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NORMAL FORMS FOR CONSTRAINED SYSTEMS

ﬁﬁﬁi B % H (Hiroe OKA)

'ABSTRACT

A global formulation with a coordinate-free descrip-
tion is given to ordinary differential equations
(Abbrev. ODEs) including a.small paramater €. They
are formulated as a pair composed of a vector field
and a tensor field, which is an extension of the
classical interpretation of autonomous ODEs as vec-
tor fields. A method to obtain normal forms of such
equations is also discussed and several results of
calculations are given.

1. INTRODUCTION
The object of this paper is to study.the,ordinary differential
equations (Abbrev. ODEs) of the following type including a small para-

meter €
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A typical example is the Van der Pol equation:
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y = -x.
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Fig.l the phase portrait of the Van der Polyequation

The phase portrait of this system for small €v is described by the
rapid motion along the x—directioﬁ and the slow motion near the curve
y = x>/3-x, which is obtained by setting €=0 in the first equation
(2). Since the orbit looks constrained on the curve fo;ralmbst all
time period, Eq.(l) is often called a constrained system. (See Fig.l)

For constrained systems, we must study the behavior of solutions
for small €, the convergence of such solutions when € tends to
zero, etc. The main difficulty to treat such problems is due fo the
fact that Eq.(l) ceases to be an ordinary vector field, whén,the defi-
nition of the solution of Eq.(l) with €=0 loses its sense.

First of all, we propose a framework of treating constrained
systems which includes the ODE of the type (l) even for €=0. In our
framework Eq.(l) is formulated as a pair composed of a vector field and

a tensor field, which is an extension of the classical interpretation
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of autonomous ODEs as vector fields. See also Tékensl), Fenichelz) and

3),4) for other formulations.

Tkegami

Our next purpose is to give some local classifications of con-
strained systemé. Inﬂother words we consider a method to classify the
Taylor expansions of order k, or k-jets of constrainéd systems at a
point in the phase space under an equivalence relation among them; the
method is to obtain their normal forms. For the case of vector fields,
the normal form is applied to obtain the formal part of certain line-
arization theorems, the elementary bifurcation theorems such as thé
Hopf bifurcation theorem, etc. In 8§84 we give correspondiﬂgtresults fof
some constréined systems.

We remark that, in our framework, the singular perturbation‘
problem for ODEs is interpreted as the stﬁdy of unfoldings of con-
strained systems, though they seem to be quite different. In the
singular perturbation problem, we consider a family of QDEs para-
metrized by €, while, iﬁ our formulation, we ﬁreat allkunfoldingslof
a given constrained system. Oﬁr pdint of view is, thus, to regé{dﬁthe
singular pertutbation problem for ODEs as a sorf of the bifurcafién |
probleﬁ for constrained systems. We give one example bfvsu;h trea;ment
which is the most simple case and which depends on some tedioﬁsvcompu—
tations. Unfortunately we have not yet obtained a systematic meﬁhéd to

treat this problem.

2. DEFINITION OF CONSTRAINED SYSTEM
Let M be an n-dimensional C*-manifold and TM denotes the
tangent bundle of M with the bundle projection w. By X(M), we

denote the set of all vector fields on M, that is, the smooth sec-



tions éf'the vector bundle TM. A bﬁndlevhoﬁomorphisﬁ' A of the ‘
vector bundle TM is the CaLmapping from TM to itself whose restric-
tion on éach fiber TxM (x € M) ‘iékliﬁear endomdrphism A(x) of |
TXM. The set of all bundlebhémomorbhismé ofv4TM is deﬁéted by‘
HOM(TM) . - ) |

Definition 1 A singular vector field on ‘M . is the pair. (A,v) of

a bundle homomorphism A of ' TM and a vector field v on M.

Therefore the set of all singular vector fields on M, which is de-
noted by SX(M), is nothing but the product of HOM(TM) and X(M).
On a local chart, we can identify a singular vector field (A,v) with

the following ioéal expression:
AE)+E = v(B) | (3)

which is a genéfalization of the ODEIincluding'Eq.(l).’vThus the singu-
lar vector field on M can be considered és a glpbalization’of the |
equations of the type (1).

Let us céﬁsider a siﬁgular vector field (A,v) € SX(M). A bundle
homomorphism A of TM is called of constant rank if, for ényv x €M,
the rank of A(x) is independent of x; In this case,iwe say A is
of éorank r if the rank of A ‘eqﬁals ‘n;f where r is a non-negative

integer (Osrsn).

Definition 2 A constrained system of corank r on M is the pair
(A,v) of a bundle homomorphism A of TM of corank r and a vector
field v on M. A constrained system on M is a constrained system

of corank r for an integer r. We denote the set of all constrained



[Ny
ol
Lad

systems [resp. that of‘coréﬁk r] on M by CX(M) [resp. CXr(M)].

Next we’conSider the notion of.equivaience and tfansformation for
singﬁlaf vector fields. Let’ (A,v) be a singﬁlar Veétor field on a
manifold M. We identify the singular veétor field with the differen-
tial equation (3). ‘Thus it isbnatural fo consider that the tranéformed
equation of (3) by a coordinéte change ¢ =‘¢(€)b is equivalent to (3)
itéelf. Moreover multiplYing the non-singular matrix-valued function
P(£) to both sides of (3) does not change the equation essentially.
Strictly speaking, P is the bundle isomorphism of TM, Fhat is, an
invertible bundle homomorphism. (The set of all bundle isomorphisms on
M 1is denoted by ISOM(TM).) Consequently we arrive at the following

definition of equivalence:

Definition 3 Let (A,v) and (A',v') be singular vector fields on
M. We say these sihgular vector fields are equivalent if there exist a
bundle isomorphism P of TM and a diffeomorphism ¢ of M such

that,
(A',v') = (PoTdoAs(TH)~L, PoTdeved 1) ,, (&)

holds. The pair (P,9) is called a transformation of the singular

vector,field;

‘The right hand side of (4) is denoted by (P,¢)#(A,v), which is
the transformed singular vector field of (A,v) by (P,0). This means
that the product group of ISOM(TM) and Diff(M) acts on. HOM(TM) X

X(M), where (4) induces the group structure as follows:

(P,$)*(Q,¥) = (PeTdoQoTd™L, deb).,
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and yields the semi-direct product group ISOM(TM) = Diff(M).

The set CX(M) is a subset of SX(M). It is easy to see that,
for any constrained system (A,v) of corank r and any transformation
(P,¢), the transformed system (P,¢)#(A,v) is ‘again a constrained
system of corank r. Thus the group ISOM(TM) % Diff(M) acts on the
space CX (M) (and, as the result, on CX(M)).

We caﬁ also define the characteristic surface for oﬁr constrained

systems.

Definition 4 Let (A,v) be a constrained system of corank r on M.

The characteristic surface- S of (A,v) is given by,
S=1{xeM]| v(x) e ImA(x)},

where ImA(x) is a linear subspace of TXM consisting of all images

of linear endomorphism A(x) of TxM‘
A standard transversality argumént'shows the next proposition:

Proposition 5  For any generic (A,v) in CX_(M), the characteris-

tic surface of (A,v) is a smooth submanifold of M of codimension r.

3. GENERAL THEORY OF NORMAL FORMS FOR CONSTRAINED SYSTEMS

In this section, we focus our attention on the study of the local
structurs of constrained systems around an arbitrary point. xo in M.
If two constrained systems are transformed to each other up to order k
around the point xo, we say they are k-jet equivalent at x,. The k-
tH order normal form of the constrained system (A,v) at xo is

defined by a representative of the k-jet equivalence class of (A,v)



at this point.

First we éxplain‘a general framéwork of the normal form theofy
for vector fields. For simplicity we dnly give the idea in terms of
the vectorbfield itself, and omit some argumént concefning k~jet exten—
tion in our explanatidn. Let v bé a vectér field on M. Our inter-
est is to know how the vector field ‘v changes by a given diffeomor—
phism k¢. For this purpose, taking a one—pérameter group ot of
diffeomorphisﬁs‘connecting the identity at t=0 and ¢ at t=1, we
investigate the way of deformation ¢§v of v in terms éfka differen~
tial equation on the space X(M) of vector fields.

Recall that every vector field Y on M generates a diffeo-
morphism as the time-one-mapping Qf the flow defined by Y, that is,
¢ = expY. We call Y the infinitesimal generator of ¢. In this
situation we consider the one-parameter group of diffeomorphisms, ot =
exﬁtY, ’and deform a given vector field v by ¢t.l Then a formula in

differential geometry gives,

Selecobly = —[¥,v] (5)

where [ , ] denotes the Lie bracket for vector fields. The left hand
side of (5) is called the infinitesimal deformation of v by Y.
Since {4t} forms a one-parameter group of diffeomorphisms, (5)

defines a differential equation on X(M), that is,
, . _
(vt = dov), (6)

which describes fhe'way of deformation of v. Integrating this equa-

tion from t=0 to t=1, we obtain the transformed vector field o,v.



Conversel&, in order to simplify some terms of v, we have only to
find apprbpriate infihitesimal generators and to solve the equation
(6). This is the idea of the normalyform theory for veétor fields.
Fér details and the pracﬁical methodvof computation, see Ushikis).

The normal form theory for singular vector fields is essentially
the same but slightly more complicated. For any (R,Y) & SX(M) and
sufficiently small‘ t, the exponential mapping expt(R,Y) of (R,Y)
can be defined, which is a local one-parameter groﬁp of the transforma-

tions of singular vector fields. The infinitesimal deformation of the

singular vector field (A,v) is given by,

Tl eoosxpt(R, 1) 4(A,v).

To cdmpute the infinitesimal deformation, we identify the bundle homo-
morphism A with a (1,1)-type tensor field through the'natural vector

bundle isomorphism,
Hom(TM) = T*M®TM,

where Hom(TM) is the vector bundle over M whose fiber at x € M is
the vector space Hom(TxM,TxM), the set of all linear maps from T M
into itself. Again, by a formula in differential geometry, the infini-

tesimal deformation is obtained as follows:
Theorem 6 The infinitesimal deformation is given by,
St |ecoe Pt R 4(A) = (RoA—LyA, Rev-[T,vD),

where ¢_ = exptY and LyA denotes the Lie derivative of the tenmsor

field A with respect to the vector field Y. With a local coordinate

o0
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representation,
RoA—L 5 !
9A— A = (R. A .- Y
Y 1,4,k ik7kj Bxk k
3%, 3
% Aikéx_j)a/axi®dxj
avi BYi
Rev-[Y,v] = iZk(Rikvk - §;ng + a—xk"vk)a/axi

where R = ZRijQ/Bxf:ij, A= ZAijS/Bxfgﬁxj, Y = ZYiQ/Bxi and v =

ZviB/Bxi.

Using this theorem, we can calculate normal forms for siﬁgular

6) 7)

vector fields. For the detail, see Oka and Kokubu The normal
form problem for constrained systems is‘solved by reducing it to that
for singular vector fields by a natural inclusion of CX(M) into

SX(M). See Okad).

4 LOCAL CLASSIFICATION OF CONSTRAINED SYSTEMS
We begin with the classificasion of the leading part of a con-
strained system. Let (A,v) be a constrained system of corank 'r.

For a point x¢ € M, we put,
(Ao, vo) = (A(xq),v(xq)),

and call (Ao,vo) the leading part of (A,v) at xg. Since (A,v)
is of corank r, Ay 1is a linear map of rank n-r. An elementary

linear algebra argument leads the‘following,

Proposition 7 Every Oth order normal form of a constrained system

(A,v) of corank r is one of the following forms: -
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(a)(O 0 ]-(er) (b) (o 0 )(o ) (c) <o 0 \(0)
0 In—r 0 0 In—r en—r 0 In;r 0

where In—r is the unit matrix of order n-r and e_ 1is the r-dimen-

sional vector t(1,0,...,0).

For each Oth order normal form, we continue to calculate normal
forms of higher order. For simplicity we restrict ourselves to the

case of corank 1, and we suppbse that M = R" and xo is the origin.

Theorem 8 Suppose that the O-jet of a constrained system (A,v) of

corank 1 is equivalent to (a) in Prop.7, that is,

(a){0 O 1 :
o s )
0 I o/ . -

n-1

Then the infinite order normal form of (A,v) is giVen by (7) itself.
In other words, every finite order part, except for the leading part,
of (A,v) at the origin can be supressed by a suitable transforma-

tiomn.

Theorem 9 Suppose that the O-jet of a constrained system (A,v) of
corank 1 is equivalent to (b) in Prop.7. Then the generic infinite

order normal form of (A,v) is given by,

i1

0 0 tx+ I s, .y 2 \
( ) ( i,I i,1 ) (x,y,2) € R><R><Rn—2
0 Ih-l €1 -/,
where - I is the multi-index with |I| =i and S; 1= *.

If we further assume the constrained system is two-dimensional,

s C
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we can calculate more degenerate cases.

Theorem 10 Suppose that the 0-jet of a two-dimensional constrained
system (A,v) of corank 1 is equivalent to (b) in Prop.7. Then its

lst order normal form is one of the followings:

S B S L W D P T 9
el D)

Moreover if the l-jet of (A,v) 1is equivalent to (b;), then its infi-
nite order normal form is also given by (b;) itself. If the lst order

part is equivalent to (b,), then the generic 2nd order normal form is

(0 O) (iy+ax2)
0 1 1+x .

Theorem 11 Suppose that the O-jet of a two-dimensional constrained

given by,

system- (A,v) of corank 1 is equivalent to (c¢) in Prop.7. Then its

1st order normal form is one of the followings:

J U 1 OV B A G4 B MOV 4

RPN [ B P

Moreover if the lst order part is equivalent to (c¢;) [resp. (c;)], then

r/



the generic 2nd order normal form is given by,

0 0) X resp./ 0 0)(yix2)
0 1/\ ayx? 0 1/\x

In contrast with the case of singular vector fields, we cannot
obtain, at present, veréal unfoldings for constrained systems in a
systematic ﬁanner. The main difficulty is that the sﬁace CX(M) is
neither a vector space nor a manifold. We give beléw an example of
versal unfolding of a constrained sfstem, which is based on a cumber-

some computation for this special case.

Proposition 12 The versal unfolding of Eq.(7) in Th.8 is given by,

(2?) (2); - N

where € 1is an unfolding parameter.

This versal unfolding can be expressed in terms of differential

equations as follows:
ex =1, § =0. , : (9)

which describes a rapid motion in the phase space, and it corresponds

to the local structures around the point A in Fig.l. See Fig.2-A.
For other cases, versal unfoldings is not obtained generally.

Nevertheless iF is remarkable:toréonsider unfoldings of them of the

following forms:

€EX = arx, ¢ =1 | (10)

[ *
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€x = ary+Bx+ax?, ¥ = l¥x (11)
€X = x, § = ay*x? (12)
€x = tytox+ax?, ¢ = Bix (13)
where ¢€,0,8 are unfolding parameters. Each of them, similarly to

Eq.(9), seems to describe a typical local orbit structure of the equa-

tion of the form (1).

For instance, in the phase portrait of the Van

der Pol equation (2) given in Fig.l, the local orbit structures around

the point A, B, C and D

and (12) respectively.

See Fig.2-A ~ D,

resemble to those for Eq.(9), (10), (11)

The phase portrait of (13)

presents a 'canard' effect proposed and studied by a French group of

non-standard analysis

. See Fig.2-E.

[3
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