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M. Komuro AE T
Department of Mathematics
Tokyo Metropolitan University, Tokyo 158, Japan

T.Matsumoto . % P&

Department of Electrical Engineering
Waseda University, Tokyo 160, Japan

, L. O. Chua LA =0 Fa27
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA94720

ABSTRACT

A family of picewise linear vector fields of R® is discussed. A detailed analysis
is given of the linearly conjugate classes and the Poincaré maps for the family.

A result of the analysis is applied to the study of bifurcation of an attractor.

§ 0 Double-Scroll System

The double-scroll system is a picewise linear ordinary differential equation on R?® defined

by ‘
z=S(y—f(x)
y=x—y+z
z=-Ty
Mp(z-1) Mo, x=1
f@=1{ Mz , 12<1

Mp(.r+l) +M0’ x<-1

where §>0, T> 0, Mo <0 and Mp> 0 are parameters. The double-scroll system is derived from
an extremely simple autonomus electrical circuit [1}. When (S, T, Mo, Mp) = (9, 14-2/7, —,1/7,'
2/7), a chaotj_c attractor, which is called the double scroﬂ F[I], is observed. In this paper, we
study é large family of picewise linear vector ﬁelds of R? which contains the double-scroll system.
Moreover the family contains the various system with chaotic attractors studied by several authors,
including C. Sparrow [5], A. Arneodo et al. [3], R. Brockett [4] and B. Uehleke et al. [6].

A detailed analysis is given of the linearly conjugate classes and the Poincaré maps for the family.

A result of the analysis is applied to the study-of bifurcations of the double scroll.




127%

§ 1 Linearly Conjugate Classes

Definition 1. Let £ be the set of all contihuous vector fields on R® which satisfy the following

(1) — (6): for each €,

1)) is symmetric with respect to the origin, i.e.

£(-z)=-¢(z), z€R’ | |

(2) There are two planes U; and U., which are symmetﬁc with respect to the origin, and which
divide R® into three regions D;, Do and D_; . v '

(3) On each region D; (i =0 + 1), the vector field €l D, is linear.

(4) An equlibrium point O (resp. Pt) is in the interior of Dy (resp. D+1).

(5) Eigenvalues of ¢|D, (resp. £!D,, ) are a complex conjugate pair dy+v—1 7Z;, ‘,5"0">0
(resp. a,+V—14,, #,>0)andareal 7,0 (resp. 7,0 ). '

(6) Each eigenspace is not parallei to Uy .

Definition 2. For each (€2, definé (see Fig. 1)

E°(0)=the eigenspace correspondingto  d,+4/—1 %, atO,
E7(0) = the eigenspace corresponding to 7, at 0,
E°(P") = the eingenpace correspondingto = &, +/—1 4, at PT,
ET(P™) = the eingenpace corresponding to 7, at P,
L,=U,NE*(0),
L,=U,NE°(PY),
L={z€U,1£()/U,},
A=L,NL,,
B=L,NL,,
c=U,NE™(0),
D=U,NE"(PY),
E=L,NL,,
F={z€ L, E(2)/L,}.

The points A, B, E and P are called the fundamental points of ¢.

Definition 3. Define amap H :2—R° by

H(f)z(a(): Iy (11, Ty E)

where _ o~ -
ay=ay/fy, 1o=ro/Bo (Bo>0)
‘11‘_‘31/;1 sy N =?1/;1 (;1>0)
E=—?o/?1 . ’
Theorem 1

(A) For ¢&,, &€, the following is equivalent:

(1) H(&)=H(E,) |
(2) ¢, and ¢, are linearly conjugate preserving time-orientation, i.e. there exist a real
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v>(0 and a linear transformation
G :R*>R® suchthat DGo&,=vé,oG
(B) Put "R={lay, 7o, a;, 7, £)ER 7,7, <0, £>0} , then
H=R .
(C) Forany g€R ,there exist real numbers
(=1¢(n), m=m(a), n=n(x) such that, for any EET Y (n),
OP*Z 10A+mOB+nOE
where A, B, E and -P" are the fundamental points of ¢ .
Remark 1. It is easy to obtain a ﬁneafly coﬁjﬁgate cléss (not necessarily time-orientation pre-
serving) from the theorem. o . ;
Indeed, define (a0, 7o, @y, 71, ©)~(a{, 78, ai, i, #') by (ao, 10, a5, 1y, ©)=C(a{, 14, ai,
71, £) or (~a6,—rg,—a{,—r{,)¢’>, then ¢, and ¢, are linearly con‘jugaté‘ if and only if H(¢,)
~H(E). '

Remark 2. For #=(ay,79,2,,7,,%), the ¢, m, n in the statement (C) is explicitly given as
follows: : |
1=—(rlﬁ+a1)2“/¢2rf(7’o/"+2“0)/7’0(‘1?“'1}. :
m=(r e+a;)?+1
n=r2r2{(ro/s+ag)?+1}/ri(al+1)
s= g+m+n=]_+ﬂ3rf(a02+1)/r02(a12+1).
Remark 3. For #=(ag,vy,a,,7,,8)ER , avector field (€2 with “H(&O)=u is explicitly
given as follows:

6(5&‘, Y Z)=(ai]‘)($, Y, z)T+(b1, 62, b3>T“Z—1|—'IZ+1l},

e =A(e,n+r)  epp=lem a13=45(c;l-17)
@y =con @92=com+Tg @53 =5(co £ =T)
a31=coﬁ a32=00;n. . a33=;COZ

bl 21;(6'7—]’1) bz =;(007_To> b3 =7‘00'7
where

i=—ro/mk, co=—k(aE+1)/ry, e;=—(ai+1)/r %
i=1{/s, m=mnl/s, n=n/s

s=1/(1-s), 7=s/2(1-s) (¢,m,n, s are as in Remark 2).
Fundamental points:

4=(1,1,1), B=Q, ~(+n)/m, 1), E=(=(Z+m)/n, 1, 1)
Pi=(0,'0,i.s'), Uil={(x, v, z)lz?:tl}.
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Definition 4. Let (€ with A <5>=(ao,ro,ax,7j1,ﬁ> be given. We can take two-.affine trans-
formations v, : Dy— R® and v, : D,— R® such that (see Fig. 2)

a) 7,(00=0

' Y, (UD=Voe{(x, y, 2)letz=1}

T (U_D=Vse{(x, v, 2)lx+z=-1}

a, =1 0
L pw(e@iaN=¢s(z)a|1 o 0|z,
Bo 00 1l

b) 7, (PH)=0.

v, (U)=V2{(x, y, Dla+z=1},

a, —1
Lpwe@ran=¢,@2|1 o 0|z,
# 10 0 71

Define the connectionmap @ : V,—¥, by O=(¥|U,) (¥, |U)™
Let us denote ' o
A4;=%,(40, B,=¥,(B), E,=¥,(F), F,=¥/(F)
py=a; +(a24+DK/7,, Q;=(a;~r)*+1 (:=0, 1),
K,=K, K,=1/K.
Then the following holds:
i) A4,=01, Po> 0)
Bo;(70<70_ao—Po>/Qo, To{l—Po(ao"To>}/Qo, 1"“70(70_‘10'—?0)/@@
Ey=(1, a4, 0)
Fo=(ro(ro=220)/Qy, 7oll=ag(ag~7)}/Qy, (ad+1)/Qp)
i) 4,=Q1,p, 0
B,=(1, a,, 0) .
E,=Gr(ry~a,—p /0y, 1:{1-p,(a,~r}/Qy, 1-1(ri—a,=p)/Qy)

Fi=(r,(ry—2a,)/Q,, 71{1“‘11(“1_7',1)}/01; (a_12+1)/Q1>
iii) o :V,—V, is obtained by

G- ()-an(i5)+ L)
Yo kA Y17P; Po:

Ly ==1o(K DL +7,(a;=7)(Kp+1) IR

Li,=rr; Ko+1)(X,+1DR

Lyy={~ro(K,+1)(ag~ro)la;(a; =) +1]~ rl(Ko+1)(a1—rl)[ao(ao ro)+1]}R
Lyp=r1,(Ko+1)[Qo+7o(c=7)(K+1)]R

R=(a+1)Ko/(aZ+1)(K,;+1)Q,Y,
where we identify («;, y,)=(=,, y,, 2, )€ V; because z;=1—=; holds (i=0, 1).

—4_
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§ 2 Poincaré maps
In this section, we assume that

2,<0, 7,>0, @,>0, 7,<0, K>0.

Definition 5. We induce a new coordinate system, say (u,v)-coordinate, to anvgular region
ZA; B; E;on Vj. Define ‘ : V
z;(u, D=u(od; +(1-)E)+(1-w)(B;+(1-v)F,)€V;, (4, 2)€L0,°0)X[0,1]
ZA,B,E;,={z;(u; v)|(y, v)EL0,=)xX[0, 11},
44;B, E;={z; (u, »)I(», »)€[0, 1]x[0, 1]}, (=0, 1).
Let ¢/ beaflowof &, (i=0,1). (See Fig.2.)
(@) Areturnmap for of, 7d: 44,BoEo— ¥, isdefined by
ry(@2)=0l(2), T=T(z)=inf{¢>01p (2)€EV,}.
(b) A return map for (p: tmg i LAgByEg\dA4AyByE,— V, is defined by l
o (D=0,(2), T=T(D=inf{t>01p (Der;}.
(¢) In consideration of the symmetry of ¢ , we define a return map 7y ZLAyBoEy,— ¥V, by
wi(x), x€44yB,E, o
"o @_:{ 75(x), zELAyBoEy\AdyBoE,.
(d) A return map for <p1_t, 7, 1L A/B,E,— V, is defined by
r (2)=p; (2), T=T(z)=inf{t>0lp;(2)EV}.
We can identify a point of V; with a complex number:
(z;, y,, z,)=(=,, yi)Exi-i-J—_l y,€C.
Then the return maps are represented as follows:

Theorem 2. Put Ao,=z (1,2,  By,=z0(0,2) | 4,=2,(x, 1), E, =z (4 0) and
2=(1,0, 1). We consider that z;(u, ») is a complex number (i=0,1) except the points
Aq, > Bo,> Ay, and E,,, which are considered vectors in R*®. The usual inner product in R?
is denoted by < , >. '
(@) 7y (zo(u, D)=, v) exp[(ag+/~1)z].

where w=u(v, )={<pf(B,,), & ~1}/{et(B,,~4y,), 4>

for t€{¢t>010x/3t>0 on {v}x(0, &)}.
() 75 (zo(u, D) =1x,(u, v)exp[(ay+V~1)¢]

- where u=u(v, )={pf(B,,), b)+1}/{pl(Bo,—4,,), 4

for t€{t>0104/8t<0 on {v}x(0, £)}. '
©  (x(u, ))=2,(u, v) expl—(a,+V~1)¢]

where »=0v(u, t)={o?(E},), W=1}KoT(E\,—4,), b

for ¢€{t>010v/3¢>0 an {u}x(0, )}.
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§ 3 Birth and Death of the Double Scrolil
(1) Birth of the double scroll

Observations of the double scroll bifurcations [2] indicate that the double scroll is born out
of a collision of a pair of Rdssler’s screw type attractors. We call such a phenomenon the birth
of the double scroll.

Now we assume that =,(4,E;) and ¢={(z, y): =1} have a point of intersection, say

A}, as in Fig. 3(b). Then, in order for a pair of screw type attractors to collide with each other,
it is necessary for the arc E:4{=7r1(/71—f1) to intersect the spiral B:'\C1 =0 'z,0(4,B,). There-
fore, the parameter value at which E/;fl{ and B/,\C1 touch each other, is an‘approximation of the
value at which the double scroll is born. This approximation turned out to be in an excellent

agreement with the observations of the double-scroil system using Runge-Kutta iterations.

Remark Note that an intersection of a screw type attractor and U, must be between the
spirals BC =y 1(B/I\Cl) and F/2’=§V1- 1(F/I\Cl) , excepf for a part included in 44BE. There-
fore the parameter value at which E,4{ and B/:C1 touch each other is before the birth of the
double scroll, while the parameter value at which E::fl{ and F:\C1 touch each other isy after
the birth of the double scroll. “ '

(2) Death of the double scroll

It is known that there is a saddle type closed orbit around the double scroil [1]. In the
double-scroll system, for instance, when Mo, Mp and T are fixed and S is increased, the distance
between the attractor and the saddle type closed orbit decreases, and they touch each other,
finally the attractor disappears [2]. We call such a phenomenon the death of the double scroll.

Let H" and A~ be the points of intersection of the saddle type closed orbit I' and the
plane U,, where H~ is the point which belongs to Z4BE . Put H;=¥%,(H") and Hi=
?,(B*) . Then H'==,(A)=0"zy@(H;). Define z=r;'0""'z,0 and W’ @H)={z€
LAB E{|z™(z)— H (n—o0)}, W @E)==, (W H). :

For the death of the double scroll, it is necessary for #*(H,") to intersect B/I\C’1=(l>'1 xow(m);
Therefore the parameter value at which #°(#;") and Bf,\Cl touch each other, is an approximation
of the value at which the double scroll dies. Since computation of W*(#;") is difficult, we
further approximate W°(#H;") by =,(d1uE1u0) , Where ‘

Hl+=:’£1 (ug, v0)

A1u0=qu1+(1—'uo)B1, E1u0=u0E1+(1—u0)F1.
Again, this is in an excellent agreement with the observation of the double-scroll system by the

Runge-Kutta iterations.



134

References

(1]

[4]
[5]

(6]

T. Matsumoto, L.O. Chua and M. Komuro, The double scroll, IEEE Trans. CAS, CAS-32,
797 —818 (1985). :

- T. Matsumoto, Bifurcations of the double scroll, Proceedings-of the 1985 CDC, IEEE, N.Y.

(1982).
A. Arneodo, P. Coullet and C. Tresser: Possible new strange attractors w1th sp1ra1 structure,

- Commun. Math. Phys. 79, 573 — 579 (1981)

R.W. Brockett, On conditions leading to chaos in feedback system, Proceedmgs of the 1982
CDC, IEEE, N.Y. (1985). ‘

C.T. Sparrow, Chaos in a three-dimensional single loop feedback system with a piecewise
linear feedback function, J. of Math. Analysis and its Applications 83, 275 — 291 (1981).
B. Uehleke and O.E. Rossler, Analytmal results on a chaotic piecewise-linear O.D.E,,
Z. Naturforsch, 39a, 342 — 348 (1984).

Acknowiedgement

We would like to thank Y. Takahashi (Tokyo University), R. Tokunaga (Waseda University),

K. Ayaki (Waseda University), K. Tokumasu (Waseda University) for many exciting discussions.



13:

Fig. 1

Fig. 2



(b)

(a)

Closed Orbit

=
‘@
=)
ol

(]
(%]

Fig. 3

(a)

Fig. 4



