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ABSTRACT

We will show a singular perturbation theorem for
constraint systems, which is a generalized version
of the equation; x = f(x,y), €y = g(x,y). At the
first, we study the general properties GO ~ G3 of
constraint systems. After this we show the
properties of solutions and singular perturbation
theorem for constraint system satisfying GO ~ G3.

1. INTRODUCTION

The system which we want to study here was suggested by the

equations of the form

f(x,Y)

L
]

(1.1)

o
I

= g(x’y) s

m ‘ . :
xeR, yeimp. Many types of solutions of (1.1)O have been studied

by considering (1.1)0 as limit of
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we
1

f(x,Y)
(1.1)8

€y

g (x "y;)

for €-+>0. For the studies of this‘fype ;ith m=n=1, there are
works of B. van der Pol [14], J. LaSalle fll]%-A.A. Andronov and et al.
[1], and others. For the case of m==2"énd n=1, there are works of
E.C. Zeeman tlS], E.ABenoit [2],[3], and others. For general m and
n, there are the works of L.S. Pontryagin [12], F. Tékens [13], and

N. Fenichel [5].

For the global version of the equation (1.1)8, we consider a
vector field EE/E, where {Ee}’ eez[O,eo), is a family of vector
field on a maﬁifold‘M. Thé limit of ’ZE/E for E';O ~exiéfs only on
the set L of pdints whefe E€€=O; (in the>case of (1.1)€, I 1is the
set of points where g(x,y)v=0).. Eut, geneficaliy,in,thé sense of
perturbations of 2, Y is a discrete set. To avoid this, we assume
that iO is tangent to the leaves of a codimension m foliation F
on M. F can be considered as a generalization of the product
structure R"x K. The vector field tangent to ? is é generaliza-
tion of the equation y=g(x,y) in (1.1)¢.

A constraint system is defined as the pair {{za},F} as above

(Definition 5.1). After the definition of the solution for a con-

straint system (Definition 5.4) we will define an admissible solution,

which is a solution having useful properties (Definition 5.5). These
definitions are motivated by F. Takens' definitions of constrained
equations and the solutions {13]. Takens considered a fibre bundle

structure,"ﬁhereas we take a foliation. He considered a kind of
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function M~+IR which pliyed similar role as our vector fieldkio
tangent to F.

Our main goal is Theorem'E5 Theofem'F, and Theorem G. But these
theorems are proved for systems having some generic properties. 1In
section 4 we show generic properties GO, Gl, and G2. GO ‘assures
that the set of equilibrium points I of fobis a manifold. Gl is
a regularity condition of the derivative of izo'on T. G2 assures
that X has a stratification S, which is stratified by'thé number of
zero-eigenvalues and the number of pure imaginary eigenvalueés of the
- derivative of iOILp'at pf;Z. FHeréZILp is a plaque of F .containing
P. Theorem A in section 4 asserts that GO, Gl, and G2 are geﬂeric
proper;ies. We set another property G3 in séctionih, which assures
that the manifold I 1is in general position in the foliation F with
respect to Thom-Boardman singularities. Theorem B in section 4 implies
that the set of {Ze} having property G3 is dense in fhe’gﬁace of
families of vector field on M which is a subspace of 3{?(M$<[0,€0)).

Saddle-node bifurcation and Hopf bifurcation are well knows as
typical codimension one bifurcations of equilibria. Theorem C in
section 4 shows where these bifurcations of 201Lp appear for bl?Z.
Theorem C expresses the place in the language of the stratification
S and Thom-Boardman's stratification. Theorem D determines the
qualitative structure of 20 near the point p where saddle-node
bifurcation occurs. Thébfém'A, .., Theorem D in éection 4 are proved
in [8]. |

Theorem E and Theorem F in section 5 shows the properties of

addmissible solutions. Theorem G is the singular perturbation theorem
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for admissible solutions. This is an extensiqn, in some sgﬁses, of
L.S. Pontryagin t12] and ﬁ. feﬂicﬁel [5]; see Remark 5.9. Theorem E,
Theorem F, and Theorem G are proved in [10].

In the case that I has cpdiménsion one (i.e. m=1), it is
trivial to see thatvfhe jumping péth (trace of Definition 5.7) leaving
a fold point is unique; When m >1, the uniqueneés and otﬁer proper-
ties of thetjumping path are obtained by’Theorem D as the properties
of the sfable sets.

There is an example of constraint system in the theory of LC-
~ network perfurbation (G. Ikegami [7],[91]). in this theory, there is
a foliation F (not a tfi;ial product structure Hf5<lp)vand a one
parametér family of vector spaces, E€==EX-+Y 'éﬁch that Y is

tangent to F.

2. PRELIMINARIES

Let M be a smooth (Cm) manifold‘wifh dimension m+n, and
be a smooth foliation on M with codimension m. F .is a disjoint
decomposition of M into n dimensi;nal injectively imme?sed
connected smooth submanifolds (leaves) such that M is covered by

o0
C charts

n -

. m
0 X 0y ¢ U=+D XD (2.1)

and (a1><d2)-1({x}><Dn) is included in the leaf through (al_xaz)_
(x,y), waDn, where D and D" are the open disks in R™ and Hfh

resp. We denote

(dl xo‘z)—l({"} XDn)_= Lix,y)°

_4_
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and call it the plaque containing the point (x,y).

Let T :TF - M be the subbundle of the tangent bundle. TM + M
such that the fibre‘vT_l(p) is an n-dimensional vector space which is
tangent to the leaf of° F through peM. Let Y:M > TF be a ct
section of the vector bundle 7T. Y is also a C'-section of the
tangent bundle TM - M.  We call such a section a Cr vector field on

M tangent to the foliation F. Denote by Vr(F) the space of all

Cr‘vector field tangent to F with the Whitney o topology.

We write ZY for the subset of equilibrium points of a vector

field Yeer(F). A point peEZY is called a regular point, if the
derivative dY at p has the maximal rank n. pelXY ds called a

normally regular point, if d(Yle)(p) is nondegenefate, where Lp is

the plaque of F at p. We denote by Zr the set of normally regular

points of ZY. A point pGEZQ is called a nbrmally hyperbolic point

(resp. normally stable point), if p is a hyperbolic equilibfium
point (resp. stable équilibrium point) of YILP. We write Zh (resp.

ZS) the set of nofmally hyperbolic (resp. stable) points. We have

Zs c Zh c Zr c ZY.

Let BZh be the set of all frontiers of Zh; BZhj=Zh-—Zh.

A stratification S  -of a topological space N is a partition of

N into subsets, which will be called the strata of S, such that the
following conditions are satisfied:
(a) Each stratum S is locally closed, i.e. each point s€S§

has a neighborhood U such that UNS 1is closed in- U.
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(b) S 1is locally finite, i.e. each point has a neighborhood

meeting only finitely many strata.

(c) If S, and S, are strata and 51'”32‘+¢’ then Schgi.

1 2
The relation S2 <S1 defined by Sztzsl, S2 *Sl, is an order on
S. 1t is transitive and cannot have both Szj<S1 and Sl'<Sz.
Let N be a Cl manifold, - let Nc:ﬁ, and let S be a stratifica-

tion of N. We will say that S  is a Whitney stratification if each

stratum is a C-l submanifold, and if S S. are two strata with S2 <

1’ "2
Sl’ then for all X€S, the triple (Sl’ SZ’ x) satisfies the
following Whitney's regularity condition.

Condition: For any sequences {xi} of points in S, and {yi}

of points in Sl’ such that X X%, ¥i X, xi=%yi, segment L3

converges (in projective space), and the tangent space Tx Sl converges
. . i
(in Grassmanian of (dim Sl)-plane in R" , n=dim N) , we have Q,CTOO,
—_— . 1
Y1 and Tm=11me.S .
. i
Let S denote the substratification of a stratification S such

where £ =1im

that 31 consists of all strata of dimension <i of S. We call Sl

the i-skeleton.

3. THOM-BOARDMAN SINGULARITIES MODULO FOLIATION
Suppose L, N are smooth manifold and f, gt L->N are C

maps with f(p) =g(p) =q. f has first order contact with g at p

if (df)p =(dg)p as mapping TpL-*TqN of tangent spaces. f has kth

order contact with g at p if (df): TL-+TN has (k-1)st order

contact with (dg) at every point in T L.

Let M be a smooth manifold of dimension m+n, and let F be
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a smooth foliation on M with codimension m. Let 'L be a smooth

manifold without boundary.

k .
Definition 3.1. Suppose f,g: L-*M are C maps with f£(p) =

g(p) =q. f 1is said to have kth order contact modulo F with g at

p if, for some (and hence for ény) chart (U, alxtxz) of F with
qgeU given by (2.1), oy of : L > D" has kth order contact with o, °8
at p. This is written as f ~, 8 mod F at P Let Jk(lu M;F)p,q’

k >1, denote the set of equivalence classes under “~k mod F at p" of
mappings f :L - M whgre f(p) =q. Let JO(Iu M3 F)p’q=={(P,Q)}.

Let Jk(lu M; F) =U Jk(lu M;F)p’q (disjoint union). We call
b

(p,q)elxM
Jk(L,Dh’F) a jet space modulo F. An element 0 in Jk(L,Dh,F) is

called a k-jet modulo F of mapping from L to M.

For a Ck mapping f :L - M, a jet extemnsion

jkf : L — Jk(L, M; F)

is defined by stipulating that jkf(x) is the k-jet mod F of f
at xe€lL,
Our jet spaces modulo foliations follow the J.M. Boardman's

theory [4]. Hence, we have the following.

Proposition 3.2. For each sequence I==(i1, iz,..., ik) of
integers, the submanifold (not necessarily closed) EI of the jet
space modulo foliation ‘Jk(L,bh F) is defined. EI is empty unless

I satisfies
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v

£ = m,

He

h

=
1

£ = m, then il = 12 = eee = ik.

Proposition 3.3. If f :L - M is a map whose jet section modulo

' o~ > - k. -1,xI

F, jkf :L > J(L,M; F) is transverse to ZI, then ZI(f) s G l(z )
is a submanifold of L. If I,i denotes the extended sequence (il,

iy «e+s iy, 1), we have i3ey =51e|3h¢6)).  Also, when I=9,

$1(£) ={peL : dimRer j £(p) = i}.

+
‘Proposition 3.4. Any map f :L - M of class Cr+1 may be o 1
approximated in the Cr+1 sense by a map g :L - M ‘whose r-jet exten-

i,,00,1
~71°""?*7s
sion - jrg :L - Jr(L,bn F) 1is transverse to all submanifolds I 5

1<s<r.

We call ZI the Thom-Boardman submanifold of Jr(L,IR F) associ-

ated with Thom-Boardman symbol I.

These definitions and propositions in this section are described

in [8].

4. GENERIC PROPERTIES OF VECTOR FIELDS TANGENT TO F.

In this sectign we introduce some theorems obtained by Tkegami

-[8].

Definition 4.1. . Let dimM=m+n and codimF=m. The following
are the properties of the vector field szVr(M, F).
GO: The set ZY of all equilibrium points of Y is, if nonempty,

. . r .
an m dimensional C manifold.

Gl: Every point of ZY is regular.
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G2: Y has the property GO and there is a Whitney stratification
S on ZY having the following properties:
(i) If the differential d(Yle)(p) at p has % eigenvalues

of zero and 2(k -%) non-zero pure imaginary eigenvalues

\ 0, ..., 0, ibl, —ibl, ...y 1ib -ib

k-2° k-2°
then p 1is contained in the (m-k) skeleton Sm—k.
(ii) The union of all (m-1) dimensional strata U §nfl is a

dense subset of BZh.

(ii) \)Sm—l is divided into two parts, (BZh)O and (azh)img’ of

unions of strata such that

p € (3Z —> 0 is an eigenvalue of d(YILp)(p),

h)O

pe (3Z — the eigenvalues of d(Yle)(p) include a pair of

h)img ,
non~zero pure imaginary numbers.

G3: ¥ “has the property GO, and for k=1, 2, the k-jet

extension jklz ZY -> Jk(Z M; F) of the inclusion map 1 :ZY - M is

Y >
transverse to EI for all Thom-Boardman submanifold EI of length k

-symbol I.

Let V; denote the set of YesVr(M, F) satisfying the property

Gk, k=0,1,2,3.

Theorem A. For k=0, 1,2, the set yr

k1S open dense in yEM; F),

if k#l <1 <o,

Theorem B. Vg,is dense in Y'(M; F) for 3 Sr <o



202
Let 1 :ZY -+ M be the inclusion map. Let EIc:Jk(ZY,bh F) be
the Thom-Boardman manifold for Thom-Boardman symbol I. Denote SI(Y)
= "ot dh. |
Let T :TF > M be the vector bundle of vectors tangent to F. -

Let (o, alx Oy s

the l-jet space of germs of partial sections of 1. Define ii to be

U) be a vector bundle chart of T. Let Jl(T) be

the set of 1-jet OEEJl(T) such that, if Y represents o at peM,

then 'Y(p)==0 and the rank of d(YILP)(p) =n -1i. Denote g%(Y)é
1.1 1

GDTED.

The following can-be easily proved [8].

Progosition 4.2. Let Ye Vr(M; FY, r > Z.V Then we have the
following.
(1) gi(Y) éii(Y), if Y satisfies GO‘ and. Gl.
(ii) If Y satisfies G3, then each point pezil’O(Y) is a fold
point; i.e. there exist coordinates of class Cr—l; X5 +-+» X centered
at p in ZY and Yo oves Vo Zys cees zn‘centered at p in M, such

that (a) Zys +e., Z, are the coordinates of the plaque Lp of F, (b)

the inclusion map ZY -+ M is given by

Y1 = Xys eres Ypg

This proposition is useful in the proofs of Theorem C and Theorem

D below in this section.

Next, we study the bifurcations of Y at I . Suppose that

h

_10-—;
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dimM=m+n, codim F=m, and Y is of class 'Cr’ r > 3. v'Le’t P be a
point in BbZh.‘ Assume that there is a‘n‘eighborhood | N of p 1n BZh
such that N is an (m-l‘l') dimensional manifoid. i.et ai v>.< 0, U -> Dm><
D" be a chart of‘ F sucrhj’ that (Otl ><10t2) (p) = (O,O)F,V (see(2.1)). Lef
I' be a segment in " parametrized by H ;;ﬁch that u=0 inaicates
the origin of D", ‘. o

Assumption: L 5.(0&1 Xaz)—-l(l XDn) is transverse to bath ZY and

N din M.

Definition 4.3. Under the above assumption we say that Y has

saddle-node bifurcation at pe BZh, if there is an segment I as above
satisfying the following: The smooth curve L ﬂZY is tangent to L0

. . . . s
at p, ZYOL]J =¢ if w<0, and ZY ﬂLu consists of two p01nts,‘ pu
and pﬁ if p>0. Furthermore, Y is hyperbolic at pﬁ and pﬁ. The

dimensions of the stablé manifolds at ps and pﬁ-v are k and k-1,

respectively, 1<kg<m. See Figure 1.

I I

N |

Figuré 1

_11_
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Definition 4.4. Under the above assumption we say that Y has

Hopf bifurcation at pe BZh, if the following hold for every segment

I1<D™ as above: There is a unique 3-dimensional center manifold C
(see Guckenheimer-Holmes [6, p.127]) containing L DZY = (ULILIJ) ﬂZY and
a system of coordinates (x, y,u) on C, with (x,y,u) GLU’ for which

the Taylor expansion of degree 3 of Y on C 1is given by

Me
]

(du + a(x2 +y2))x - (w+ cy + b(Xz"'YZ))Y

e
1

2
(w + cu + b(x +y2)x + (du + a(x2+y2))y,
which is expressed in polar coordinates as

(du+ar?)r

e
|

<D
[}

(w+cy +br2) .

See Figure 2. -Consequently, if a+0, there is a surface of periodic

RN RN

A

AW .
\“J p
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solutions in C which has quadratic tangency with the eigenspace of
A(0), A(0) agreeing to second order with the paraboloid =-—-(a/d)(x2
+-y2). If a<0, these solutions afe stable limit cycles, while if
a>0, there are repelling. (See [6, Theorem 3.4.2].)

Saddle-node bifurcation and Hopf bifurcation are well known as
typical éodimension one bifurcations of equilibria (e.g.[6]). We want
to see how these bifurcations arise in our global situation with
respect to the stratifications which we defined. The stragification
S in G2 1is defined by only the first derivatives of Y. But,
saddle-node bifrucation does not occur under the cohdition only of the
first derivatives. As another condition we take the second dérivatives
modulo F of the inclusion ﬁap of the set of equilibrium points ZY;
while J. Guckenheimer and P. Holmes [6, Theoréﬁ 3.4.1]‘take the
assumption for the second derivative of Y. For this purpose, wé use
the stratification of Thom—Boardman; In the study of constraint
systems, it is natural to édhsider Thom-Boardman sihgularities (see
[13] and [15]).

Let sk be the k-skeleton of S. Let gk be the k-skeleton of the
stratification determined by gi(Y) =(j11)_l(§i), i=0,1,..., m; We
have §° =" %) um gy u... UT™(¥). Under 61, X5 ana ™t
= BZh hold by Proposition 4.2(i) and the defiﬁition of S. nMoreover,
we have that a (m-1) dimensional stratuﬁ of S 1is included in a

(m-1) dimensional stratum of S. For the sets defined in G2, we

observe

am-1 wm-1 _
(BZh)O cS | and (azh)img nsSs | = ¢.

...13...



Denote by (BZh)f the set of fold points in BZh;

@), = G ni0%m

s
Theorem C. Let Yeer(F), r > 3. Suppose that Y satisfies
Gl,.G2, and G3. Then, there is an open dense subset (BZh)f\J(BZh)img
of the boundary ‘BEh of the normally hyperbolic domain Zh<;ZY'such
that ' Y has saddle-node bifurcation at each point of (BZh)f‘and has

Hopf bifurcation at each point of (azh)img'

Next, we study the'qualitative struéture of Y at fold points in
the‘boundary 6f nofmally stable domain Zs.

Let X bé a ct vector field on an open set U in HJ% let ¢t
be the fiow of X, and let pe€eU beran equilibrium point of X.

-1

A0==O and that the real parts Rkl, e Rxn—l

be the generalized eigen spaces of AO and Al’ vees An—l’ respectively.

Suppose that the eigenvalues AO’ cens An of dX(p) satisfy that

<0. Let E® and E°

By center manifold theorem (Guckenheimer-Holmes [6, Theorem 3.2.1]),
there are an invariant C° manifold Ws(p) (called the stable

manifold) tangent to E° at p and a ¢’ manifold wc(p) (called the

(lpcal center manifold) tangent to EC at p- W is locallyfiqvariant
in the sense that, if qewc and ¢t(q) €U, then &)t(q) EW(::. W is
unique, but WC need not be. |

ﬁLet wt fe the flow associated £o é vector field on a manifold.

TheVsubsets

Ve (p)

_{q : wt(q) > p as t + o}, and

v (p)

1]

{q : b (q) »p as t= ~ o}

- 14 -
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are called the stable set and the unstable set of p, respectively.

The boundary SZS =E; —ZS of normally stable domain is included in
the boundary BZh of normally hyperbolic domain. Suppose Y satisfies
Gl, G2, and G3. Then, by Theorem C, there is an open dense subset
(aZh)flJ(BZh)img of BZh such that Y has saddle-node bifurcation at
(BZh)f and has Hopf bifurcation at (azh)img' Define the sets as

follow,
(BZS)f < (BZh)f N (BZS) and (azs)img £ (BZh)img n (BIS).

Theorem D. Suppose Ye Vr(M;F),‘r-z3. Let (BZS)f U (azs)img be
the open dense.subset of BZS defined as above. Let pE;(BZS)f.

Then, these are an open neighborhood Uof p in M and a Cr
embedding from the plaque, hp :Lp +-IR1X IRn—; such that the following
are satisfied. | ; ' ‘

(1) w(p) nL, =h;l({0} x R and W (p) nL, ch;l(IRlX {o}),
where Ws(p) and Wc(p) are the stable and center manifold of YILP,
respectively.

v nL chgl([o,w) xR"1)  and v%(p) NL, ch-t((-=,0] x
{0})<:Wc(p), where Vs(p) and Vu(p) are the stable and unstable sets
of p, respectively. (Figure 3).

(i) The cF embedding hP depends Cr—1 continuously on

P€ (3L ). .So that, both of the sets
VW ={qeVv'(®) :pe (L) n U}

and Vu(p) are injectively Cr“1 immersed. submanifolds of M.

_15_
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V¥(p)

Fﬁgure 3

5. CONSTRAINT SYSTEMS AND SINGULAR PERTURBATIONS

" Let M be a smooth manifold. Let {ZE}, 0<e<e be a family

0!

of vector fields on M. {26} is called a ‘Cr familz_if zs(p) is a

c’ vector field on M><[O,€0). In this section, we assume r 2 3.

Definition 5.1. A constraint system of class cr on M 1is a

pair { {ZE}, F} of c* family of vector fields on M, {ig} 0<ex<
eorand a smooth foliation F on M such that EO (e =0) 1is tangent

to (the leaves of) F. We may call the limit of 2€/e for €0 a

constrained equation in different meaning from Takens [13]. This
limit exists only at most on the subset of equilibrium points of 20'

Expanding ZE by €, we have

Z.(p) = Y(p) + -X(p) + o(€)

Y(p) = Zg(e) (5.1)

1

X)) = =7, | -

_16_.
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We set a following axiom for . { {EE}, F .

Axiom 5.2. Y’=ZO satisfies Gl1, G2, and G3.

Remark 5.3. By Theorem A and Theorem B, the set of families.
satisfying Axiom is dense in the space 7" of ¢ family of vector
fields {EE} such that 20 is tangent to F. Here, 2% is defined

usually as a subspace of the spaée XF(M><[0,€0)) of Cr vector fields

on M><[0,€0)r

Let Zr be the normally regular domain of the manifold ZY of
equilibrium points of Y’=£0. Hereafter, we use the simple notation

L for ZY. Let

be the bundle map obtained by the projection
TM=TY%Y & TL —> TZ
p pr PP pr

for each peEZr, where Lp is the plaque of F containing p. For a

crosssection X of the bundle TZ M~ Zr, we define a vector field
T

XE on Zr by
X o (5.2)

Definition 5.4. A curve v : (a,b) = Zr is a solution of the

constrained equation 118 EE/E associated with { {ze}’ F} if
£

_17_
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(i) 1lim vy(t) =Y(t0) and there is ' 1lim y(t) gy_(to) in I
t\\to t}to
(not necessarily in Zr);
(ii) whenever Y—(to) +Y(t0), there is an orbit C (inciuded in
a leaf of F) of 20 such that the o limit set a(C) and the w

limit set w(c) of C satisfy
a(C) = v (ty) and w(C) = y(ty);

(i) if Y—(to) =Y(t0), then XZY(tO) is the d.erivative of ¥y
at  tg; if Y_(to) =i=Y(t0), then XZY(tO) isv the r;’yght derivative of
Y at tg. - | ' |

A curve Y : [a,b) .-> Zr is a solution if, (i) for any a<a'<b,
'Yl(a',b) is a solution; (ii) XZY(a) is the right derivative of vy
at a. |

A curve v : (a,b] - I is a éolution if, (i) for aﬂy a<b'<b,
Y|(a,b') is a solution; (ii) there is 1im y(t) =y (b) din I; (ii)

- t b _ :
there is an orbit C of Zy such that o(C) =y (b) and w(C) =v(b).
Y : [a,b] > Zr is a solution if Yl [a,c) and Yl (c,b] are

solution for any a<c<b.

For a point pe€ Zr, there is a solution v (a,b) - ‘Zr such that
p=Y(c), a<c<b. But there may be many such solutions. See Figure
4 and 5.

Next, we consider solutions having many available properties.

Let EE: =Y+eX+o(e). Let Z be the set of equilibrium points

of Y.

- 18 c—
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Definition 5.5. Let J be an interval. A solution Y :J +’Zr
of lim 28/5 is called to be admissible if

e+0 .
(i) the image Y(J) is included in the normally stable domain
ZS of Y,

(ii) whenever Y 1is not continuous at te€J then p=vy (t) is

contained in the fold point set (BXS)f in 8253 and furthermore
X(p) § TX + TL (5.3)
P é p PP :
is satisfied.

Remark 5.6. (5.3) is a generic condition. In fact, since
peE (BZh)ot:fl(Y),'the subspace TpZ-+Tpr has codimension one in”TpM.
‘Hence, by a perturbation of X (hencé, of E), we have Z 'such that
(5.3) holds for the points p. in an open dense subset of (BZé)f.
Hereafter, we show some properties of admissible solutions. For

a non-zero vector veETpM, denote by L(v) the l-dimensional subspace
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of TpM generated by v. The unstable set Vu(p) of pe (BZS)f is an
injectively immersed submanifold of [0,*) in M, and it exists unique-

ly for p, by Theorem D.

Theorem E. »Let z€==Y-+€X:+o(€). .Suppose that X sa;isfies
(5.3) at a point p G(BZS)f. Then the following hold.

(i) For some (and hence for any) Finsler | *I 'on M and
qesZS, we have IIXZ(q)H > o (g~ p).

(i) For qel_, we have L(Xy(q)) > Tqu(p), q > p.

Theorem F. Let ¢t(q) be the trajectory of nZX on Zs such

that ¢O(q) =g. Suppose that

lim ¢t(q) =p € Zf, a> 0.
tra :

Theﬁ, the following hold.

(i) For any point q' in a neighborhood U of q in Zs, there

are p' e(BZs)f and a' >0 such that

lim ¢t(q') =p'.
tra'

(i) The mapping U - (BZS) defined by q' » p', is continuous.

f)

Definition 5.7. Let Yy :J ~> Zs be a solution of 1lim 28/8.' For
€20 5
a discontinuous point ti’ i=1,2,3, ..., let Ci be the orbit of ZO

with a(Ci)==Y (ti)- and w(Ci) =y(ti). The arc

'iy) s y(h U Cl U 02 U‘C3 U ---

is called the trace of Y.
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Let d be a Riemannian metric on M.

Theorem G. (Singular perturbation theorem). Let 7Yy :[0,b] ~» :s

be an admissible solution of a constrained equation 1ih Z_/e such
>

that Y has at most finitely many discontinuous pointi.O Let we : RxXM
+ M be the flow associated with the vector field Z EE/E, £ +0.

Then, for any ¢ >0 and u >0, there exist €>0 and a neigh-
borhood U of p=vy(0) in M such that, for any € with 0<e¢ <e
and any qeU the following hold.

(1) wE(J,q) is included in the §-neighborhood of the trace

I'(y); i.e. for any telJ

A, (t,q), T(Y) < 6.

(id) If teJ and It-—til >n for every discontinuous points

Ctys t2, t ...€J of vy, then we have

3’
d(wg(t,q), y(t)) < 6.

Corollary 5.8. Admissible solution vy :{[0,b] = ZS with. v(0) =p

is unique, i.e. if y' :[0,b] + Zs is another admissible solution

with y'(0) =p, then Y(t) =y'(t) for any 0<t <b.

Remark 5.9.' (i) N. Fenichel [5, Theorem 9.1] proves the singular
perturbation theoryvfor a neighborhood of atcompact Subsef of nofmally
hyperbolic domian Zh. We use this theory for the proof of Theorem G.

(ii) L.S. Pontryagin [12] shows the singular perturbafion theorem

in the neighborhood of a discontinuous point of <Yy under the condition

of the derivatives of Y. This condition is slightly different to our

_.21_



214

theorem which takes the condition of £ G M. 1In the proof [10] of
Theorem G, we do not use Pontryagin's results; we give another proof

using center manifold theorem.
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