SINGULAR PERTURBATIONS FOR CONSTRAINT SYSTEMS*

池上宜弘

Giko IKEGAMI

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464, Japan

ABSTRACT

We will show a singular perturbation theorem for constraint systems, which is a generalized version of the equation; $\dot{x} = f(x,y)$, $\dot{\epsilon}\dot{y} = g(x,y)$. At the first, we study the general properties GO ~ G3 of constraint systems. After this we show the properties of solutions and singular perturbation theorem for constraint system satisfying GO ~ G3.

1. INTRODUCTION

The system which we want to study here was suggested by the equations of the form

 $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Many types of solutions of $(1.1)_0$ have been studied by considering $(1.1)_0$ as limit of

^{*} This work was supported partly by Grant in Aid for Scientific Research 59340001, 60540030, and 6046002.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y})$$

$$\varepsilon \dot{\mathbf{y}} = \mathbf{g}(\mathbf{x}, \mathbf{y})$$
(1.1)

for $\varepsilon \to 0$. For the studies of this type with m = n = 1, there are works of B. van der Pol [14], J. LaSalle [11], A.A. Andronov and et al. [1], and others. For the case of m = 2 and n = 1, there are works of E.C. Zeeman [15], E. Benoit [2],[3], and others. For general m and m, there are the works of L.S. Pontryagin [12], F. Takens [13], and N. Fenichel [5].

For the global version of the equation $(1.1)_{\varepsilon}$, we consider a vector field $\tilde{Z}_{\varepsilon}/\varepsilon$, where $\{\tilde{Z}_{\varepsilon}\}$, $\varepsilon \in [0,\varepsilon_0)$, is a family of vector field on a manifold M. The limit of $\tilde{Z}_{\varepsilon}/\varepsilon$ for $\varepsilon \to 0$ exists only on the set Σ of points where $\tilde{Z}_{\varepsilon} = 0$, (in the case of $(1.1)_{\varepsilon}$, Σ is the set of points where g(x,y) = 0). But, generically in the sense of perturbations of \tilde{Z} , Σ is a discrete set. To avoid this, we assume that \tilde{Z}_0 is tangent to the leaves of a codimension m foliation $\mathcal F$ on M. F can be considered as a generalization of the product structure $\mathbb R^m \times \mathbb R^n$. The vector field tangent to F is a generalization of the equation $\dot{y} = g(x,y)$ in $(1.1)_{\varepsilon}$.

A <u>constraint system</u> is defined as the pair $\{\{\tilde{Z}_{\varepsilon}\},F\}$ as above (Definition 5.1). After the definition of the <u>solution</u> for a constraint system (Definition 5.4) we will define an <u>admissible solution</u>, which is a solution having useful properties (Definition 5.5). These definitions are motivated by F. Takens' definitions of constrained equations and the solutions [13]. Takens considered a fibre bundle structure, whereas we take a foliation. He considered a kind of

function $M \to \mathbb{R}$ which pliyed similar role as our vector field \tilde{z}_0 tangent to F.

Our main goal is Theorem E, Theorem F, and Theorem G. But these theorems are proved for systems having some generic properties. In section 4 we show generic properties GO, G1, and G2. GO assures that the set of equilibrium points Σ of $\tilde{\Sigma}_0$ is a manifold. G1 is a regularity condition of the derivative of \tilde{Z}_0 on Σ . G2 assures that Σ has a stratification S, which is stratified by the number of zero-eigenvalues and the number of pure imaginary eigenvalues of the derivative of $\tilde{Z}_0|L_p$ at $p\in\Sigma$. Here L_p is a plaque of F containing P. Theorem A in section 4 asserts that GO, G1, and G2 are generic properties. We set another property G3 in section 4, which assures that the manifold Σ is in general position in the foliation F with respect to Thom-Boardman singularities. Theorem B in section 4 implies that the set of $\{\tilde{Z}_{\varepsilon}\}$ having property G3 is dense in the space of families of vector field on M which is a subspace of $\mathfrak{X}^{\mathbf{r}}(M\times[0,\varepsilon_0))$.

Saddle-node bifurcation and Hopf bifurcation are well knows as typical codimension one bifurcations of equilibria. Theorem C in section 4 shows where these bifurcations of $\tilde{Z}_0|L_p$ appear for $p\in\Sigma$. Theorem C expresses the place in the language of the stratification S and Thom-Boardman's stratification. Theorem D determines the qualitative structure of \tilde{Z}_0 near the point p where saddle-node bifurcation occurs. Theorem A, .., Theorem D in section 4 are proved in [8].

Theorem E and Theorem F in section 5 shows the properties of addmissible solutions. Theorem G is the singular perturbation theorem

for admissible solutions. This is an extension, in some senses, of L.S. Pontryagin [12] and N. Fenichel [5]; see Remark 5.9. Theorem E, Theorem F, and Theorem G are proved in [10].

In the case that Σ has codimension one (i.e. m = 1), it is trivial to see that the jumping path (<u>trace</u> of Definition 5.7) leaving a fold point is unique. When m > 1, the uniqueness and other properties of the jumping path are obtained by Theorem D as the properties of the stable sets.

There is an example of constraint system in the theory of LC-network perturbation (G. Ikegami [7],[9]). In this theory, there is a foliation F (not a trivial product structure $\mathbb{R}^m \times \mathbb{R}^n$) and a one parameter family of vector spaces, $\tilde{Z}_{\epsilon} = \epsilon X + Y$ such that Y is tangent to F.

2. PRELIMINARIES

Let M be a smooth (C^{∞}) manifold with dimension m+n, and be a smooth <u>foliation</u> on M with codimension m. F is a disjoint decomposition of M into n dimensional injectively immersed connected smooth submanifolds (<u>leaves</u>) such that M is covered by C^{∞} charts

$$\alpha_1 \times \alpha_2 : U \to D^m \times D^n$$
 (2.1)

and $(\alpha_1 \times \alpha_2)^{-1}(\{x\} \times D^n)$ is included in the leaf through $(\alpha_1 \times \alpha_2)^{-1}(x,y)$, $y \in D^n$, where D^m and D^n are the open disks in \mathbb{R}^m and \mathbb{R}^n , resp. We denote

$$(\alpha_1 \times \alpha_2)^{-1}(\{x\} \times p^n) = L_{(x,y)},$$

and call it the plaque containing the point (x,y).

Let $\tau: TF \to M$ be the subbundle of the tangent bundle $TM \to M$ such that the fibre $\tau^{-1}(p)$ is an n-dimensional vector space which is tangent to the leaf of F through $p \in M$. Let $Y: M \to TF$ be a C^T section of the vector bundle τ . Y is also a C^T -section of the tangent bundle $TM \to M$. We call such a section a C^T vector field on M tangent to the foliation F. Denote by $Y^T(F)$ the space of all C^T vector field tangent to F with the Whitney C^T topology.

We write $\Sigma_{\mathbf{Y}}$ for the subset of equilibrium points of a vector field $\mathbf{Y} \in \mathbf{Y}^{\mathbf{r}}(F)$. A point $\mathbf{p} \in \Sigma_{\mathbf{Y}}$ is called a <u>regular point</u>, if the derivative dY at \mathbf{p} has the maximal rank \mathbf{n} . $\mathbf{p} \in \Sigma \mathbf{Y}$ is called a <u>normally regular point</u>, if $\mathbf{d}(\mathbf{Y}|\mathbf{L}_{\mathbf{p}})(\mathbf{p})$ is nondegenerate, where $\mathbf{L}_{\mathbf{p}}$ is the plaque of F at \mathbf{p} . We denote by $\Sigma_{\mathbf{r}}$ the set of normally regular points of $\Sigma_{\mathbf{Y}}$. A point $\mathbf{p} \in \Sigma_{\mathbf{Y}}$ is called a <u>normally hyperbolic point</u> (resp. <u>normally stable point</u>), if \mathbf{p} is a hyperbolic equilibrium point (resp. stable equilibrium point) of $\mathbf{Y}|\mathbf{L}_{\mathbf{p}}$. We write $\Sigma_{\mathbf{h}}$ (resp. $\Sigma_{\mathbf{g}}$) the set of normally hyperbolic (resp. stable) points. We have

$$\Sigma_{s} \subset \Sigma_{h} \subset \Sigma_{r} \subset \Sigma_{Y}.$$

Let $\partial \Sigma_h$ be the set of all frontiers of Σ_h ; $\partial \Sigma_h = \overline{\Sigma}_h - \Sigma_h$.

A <u>stratification</u> S of a topological space N is a partition of N into subsets, which will be called the <u>strata</u> of S, such that the following conditions are satisfied:

(a) Each stratum S is locally closed, i.e. each point $s \in S$ has a neighborhood U such that U \cap S is closed in U.

- (b) S is locally finite, i.e. each point has a neighborhood meeting only finitely many strata.
- (c) If S_1 and S_2 are strata and $\overline{S}_1 \cap S_2 \neq \emptyset$, then $S_2 \subset \overline{S}_1$. The relation $S_2 < S_1$ defined by $S_2 \subset \overline{S}_1$, $S_2 \neq S_1$, is an order on $S_2 \subset S_1$. It is transitive and cannot have both $S_2 \subset S_1$ and $S_1 \subset S_2$.

Let \tilde{N} be a C^1 manifold, let $N \subset \tilde{N}$, and let S be a stratification of N. We will say that S is a <u>Whitney stratification</u> if each stratum is a C^1 submanifold, and if S_1 , S_2 are two strata with $S_2 < S_1$, then for all $x \in S_2$ the triple (S_1, S_2, x) satisfies the following Whitney's regularity condition.

Condition: For any sequences $\{x_i\}$ of points in S_2 and $\{y_i\}$ of points in S_1 , such that $x_i \to x$, $y_i \to x$, $x_i \neq y_i$, segment $\overline{x_i y_i}$ converges (in projective space), and the tangent space $T_{x_i}S^1$ converges (in Grassmanian of (dim S_1)-plane in \mathbb{R}^n , $n = \dim \mathbb{N}$), we have $\ell \in T_{\infty}$, where $\ell = \lim \overline{x_i y_i}$ and $T_{\infty} = \lim T_{x_i}S^1$.

Let S^{i} denote the substratification of a stratification S such that S^{i} consists of all strata of dimension $\leq i$ of S. We call S^{i} the i-skeleton.

THOM-BOARDMAN SINGULARITIES MODULO FOLIATION

Suppose L, N are smooth manifold and f, g: L \rightarrow N are C^k maps with f(p) = g(p) = q. f has <u>first order contact</u> with g at p if $(df)_p = (dg)_p$ as mapping $T_pL \rightarrow T_qN$ of tangent spaces. f has <u>kth</u> <u>order contact</u> with g at p if (df): $TL \rightarrow TN$ has (k-1)st order contact with (dg) at every point in T_pL .

Let M be a smooth manifold of dimension m+n, and let F be

a smooth foliation on M with codimension m. Let L be a smooth manifold without boundary.

<u>Definition</u> 3.1. Suppose f, g: L→M are C^k maps with f(p) = g(p) = q. f is said to have <u>kth order contact modulo</u> F with g at p if, for some (and hence for any) chart $(U, \alpha_1 \times \alpha_2)$ of F with $q \in U$ given by (2.1), $\alpha_1 \circ f : L \to D^m$ has kth order contact with $\alpha_1 \circ g$ at p. This is written as $f \sim_k g \mod F$ at p. Let $J^k(L, M; F)_{p,q}$, $k \ge 1$, denote the set of equivalence classes under " $\sim_k \mod F$ at p" of mappings $f : L \to M$ where f(p) = q. Let $J^0(L, M; F)_{p,q} = \{(p,q)\}$. Let $J^k(L, M; F) = U_{(p,q) \in L \times M} J^k(L, M; F)_{p,q}$ (disjoint union). We call $J^k(L, M; F)$ a <u>jet space modulo</u> F. An element σ in $J^k(L, M; F)$ is called a <u>k-jet modulo</u> F of mapping from L to M.

For a C^k mapping $f:L \rightarrow M$, a jet extension

$$j^k f : L \rightarrow J^k(L, M; F)$$

is defined by stipulating that $j^k f(x)$ is the k-jet mod F of f at $x \in L$.

Our jet spaces modulo foliations follow the J.M. Boardman's theory [4]. Hence, we have the following.

<u>Proposition</u> 3.2. For each sequence $I = (i_1, i_2, ..., i_k)$ of integers, the submanifold (not necessarily closed) $\tilde{\Sigma}^I$ of the jet space modulo foliation $J^k(L, M; F)$ is defined. $\tilde{\Sigma}^I$ is empty unless I satisfies

$$i_1 \ge i_2 \ge \dots \ge i_{k-1} \ge i_k \ge 0$$
,

$$\mathcal{L} \geq \mathbf{i}_1 \geq \mathcal{L} - \mathbf{m}, \quad \mathbf{k} = \mathbf{k} + \mathbf{k} +$$

if
$$i_1 = \ell - m$$
, then $i_1 = i_2 = \cdots = i_k$.

Proposition 3.3. If $f:L\to M$ is a map whose jet section modulo F, $j^kf:L\to J(L,M;F)$ is transverse to $\widetilde{\Sigma}^I$, then $\widetilde{\Sigma}^I(f)\equiv (j^kf)^{-1}(\widetilde{\Sigma}^I)$ is a submanifold of L. If I, I denotes the extended sequence $(i_1,i_2,\ldots,i_k,i_k,i_k)$, we have $\widetilde{\Sigma}^{I,i}(f)=\widetilde{\Sigma}^i(f|\widetilde{\Sigma}^I(f))$. Also, when $I=\varphi$, $\widetilde{\Sigma}^i(f)=\{p\in L: \dim \operatorname{Ker} j^1f(p)=i\}$.

<u>Proposition</u> 3.4. Any map $f:L\to M$ of class C^{r+1} may be C^{r+1} approximated in the C^{r+1} sense by a map $g:L\to M$ whose r-jet extension $j^rg:L\to J^r(L,M;F)$ is transverse to all submanifolds $\tilde{\Sigma}^{i_1,\ldots,i_s}$, $1\le s\le r$.

We call $\widetilde{\Sigma}^{\rm I}$ the <u>Thom-Boardman submanifold</u> of $J^{\rm r}(L,M;F)$ associated with Thom-Boardman symbol I.

These definitions and propositions in this section are described in [8].

4. GENERIC PROPERTIES OF VECTOR FIELDS TANGENT TO F.

In this section we introduce some theorems obtained by Ikegami [8].

Definition 4.1. Let dim M = m + n and codim F = m. The following are the properties of the vector field $Y \in Y^{\mathbf{r}}(M, F)$.

 $\underline{\underline{\text{GO}}}$: The set Σ_{Y} of all equilibrium points of Y is, if nonempty, an m dimensional C^{r} manifold.

 $\underline{\underline{\text{G1}}}$: Every point of $\Sigma_{\underline{Y}}$ is regular.

- $\underline{\underline{G2}}$: Y has the property GO and there is a Whitney stratification S on $\Sigma_{_{_{{\bf Y}}}}$ having the following properties:
- (i) If the differential $d(Y|L_p)(p)$ at p has ℓ eigenvalues of zero and $2(k-\ell)$ non-zero pure imaginary eigenvalues

$$0, \ldots, 0, ib_1, -ib_1, \ldots, ib_{k-\ell}, -ib_{k-\ell},$$

then p is contained in the (m-k) skeleton S^{m-k} .

- (ii) The union of all $\,$ (m-1) dimensional strata $\,\cup\,\,S^{m-1}$ is a dense subset of $\,\partial\Sigma_h^{}$.
- (iii) \cup S $^{m-1}$ is divided into two parts, $(\partial \Sigma_h)_0$ and $(\partial \Sigma_h)_{img}$, of unions of strata such that

$$p \in (\partial \Sigma_h)_0$$
 \Longrightarrow 0 is an eigenvalue of $d(Y|L_p)(p)$,

 $p \in (\partial \Sigma_h)_{img} \implies \text{ the eigenvalues of } d(Y \big| L_p)(p) \text{ include a pair of}$ non-zero pure imaginary numbers.

 $\underline{\text{G3}}\colon \text{ Y has the property GO, and for } k=1,2, \text{ the } k\text{-jet}$ extension $\mathbf{j}^k \iota\colon \Sigma_{\mathbf{Y}} \to \mathbf{J}^k(\Sigma_{\mathbf{Y}}, M; F)$ of the inclusion map $\iota: \Sigma_{\mathbf{Y}} \to M$ is transverse to $\widetilde{\Sigma}^{\mathbf{I}}$ for all Thom-Boardman submanifold $\widetilde{\Sigma}^{\mathbf{I}}$ of length k symbol I.

Let y_k^r denote the set of $Y \in y^r(M, F)$ satisfying the property Gk, k = 0, 1, 2, 3.

Theorem A. For k=0,1,2, the set y_k^r is open dense in $y^r(M;F)$, if $k+1 \le r < \infty$.

Theorem B. y_3^r is dense in $y^r(M; F)$ for $3 \le r < \infty$.

Let $\iota: \Sigma_Y \to M$ be the inclusion map. Let $\widetilde{\Sigma}^I \subset J^k(\Sigma_Y, M; F)$ be the Thom-Boardman manifold for Thom-Boardman symbol I. Denote $\widetilde{\Sigma}^I(Y)$ $\equiv (j^k \iota)^{-1} (\widetilde{\Sigma}^I)$.

Let $\tau: TF \to M$ be the vector bundle of vectors tangent to F. Let $(\alpha, \alpha_1 \times \alpha_2, U)$ be a vector bundle chart of τ . Let $J^1(\tau)$ be the 1-jet space of germs of partial sections of τ . Define $\widetilde{\Sigma}^i_{\tau}$ to be the set of 1-jet $\sigma \in J^1(\tau)$ such that, if Y represents σ at $p \in M$, then Y(p) = 0 and the rank of $d(Y|L_p)(p) = n - i$. Denote $\widetilde{\Sigma}^i_{\tau}(Y) \not\equiv (j^1Y)^{-1}(\widetilde{\Sigma}^i_{\tau})$.

The following can be easily proved [8].

<u>Proposition</u> 4.2. Let $Y \in Y^r(M; F)$, $r \ge 2$. Then we have the following.

- (i) $\tilde{\Sigma}_{\tau}^{1}(Y) = \tilde{\Sigma}^{1}(Y)$, if Y satisfies GO and G1.
- (ii) If Y satisfies G3, then each point $p \in \widetilde{\Sigma}^{1,0}(Y)$ is a <u>fold</u> point; i.e. there exist coordinates of class C^{r-1} , x_1 , ..., x_m centered at p in Σ_Y and y_1 , ..., y_m , z_1 , ..., z_n centered at p in M, such that (a) z_1 , ..., z_n are the coordinates of the plaque L_p of F, (b) the inclusion map $\Sigma_Y \to M$ is given by

$$y_1 = x_1, \dots, y_{m-1} = x_{m-1}, y_m = x_m^2;$$
 $z_1 = x_m, z_2 = \dots = z_n = 0.$

This proposition is useful in the proofs of Theorem C and Theorem D below in this section.

Next, we study the bifurcations of Y at $\boldsymbol{\Sigma}_h$. Suppose that

dim M=m+n, codim F=m, and Y is of class $C^{\mathbf{r}}$, $\mathbf{r} \geq 3$. Let p be a point in $\partial \Sigma_h$. Assume that there is a neighborhood N of p in $\partial \Sigma_h$ such that N is an (m-1) dimensional manifold. Let $\alpha_1 \times \alpha_2 : \cup \to D^m \times D^m$ be a chart of F such that $(\alpha_1 \times \alpha_2)(p) = (0,0)$, (see(2.1)). Let I be a segment in D^m parametrized by μ such that $\mu=0$ indicates the origin of D^m .

Assumption: L \equiv $(\alpha_1 \times \alpha_2)^{-1} (I \times D^n)$ is transverse to both Σ_Y and N in M.

Definition 4.3. Under the above assumption we say that Y has $\frac{\text{saddle-node bifurcation}}{\text{satisfying the following:}} \text{ The smooth curve } L \cap \Sigma_{Y} \text{ is tangent } I \text{ as above satisfying the following:} \text{ The smooth curve } L \cap \Sigma_{Y} \text{ is tangent to } L_{0} \text{ at } p, \Sigma_{Y} \cap L_{\mu} = \emptyset \text{ if } \mu < 0 \text{, and } \Sigma_{Y} \cap L_{\mu} \text{ consists of two points, } p_{\mu}^{S} \text{ and } p_{\mu}^{U} \text{ if } \mu > 0. \text{ Furthermore, Y is hyperbolic at } p_{\mu}^{S} \text{ and } p_{\mu}^{U}. \text{ The dimensions of the stable manifolds at } p_{\mu}^{S} \text{ and } p_{\mu}^{U} \text{ are } k \text{ and } k-1, \text{ respectively, } 1 \leq k \leq m. \text{ See Figure 1.}$

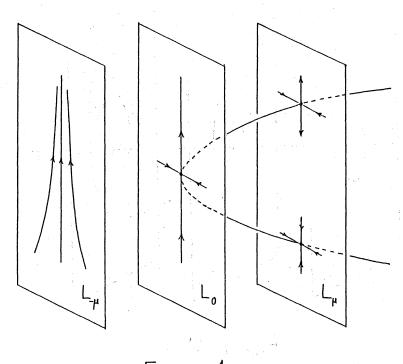


Figure 1

<u>Definition</u> 4.4. Under the above assumption we say that Y has <u>Hopf bifurcation</u> at $p \in \partial \Sigma_h$, if the following hold for every segment $I \subset D^m$ as above: There is a unique 3-dimensional center manifold C (see Guckenheimer-Holmes [6, p.127]) containing $L \cap \Sigma_Y = (\bigcup_{\mu} L_{\mu}) \cap \Sigma_Y$ and a system of coordinates (x, y, μ) on C, with $(x, y, \mu) \in L_{\mu}$, for which the Taylor expansion of degree 3 of Y on C is given by

$$\begin{cases} \dot{x} = (d\mu + a(x^2 + y^2))x - (\omega + c\mu + b(x^2 + y^2))y \\ \dot{y} = (\omega + c\mu + b(x^2 + y^2)x + (d\mu + a(x^2 + y^2))y, \end{cases}$$

which is expressed in polar coordinates as

$$\begin{cases} \dot{\mathbf{r}} = (d\mu + ar^2)\mathbf{r} \\ \theta = (\omega + c\mu + br^2). \end{cases}$$

See Figure 2. Consequently, if $a \neq 0$, there is a surface of periodic

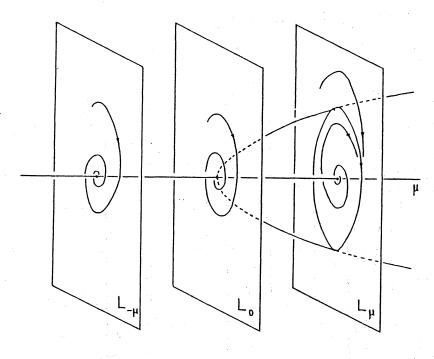


Figure 2

solutions in C which has quadratic tangency with the eigenspace of $\lambda(0)$, $\overline{\lambda}(0)$ agreeing to second order with the paraboloid $\mu = -(a/d)(x^2 + y^2)$. If a < 0, these solutions are stable limit cycles, while if a > 0, there are repelling. (See [6, Theorem 3.4.2].)

Saddle-node bifurcation and Hopf bifurcation are well known as typical codimension one bifurcations of equilibria (e.g.[6]). We want to see how these bifurcations arise in our global situation with respect to the stratifications which we defined. The stratification S in G^2 is defined by only the first derivatives of Y. But, saddle-node bifrucation does not occur under the condition only of the first derivatives. As another condition we take the second derivatives modulo F of the inclusion map of the set of equilibrium points $\Sigma_{\mathbf{Y}};$ while J. Guckenheimer and P. Holmes [6, Theorem 3.4.1] take the assumption for the second derivative of Y. For this purpose, we use the stratification of Thom-Boardman. In the study of constraint systems, it is natural to consider Thom-Boardman singularities (see [13] and [15]).

Let S^k be the k-skeleton of S. Let \widetilde{S}^k be the k-skeleton of the stratification determined by $\widetilde{\Sigma}^i(Y) = (j^1 1)^{-1}(\widetilde{\Sigma}^i)$, i = 0, 1, ..., m. We have $\widetilde{S}^k = \widetilde{\Sigma}^{m-k}(Y) \cup \widetilde{\Sigma}^{m-k+1}(Y) \cup ... \cup \widetilde{\Sigma}^m(Y)$. Under $G1, S^k \supset \widetilde{S}^k$ and $S^{m-1} = \partial \Sigma_h$ hold by Proposition 4.2(i) and the definition of S. Moreover, we have that a (m-1) dimensional stratum of S is included in a (m-1) dimensional stratum of \widetilde{S} . For the sets defined in G2, we observe

$$(\partial \Sigma_h)_0 \subset \widetilde{S}^{m-1}$$
 and $(\partial \Sigma_h)_{img} \cap \widetilde{S}^{m-1} = \phi$.

Denote by $(\partial \Sigma_h)_f$ the set of fold points in $\partial \Sigma_h$;

$$(\partial \Sigma_h)_f \equiv (\partial \Sigma_h)_0 \cap \tilde{\Sigma}^{1,0}(Y)$$

Theorem C. Let $Y \in Y^r(F)$, $r \geq 3$. Suppose that Y satisfies G1, G2, and G3. Then, there is an open dense subset $(\partial \Sigma_h)_f \cup (\partial \Sigma_h)_{img}$ of the boundary $\partial \Sigma_h$ of the normally hyperbolic domain $\Sigma_h \subset \Sigma_Y$ such that Y has saddle-node bifurcation at each point of $(\partial \Sigma_h)_f$ and has Hopf bifurcation at each point of $(\partial \Sigma_h)_{img}$.

Next, we study the qualitative structure of Y at fold points in the boundary of normally stable domain $\Sigma_{\mathbf{s}}$.

Let X be a C^r vector field on an open set U in \mathbb{R}^n , let ϕ_t be the flow of X, and let $p \in U$ be an equilibrium point of X. Suppose that the eigenvalues λ_0 , ..., λ_{n-1} of dX(p) satisfy that $\lambda_0 = 0$ and that the real parts $R\lambda_1$, ..., $R\lambda_{n-1} < 0$. Let E^c and E^s be the generalized eigen spaces of λ_0 and λ_1 , ..., λ_{n-1} , respectively. By center manifold theorem (Guckenheimer-Holmes [6, Theorem 3.2.1]), there are an invariant C^r manifold $W^s(p)$ (called the stable manifold) tangent to E^s at p and a C^r manifold $W^c(p)$ (called the (local center manifold) tangent to E^c at p. W^c is locally invariant in the sense that, if $q \in W^c$ and $\phi_t(q) \in U$, then $\phi_t(q) \in W^c$. W^s is unique, but W^c need not be.

Let ψ_{t} be the flow associated to a vector field on a manifold. The subsets

$$V^{S}(p) = \{q : \psi_{t}(q) \rightarrow p \text{ as } t \rightarrow \infty\}, \text{ and}$$

$$V^{U}(p) = \{q : \psi_{t}(q) \rightarrow p \text{ as } t \rightarrow -\infty\}$$

are called the stable set and the unstable set of p, respectively.

The boundary $\partial \Sigma_{\mathbf{s}} = \overline{\Sigma}_{\mathbf{s}} - \Sigma_{\mathbf{s}}$ of normally stable domain is included in the boundary $\partial \Sigma_{\mathbf{h}}$ of normally hyperbolic domain. Suppose Y satisfies G1, G2, and G3. Then, by Theorem C, there is an open dense subset $(\partial \Sigma_{\mathbf{h}})_{\mathbf{f}} \cup (\partial \Sigma_{\mathbf{h}})_{\mathbf{img}}$ of $\partial \Sigma_{\mathbf{h}}$ such that Y has saddle-node bifurcation at $(\partial \Sigma_{\mathbf{h}})_{\mathbf{f}}$ and has Hopf bifurcation at $(\partial \Sigma_{\mathbf{h}})_{\mathbf{img}}$. Define the sets as follow,

$$(\partial \Sigma_s)_f = (\partial \Sigma_h)_f \cap (\partial \Sigma_s)$$
 and $(\partial \Sigma_s)_{img} = (\partial \Sigma_h)_{img} \cap (\partial I_s)$.

Theorem D. Suppose $Y \in \mathcal{Y}^r(M; F)$, $r \ge 3$. Let $(\partial \Sigma_s)_f \cup (\partial \Sigma_s)_{img}$ be the open dense subset of $\partial \Sigma_s$ defined as above. Let $p \in (\partial \Sigma_s)_f$.

Then, these are an open neighborhood U of p in M and a C embedding from the plaque, h $_p:L_p\to\mathbb{R}^1\times\mathbb{R}^{n-1}$ such that the following are satisfied.

- (i) $W^{S}(p) \cap L_{p} = h_{p}^{-1}(\{0\} \times \mathbb{R}^{n-1})$ and $W^{C}(p) \cap L_{p} \subset h_{p}^{-1}(\mathbb{R}^{1} \times \{0\})$, where $W^{S}(p)$ and $W^{C}(p)$ are the stable and center manifold of $Y|L_{p}$, respectively.
- (ii) $V^{\mathbf{S}}(\mathbf{p}) \cap L_{\mathbf{p}} \subset h_{\mathbf{p}}^{-1}([0,\infty) \times \mathbb{R}^{n-1})$ and $V^{\mathbf{u}}(\mathbf{p}) \cap L_{\mathbf{p}} \subset h_{\mathbf{p}}^{-1}((-\infty,0] \times \{0\}) \subset W^{\mathbf{C}}(\mathbf{p})$, where $V^{\mathbf{S}}(\mathbf{p})$ and $V^{\mathbf{u}}(\mathbf{p})$ are the stable and unstable sets of \mathbf{p} , respectively. (Figure 3).
- (iii) The C embedding h depends C continuously on $p \in (\partial \Sigma_s)_f.$ So that, both of the sets

$$V^{u} = \{q \in V^{u}(p) : p \in (\partial \Sigma_{s})_{f} \cap U\}$$

and $V^{u}(p)$ are injectively C^{r-1} immersed submanifolds of M.

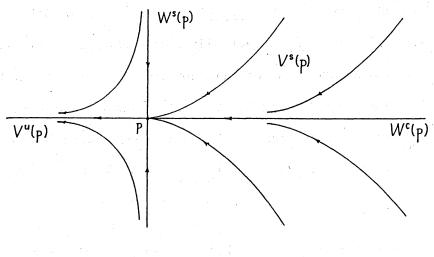


Figure 3

5. CONSTRAINT SYSTEMS AND SINGULAR PERTURBATIONS

Let M be a smooth manifold. Let $\{\widetilde{Z}_{\varepsilon}\}$, $0 \le \varepsilon < \varepsilon_0$, be a family of vector fields on M. $\{\widetilde{Z}_{\varepsilon}\}$ is called a C^r family if $\widetilde{Z}_{\varepsilon}(p)$ is a C^r vector field on $M \times [0, \varepsilon_0)$. In this section, we assume $r \ge 3$.

Expanding \tilde{Z}_{ϵ} by ϵ , we have

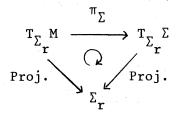
$$\widetilde{Z}_{\varepsilon}(p) = Y(p) + \varepsilon \cdot X(p) + o(\varepsilon)
Y(p) = \widetilde{Z}_{0}(\varepsilon)
X(p) = \frac{\partial}{\partial \varepsilon} \widetilde{Z}_{\varepsilon}(p) \big|_{\varepsilon=0}.$$
(5.1)

We set a following axiom for $\{\{\tilde{z}_{\epsilon}\}, F\}$.

 $\underline{\underline{\text{Axiom}}}$ 5.2. Y = \tilde{Z}_0 satisfies G1, G2, and G3.

Remark 5.3. By Theorem A and Theorem B, the set of families satisfying Axiom is dense in the space Z^r of C^r family of vector fields $\{\widetilde{Z}_{\varepsilon}\}$ such that \widetilde{Z}_0 is tangent to F. Here, Z^r is defined usually as a subspace of the space $\mathcal{X}^r(M\times[0,\varepsilon_0))$ of C^r vector fields on $M\times[0,\varepsilon_0)$.

Let $\Sigma_{\mathbf{r}}$ be the normally regular domain of the manifold $\Sigma_{\mathbf{Y}}$ of equilibrium points of $\mathbf{Y}=\widetilde{\mathbf{Z}}_0$. Hereafter, we use the simple notation Σ for $\Sigma_{\mathbf{Y}}$. Let



be the bundle map obtained by the projection

$$T_{\mathbf{p}}^{\mathsf{M}} = T_{\mathbf{p}}^{\mathsf{\Sigma}} \mathbf{r} \oplus T_{\mathbf{p}}^{\mathsf{L}} \xrightarrow{} T_{\mathbf{p}}^{\mathsf{\Sigma}} \mathbf{r}$$

for each $p \in \Sigma_r$, where L_p is the plaque of F containing p. For a crosssection X of the bundle $T_{\sum_{r}^{M}} \to \Sigma_r$, we define a vector field $X_{\sum_{r}^{N}}$ on Σ_r by

$$X_{\Sigma} = \pi_{\Sigma} X \tag{5.2}$$

- (i) $\lim_{t \to t_0} \gamma(t) = \gamma(t_0)$ and there is $\lim_{t \to t_0} \gamma(t) = \gamma(t_0)$ in Σ (not necessarily in Σ_r);
- (ii) whenever $\gamma^-(t_0) \neq \gamma(t_0)$, there is an orbit C (included in a leaf of F) of \tilde{Z}_0 such that the α limit set $\alpha(C)$ and the ω limit set $\omega(c)$ of C satisfy

$$\alpha(C) = \gamma^{-}(t_0)$$
 and $\omega(C) = \gamma(t_0)$;

(iii) if $\gamma^-(t_0) = \gamma(t_0)$, then $X_{\Sigma}\gamma(t_0)$ is the derivative of γ at t_0 ; if $\gamma^-(t_0) \neq \gamma(t_0)$, then $X_{\Sigma}\gamma(t_0)$ is the right derivative of γ at t_0 .

A curve $\gamma:[a,b) \to \Sigma_r$ is a solution if, (i) for any a < a' < b, $\gamma | (a',b)$ is a solution; (ii) $X_{\Sigma}\gamma(a)$ is the right derivative of γ at a.

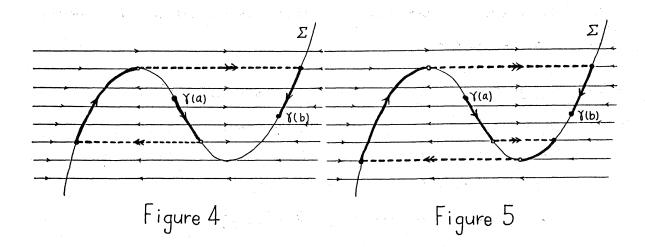
A curve $\gamma:(a,b] \to \Sigma_r$ is a solution if, (i) for any a < b' < b, $\gamma \mid (a,b')$ is a solution; (ii) there is $\lim_{t \to b} \gamma(t) = \gamma^-(b)$ in Σ ; (iii) there is an orbit C of \widetilde{Z}_0 such that $\alpha(C) = \gamma^-(b)$ and $\omega(C) = \gamma(b)$.

 $\gamma:[a,b] \to \Sigma_r$ is a solution if $\gamma | [a,c)$ and $\gamma | (c,b]$ are solution for any a < c < b.

For a point $p \in \Sigma_r$, there is a solution $\gamma:(a,b) \to \Sigma_r$ such that $p = \gamma(c)$, a < c < b. But there may be many such solutions. See Figure 4 and 5.

Next, we consider solutions having many available properties.

Let $\widetilde{Z}_{\varepsilon} = Y + \varepsilon X + o(\varepsilon)$. Let Σ be the set of equilibrium points of Y.



Definition 5.5. Let J be an interval. A solution $\gamma: J \to \Sigma_r$ of $\lim_{\epsilon \to 0} \tilde{Z}_{\epsilon}/\epsilon$ is called to be admissible if

- (i) the image $\gamma(J)$ is included in the normally stable domain $\boldsymbol{\Sigma}_{_{\boldsymbol{S}}}$ of Y,
- (ii) whenever γ is not continuous at $t \in J$ then $p = \gamma^-(t)$ is contained in the fold point set $(\partial \Sigma_s)_f$ in $\partial \Sigma_s$, and furthermore

$$X(p) \notin T_{p} + T_{p} L \qquad (5.3)$$

is satisfied.

Remark 5.6. (5.3) is a generic condition. In fact, since $p \in (\partial \Sigma_h)_0 \subset \widetilde{\Sigma}^1(Y)$, the subspace $T_p \Sigma + T_p L_p$ has codimension one in $T_p M$. Hence, by a perturbation of X (hence, of \widetilde{Z}), we have \widetilde{Z} such that (5.3) holds for the points p in an open dense subset of $(\partial \Sigma_s)_f$.

Hereafter, we show some properties of admissible solutions. For a non-zero vector $v \in T_p^M$, denote by L(v) the 1-dimensional subspace

of T_pM generated by v. The unstable set $V^u(p)$ of $p \in (\partial \Sigma_s)_f$ is an injectively immersed submanifold of $[0,\infty)$ in M, and it exists uniquely for p, by Theorem D.

Theorem E. Let $\tilde{Z}_{\varepsilon} = Y + \varepsilon X + o(\varepsilon)$. Suppose that X satisfies (5.3) at a point $p \in (\partial \Sigma_s)_f$. Then the following hold.

- (i) For some (and hence for any) Finsler $\|\cdot\|$ on TM and $q \in \Sigma_s$, we have $\|X_{\Sigma}(q)\| \to \infty$ $(q \to p)$.
 - (ii) For $q \in \Sigma_s$, we have $L(X_{\Sigma}(q)) \to T_p V^u(p)$, $q \to p$.

Theorem F. Let $\phi_t(q)$ be the trajectory of $\pi_\Sigma X$ on Σ_s such that $\phi_0(q)=q$. Suppose that

$$\lim_{t \to a} \phi_t(q) = p \in \Sigma_f, \quad a > 0.$$

Then, the following hold.

(i) For any point $\,q'$ in a neighborhood U of $\,q$ in $\,\Sigma_{_{\, S}},$ there are $\,p'\in (\partial \Sigma_{_{\, S}})_{_{\, f}}$ and $\,a'>0\,$ such that

$$\lim_{t \nearrow a} \phi_t(q') = p'.$$

(ii) The mapping $U \rightarrow (\partial \Sigma_s)_f$, defined by $q' \mapsto p'$, is continuous.

$$\Gamma(\gamma) \equiv \gamma(J) \cup c_1 \cup c_2 \cup c_3 \cup \cdots$$

is called the trace of γ .

Let d be a Riemannian metric on M.

Theorem G. (Singular perturbation theorem). Let $\gamma:[0,b] \to \Sigma_s$ be an admissible solution of a constrained equation $\lim_{\epsilon \to 0} \widetilde{Z}_{\epsilon}/\epsilon$ such that γ has at most finitely many discontinuous points. Let $\psi_{\epsilon}: \mathbb{R} \times \mathbb{M} \to \mathbb{M}$ be the flow associated with the vector field $Z_{\epsilon} \notin \widetilde{Z}_{\epsilon}/\epsilon$, $\epsilon \notin 0$.

Then, for any $\delta>0$ and $\mu>0$, there exist $\overline{\epsilon}>0$ and a neighborhood U of $p=\gamma(0)$ in M such that, for any ϵ with $0<\epsilon<\overline{\epsilon}$ and any $q\in U$ the following hold.

(i) $\psi_{\epsilon}(J,q)$ is included in the δ -neighborhood of the trace $\Gamma(\gamma)$; i.e. for any $t \in J$

$$d(\psi_{\varepsilon}(t,q), \Gamma(\gamma)) < \delta.$$

(ii) If $t \in J$ and $|t-t_i| \ge \eta$ for every discontinuous points $t_1, t_2, t_3, \ldots \in J$ of γ , then we have

$$d(\psi_{\varepsilon}(t,q), \gamma(t)) < \delta.$$

Corollary 5.8. Admissible solution $\gamma:[0,b] \to \Sigma_S$ with $\gamma(0)=p$ is unique, i.e. if $\gamma':[0,b] \to \Sigma_S$ is another admissible solution with $\gamma'(0)=p$, then $\gamma(t)=\gamma'(t)$ for any $0 < t \le b$.

- Remark 5.9. (i) N. Fenichel [5, Theorem 9.1] proves the singular perturbation theory for a neighborhood of a compact subset of normally hyperbolic domian Σ_h . We use this theory for the proof of Theorem G.
- (ii) L.S. Pontryagin [12] shows the singular perturbation theorem in the neighborhood of a discontinuous point of γ under the condition of the derivatives of Y. This condition is slightly different to our

theorem which takes the condition of $\Sigma \subseteq M$. In the proof [10] of Theorem G, we do not use Pontryagin's results; we give another proof using center manifold theorem.

References

- [1] A.A. Andronov, A.A. Vitt and S.E. Khaikin: Theory of Oscillators, Pergamon Press, 1966.
- [2] E. Benoit: Systèmes lents-rapides dans \mathbb{R}^3 at the leurs candards, Astérisque, 109-110(1983), 159-191.
- [3] E. Benoit: Canards de \mathbb{R}^3 , These de Doctorat D'etat, Univ. Nice (Paris VII).
- [4] J.M. Boardman: Singularities of differentiable maps, Publ. I.H.E.S. No.33(1967), 21-57.
- [5] N. Fenichel: Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq. 31(1979), 53-98.
- [6] J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.
- [7] G. Ikegami: Geometric singular perturbation theory for electrical circuits, The Theory of Dynamical Systems and Its Applications to Nonlinear Problems, World Sci. Publ., 1984, 109-123.
- [8] G. Ikegami: Vector fields tangent to foliations, Japanese J. Math., (to appear).

- [9] G. Ikegami: On network perturbations of electrical circuits and singular perturbation of dynamical systems, Chaos, Fractals, and Dynamics, Dekker, 1985, 197-212.
- [10] G. Ikegami: Singular perturbations in foliation, (to appear).
- [11] J. LaSalle: Relaxation oscillations, Quart. Appl. Math., 7(1949), 1-19.
- [12] L.S. Pontryagin: Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives, Amer. Math. Soc. Transl. Ser. 2, Vol.18(1961), 295-319.
- [13] F. Takens: Constrained equations, Lecture Notes in Math. 525 (1975), Springer-Verlag, 144-234.
- [14] B. van der Pol: Forced oscillations in a circuit with nonlinear resistance (receptance with reactive triode), London, Edinburgh and Dublin Phil. Mag., 3(1927), 65-80.
- [15] E.C. Zeeman: Differential equations for the heatbeat and nerve impulse, Dynamical Systems, Salvador 1971, Acad. Press, 1973, 683-741.