Y satisfies the conditions (1)

and (2), tﬁen it is lécally topologically equivalent to the stangard,
hyperbolic example wmn generated by the differential equations
x=-x, ¥y=y | (x,7) eR"xR",

We say that ¢ is locally topological;y equivalent to wmn at {0}
if there is a hﬁmeomorphism x:U =+ x(U) cR™™ on some neighbourhood U of
{0} that takes each orbit segmeﬁt of Y in U onto an orbit segment of
wmn in X (U) and preserves fhe natural’origntation of' the orbits. Note
that, in this conjecture, U is the isolating block B of Y and X (U) is
the isolating block B of wmn‘

In 1980, D. A. Neumann [2] constructed the first counterexample
in the case that both A+ and A are two dimensional, i.e., he showed
that there is a flow { on R2><R2 that is not topologically equivalent

at {0} to wzz. Furthermore, he constructed uncountably many distinct

counterexamples (cf. [3]). R, B. Walker [5] also gave the counterexam-
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ple in the case that either A+ or A is two dimensional. On the other
hand, Wilson [8] showed that the conjecture is true when I\+ or A is one
dimensional.

In 1981, D. Pixton [4] constructed a counterexample in the general
case RmXRN [m>2, n>2}.

In this paper we construct another counterexample which is differ-

ent from Pixton's and, using.this example, we construct countably many

distipct counterexamples on Rm><R2 (m>3).

§2 NOTATIONS AND PROPOSITIONS

To detect countably many distinct counterexamples we use the flu-
ctuations which were used by Walker when he constructed countably many
counterexamples in the case that A+ and A~ are two dimensional (cf.
Walker ([5]).

Let { be a flow on the isolating block B, satisfying (1) and (2)

1

+ + - - +
and let h,:b. ~a =+ b - a be a map which maps each point P€b - a

1

to the first point in which the semiorbit p.[0,®) meets b . This map hw

+

is called the Poincaré map of the flow . [The Poincaré map of the stan-
dard flow is denoted by h .]
mn mn
Let X:B + B be a homeomorphism on B giving the topological equivalence
between the flow { and the standard flow wmn' Then yx induces
+ + + +
X|pts (b, @) > (b7, ah)

and
le—: b ,a)> (b, a).
, . s . . o
In general, if the flows ) and ) on RT " are topologically equi-

valent, then the Poincaré maps h, and h, satisfy

P Y
(*) “(X‘b—)0h¢ = h¢OX|b+—a+ .

S
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where the homeomorphism X maps the isolated block Bw to BW, i.e., h

P
and h¢ are topologically equivalent.

™ 1x §"1x(0.1] and

e

Since b+ - a+ = 3p™ (d"-{o})

b -a = (D"-{0})x3p" = s gt

s x(0,1] have (u,v,r)-coordinates, the
Poincaré map of the standard flow is the identity map with respect to

these coordinates.

m—lxsn-l n

Let 1 be S x{r} c ™ Ls lx(o,l] and T (resp. T ) be T_

in b+ - a+ (reep . b -a ). Let
LY = {uxo" c bt
™ 2) = ™ %" ¢ bt [ s 2 is the equator of S 1],
L (v) = 30" {v}x (0,1} € b,
1L = LG n 1,
l;(u) =L ()N T;,
and
1:(sm'2) =@ n T
In the same way, let
L™ (v) = D'x{v}chb,

and

1) =L (W) N 1.,

- - +
Let du (resp. dv) be the metric on‘Sm 1 (resp. s? l) c Rmen R n.

R

Then du (resp. dv) iﬁduces a pseudd—metric dU (resp. dv) on b+ and b ,
i.e., du((u'(v‘,r'),(u",v".r")) = du(u',u") [resp.

A (' vt r"), (' vttt )) = d (V') then each L' () has a
e-neighbourhood NE(L+(“O)) = U{L+(p)‘ du(p,po)ég} and L+(S@-2) has a
e-neighbourhood NE(L+(Sm—2))= U{L+(p)‘ du(sm-z,u)<g}. Here after, the

flow Y on R'%R" (m>3 or n>3) is assumed to satisfy (1) and (2).



If the flow Y has the isolated block B with the m-dimensional
stable manifold A+ and the n—dimensiohal unstable manifold A—, then

we call Y mxn type flow. Let { and ¢ be mxn'type flows and suppose

the homeomorhism y:B + B maps the orbits of Y to the orbits of ¢ .
In other words, suppose the Poincaré maps hy and hgpsétisfy (*). Then
we have the following propositions.
Progosition 1 (Walker [5]). For any >0, there exists an rs (>0)

such that for any r (0<r<r€) the following inclusions hold:

. + St :
(i) (xlb+_a-) 1. < NE(L (xla+(u))),

. . 1 - \) o
(ii) Xlp=_g™) 1, V) € No(@ (x| -0
%)

. R m-—
Proposition 2. For any tubular neighbourhood N(L ((X|a+)(S ))

of L+((xla+)(Sm_2)) in b+, there exists an e (>0) such that for any

r (<rN) the following inclusions hold:

(iii) x| *_g*) 1:(5“"2) c N (] P ™)),

. + .m=2 + m-2

(iv) (Xlpmog oy Ly (87 ) € b T (| 2 (8700 .
B0tz S XS % (1]

Lf(ﬂ )

) Fi }Qre Z

Next theorem is very effective to show the existence of a‘flow‘p

s C . . . bt
which corresponds with a given Poincare map.
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Theorem 3 (Wilson). Let P: S™ tx(0,e]xs™ * » s 1x(0,e1xs™ ™ be

a Cr—diffeomorphism which is a strongly Cr—isotopic to the identity -

a-l (r>0). Then, there is a Cr-flow P on B

relative to T = Sm_lx{g}xs
which coincides with the standard type flow wmn in-a neighbourhood of

A+U AU 1-{0} and which has the property that h 1l = P.

wlsm'lx(o,11xs“"
Now we proceed to define fluctuations. In this paragraph, let
every flow be assumed to be mx2 type (m>3). Let Pr:I -+ T; be a
closed arc and consider 0°Fr=I + R where V:b - R is a lift of the
1

circular coordinate function v:b— + S,

For given A (0<A<7w), let FLv(Pr;A) be the cardinal number of

v=fluctuations and let {so’sl’SZ"f"sn'°"} c I be a sequence of

" fluctuation points which are defined as follows:

Put s0 = 0 (the origin of O coordinate) and

Sl = Min{sEIl IGoFr(s) -QoPr(so)[=A} if it . exists; otherwise define

: . N _ N A _I\
FLv(rr;A) = 0. If s, exists then define ¢ = sign (vorr(sl) voFr(sO)).

1

If Si-l exists for i>1 then define

~ A= i-1 - -
VOFr(s)—VOFr(s) = (-1) oA} for some s (si_ iﬁég)}

s, = Min{s >s, 1

i 1-1I
if it exists; otherwise define FLv(Pr;A),= i-l. Now we have the fol-

lowing lemma.

Lemma 4 (Walker). For all A (0<A<i), there exists an rA’(>O) such

that for all r (0<r<r,) and closed are Fr:I -+ T; the following inequali-

A
ty holds:
FL, (T,18) £ FL (x| =_ =) oT5c(8)/2)

where



c(8) = Min{a,A'} (A" = Min{d ((x] =) (W), (x| ;=) (v+4)) |v=a™})
and dv is the metric on a,

Remark. Since a is compact, there exists nonzero lower bound of

a, (x| 4= W) O] =) kA

83 CONSTRUCTION OF THE COUNTEREXAMPLE
Since the isolating block of mxn type (m>3, n>3) is homeomorphic

to DmXDn, b - a~ is divided into

(0"-{0})xa0™ = " L0, 11xs™ = s L (0,11x(xs7 %y o DY,
i m-1 n-2 .
Changing the order of the product S X (0,1]%xIxS » let us consider

the coordinate (u,v,,v,,r) on ™ Lerxs™%x (0,11

~ -

Let il' Il’ 12 and 12 be m-dimensional annuli homeomorphic to

~

m=-2 1

s xI. Let the v-coordinates of I

~

Vl—coordinate of fz and 12 be 4 and put e as in Figure 4. (Also see

13 and 13 be ¢, the

R

. : C . m-2 . m~1
Figure 3.,) Let I be a C -isotopically deformed S XTI in S xI as

la)

ih Figure 3, and Ii (resp. I i) and Z(i=l,2,3) be (vé,r)-saturation

of ii (resp. I, and T), i.e., Z={(u,vl, 2,r)](u,vl)ezf} and
1= {0V ,v,,1) | (el ).
Firstly, for sufficiently small r (>0), we construct the dif-

feomorphism h, which is C«Lisotopic to the identity and satisfies

+ - - - + -
hw(lr(sm 2)) = ZﬂTr. Here, Sm 2 denotes the equator of a = g" 1 and
. . . m-1 n=1
the isotopy preserves (vz,r)—coordlnate and fixes S X(O,l]XD+

and S 1x(0,11x0"L,

Since the isotopy fixes the small neighbourhood of the boundary

Sm—lXI in Figure 3, the u-coordinates of two endpoints of the interval
0o .
I coincide, Hence, by taking account of the construction of C -isotopy

and Theorem 3, it will be shown that for given h, there exists an

1]

e



mXn-type flow Y with Poincaré map

hw.

3

|

(1M

)




§4 PROOF THAT 1]} AND wmn ARE NOT TOPOLOGICALLY EQUIVALENT
Suppose that the flows Y and wmn (m>3, n>3) are topologically con-
jugate, i.e.,
(1) ‘X|b"°hw =h_o(X| =_°)
and let the topological imbedding Y, ,:a «_,b = a be defined by

_ R ! . ‘o . :
Yr.(VI,V2),— (le -a ) (ﬁo,vl,vz,r ), here ﬂo is an arbitrary element

of 3N(L+((Xla+)(sm—15)) n(a+4and r is chosen smaller than ré of which

existence is assured in Proposition 1 where xh- is replaced by (x[b-)_l.

Furthermore, choose r'' sufficiently small so that ()(|b--_a—)(S"'[}-'lxsn_l

x(0,r'")) ¢ " Ixgtt

X(O,ré), here rs is determined according to € and
le— in Proposition l, and choose r' to be smaller thén Min{ré,r"].
Then Fr, = Yr,(a_) déés not intersect I by Proposition 2 (iV) since the
condition (1) hoids.
In fact, the inclusion

h, (G3E™2) € (X]m_ym) om0l 1) 200

holds for any r smaller than r_ = Min{re, rN}. On the other hand, by

0

the definition of lU-coordinate of Tr' the inclusion

T, c (xl-_ = en ON((x| ) (")) (x'<z,)

. mflxsn-l

holds. Hence it follows from the inclusion Fr, c's x(0,r_]

that Pr' does not intersect & for any r' smaller than .

Let G, (resp. G2) be the (vz,r)—saturation of the shaded region

1

51 (resp. 52) in Figure 3, i.e., for example,
G, = {(,v,,v ,r)esm'lXIxsn'lX(o,lll(u,v )EG, },
1 S1t 2 1
and let '

(2) w, =yt

2 =Yg (G (3=1,2).
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2

Then H(GfJGZ) is included in {(vl,vz)]c<vl<e} (c:IxSn- c a ) where

m:b - a * a is the natural projection defined by w(y,v,r)=(Vv).

m—lxsn-l

Let ir,:a_ 3 S x(0,1] be a topological imbedding defined

by ir,(vl,v2)=(ﬁo,vl,v2,r'), then it follows that

(3) Vet = (le-—a_)_% i, and

(@) a, (I D, ) s ) <

(3=1,2). '

Hence we have

(5) (xla—)—l(Hz.) c {(vyrv,) |cme<v, <etel (3=1,2).

Note that it follows from (2) and (3) that

-1, j ' | L
me (x| m_g=) ei s (D) = my ., (HD,)= m(Gy) (3=1,2).

Though rr, n Ii ¥ ¢ or rr' n Ii ¥ ¢ (i=1,2,3) hold as in Figure 4,

these conditions do not occur simultaneously since Sm_zxsnflx(o,l]

m—len—l

divides S x(0,1] into two components. Hence let us assume the

case rr,nIi ¥ ¢ (i=1,2,3). (See Figure 6.)
. i -1 -1 .
Since jH_, = y_, (BGi) =Y, (IlUI3), it follows tha;
-1, 1 -1, -1 o
A U] 7 Gy o (Xlym_ ) T dpev,r (1UT))< € for x'(<x )

Noting that both I1 and 13 are included in

’{(u,vl,vz,r)[vl=c} (cb -a ) we have
(6) 8(x|a—)-l(H]l:.) c {(vysv,) | eme<v <etel(ca).
Now we will show |
(7) (x]a-)—l(Hi. ye i (vyrV,) |c-e<\)l<c+e}.
Let C be the region Ixsn"zx{o} n {(Vl,vz)[vl;9+e} C a , then C is

-1,.1

connected. Suppose that (Xla-)-l(Hi,) n c + ¢, hence (X{a—) (Hr,)

includes C. This contradicts (5). Thus.(xla—)_l(Hr,) nces=g, and

(7) follows from Fr' NI, =¢ and

2
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-1 -1 . -1, -1
d, (] =) ey () ume Xl ) e i Y (L)) < €
-1

where (x| =)o YI1(1,) © (x| -7 (L,) ana

-1, -1 |
.ﬂ°(x|b~_a-) o lr'°Yr'(12) = ﬂ(Iz) = d, hence it follows that

(Xla—)—l(Hi) must meet {(vl,vz)ld—€<vl<d+€}. This also leads to the

contradiction and hence { and wmn are not topologically equivalent.

r<leyel i -
FigureS Y ISP A |

v%—-Jiv~c$+hﬁL

e fred DY:”D“-J}J

Figure 6
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§5 CONSTRUCTION OF THE MULTIPLE EXAMPLE

In this section, all flows are assumed to be of mx2 type.

Thus, ptz 9p™p? 2 " 1xp?,
b= p"yp? = pxs?,
ate —lx{o},
a™2 {o}xst
and
b+— a+ =T p-a = Sm_lxslx(o,l].

oo =l 1 -1 _+ . R '
Divide Sm lel into Sm lxI and Sm lxI (I UI = Sl) and deform

- + + .
Sm 2xI into Z as in Figure 8 by a diffeomorphism on Sm lxI which

is isotopic to the identity relative to Sm—lx[-l;-l+el] and

s lx[l—e »1], where I denotes [-1,1] and both €, and €2 are suf-

ficiently small positive numbers. On the other hand, Sm_;xl— remain

fixed during the deformation and we call this a standard cassette.

. - + . .
Glue this standard cassette and s 1x I at each boundaries by the iden-

tity map id: Sm-'1 > Sm_l, i.e., glue

-1 € T o i1} ¢ ik

and
S Ixfa1) € @It o T Ix{-1} € ik,

; -2 .1 . -1 1 .
Then we obtain a deformed s" 2XS in s xs ; in other words, we

o ;
obtain a C -diffeomorphism which is isotopic to the identity and it

-2, + + . .
deforms S 2XI c s lXI c s lxSl to Z as in Figure 8. Using this

diffeomorphism, we can construct an r-preserving diffeomorphism on

Sm lxSlx(o €] which is isotopic to the 1dent1ty relative to

s ~1x X{E} forsome small €(>0) [see D.A. Neumann [2]]} and is extend-

able to a C —dlffeomorphlsm h on Sm l><Slx(o 1] such that

m lxslx[E 1] is the identity map. By Theorem 4, there is a flow wh

-
which has h as its Poincare map.
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Now, for sufficiently small r, we can assume that
n-2_ _+ - =y + . .
S xI x{x} (cb -a ) is § as in Figure 8. Denote the deformed

Sm-zxsl in this r-level by Zr and let 5 be an r-saturation of Zr'

m-2

then, for small r>0, h satisfies the equality h(l:(s )) =% N T,

and, in particular, h(l:(sm-z)) n sm—1x1+x{r} = z+, Let sm"lij

(3= 1,2,3,...,k) be k-copies of §% 'XI which have I' as the deformed

Sm_ZXI as in Figure 8, and glue Sm_lxll, Sm_lXI2/ eae and Sm—lka

one after another at each boundaries in the same way as stated above.

Lastly glue a standard cassette,

ﬂons‘hl“ cl GV‘C] ca Sseﬂe

n-2 . _ ;(S"" +
P Sl';‘q+ ‘?1, Poincqré Mmap XI')

[igureq

§6 PROOF OF MAIN RESULTS'

In this section, we will show that the difference of numbers of
nonstandard cassettes leads to countably many nonconjugate flows.
(See Figure 10 and 1l1,) Consider the annulus Sm-lxl obtained by glue-
ing one nonstandard cassette and one standard cassette (see Figure 7).

As mentioned in the last section, we get a Poincharé map hlp such that
]
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+ - - -
h¢ (lr(Sm 2)) n Ixs" lx{r} is the annulus S sz in Figure 7 for small r.
1
By Wilson [7] and Neumann [1], there is a flow ¥y of which Poincare
map is equal to h¢ . Also consider the annulus Sm_lXI obtained by glue-
l .

ing two nonstandard casettes and one standard casette, and construct

a Poincaré map hw such that hw (l:(Sm—z)) n IXSm_lx{r} is the annulus
2 2
m-2 . . . . - .
8 XI in Figure 9 and a flow wz of which Poincare map is equal to hw .

2
Suppose that wl and wzyare topologically conjugate, then the
equality X°h, = h °(X| + +) holds. Hence we have
Y, ¥ Tb-a
-1

+ m-2 + m-2
hy 16 Xl -7 hy O (& (x| 5 "))

by Proposition 2 (iv). Define, as in section 4, a differentiable

imbedding aﬁ ta o, T, by uﬁ (u,v) = (gu(u,v),gv(u,v).r)
1l

for any pOGESm_ - N (L+((X|a+)(sm-&))) and small positive number r.
U, - + m-1
Here we suppose that both ar(a ) n 3T xS “x{r} and
uﬁ(a_) n BI_xSm_lx{r} have the same py-coordinate Ho and gu (resp. gv)
is the p (resp. v)-coordinate function when Sm_lxslx{r} is divided.

1xI+'><{r} and Sm_lxI—x{r}. (See Figure 11.)

into 8™
. m-2 . . . . . Sm-l'

Since S is differentiably imbedded in ; we can choose an arc

o so that its fluctuation is less than three and

an hlp (N (L*((x|a+)(Sm—2))) = ¢ for some small positive number €.
1

In particular, choose ag as such an o and apply Lemma 4 to
(XI - —)-% Gu I' , then it follows that
b -a =

FL, (T34 ) < FL (x|, -_-) T c(bd)/2) £ 3,
where A = Iﬁ(Il)-ﬁ(IZ)l. (see Figure 11,) This contradicts
FLv(F;A) > 5 (see Figure 12), and we conclude that wl and wz are not

topologically conjugate.
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Moreover, we can show inductively that two Bm flows (m>3) are

2
not orbit conjugate if the numbers of nonstandard cassettes are dif-

ferent from each other.

V- coordin ate direction

Figure 3

m~|

S xT

| N o twe non standavd
Figua—e 1 o Cathettes

— 15 —
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+w08£“€0l€1 nevl g.,-aﬂ_clavc‘ caarefles
FigqurelO

Mo
dr (o)

y-coor‘ohvl) u+€

Figurell

i,QuC‘Fu u‘ho'ﬂ_ 5

- coordinate

7 F‘;g’urelz

— 16 —
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