0o00O0O0o0ooo
5740 19850 114-125 *
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Abstruct

In this note we prove that a solenoidal group
automorphism is persistent if and only if
topologically stable.

§ 0. Introduction.

In [3] Lewowicz introduced the notion of persisﬁency for a
homeomorphism of a compact connected Riemannian manifold. Then he
showed that every pseudo-Anosov map is persistent and by using this
notion, that is structurally stable under some conditions.

In this note we define as in [3] a persistency for a homeomorphism
of a compact metric space, and study a topological property of a
persistent homeomorphism.

The following is proved.

Theorem. let X be a solenocidal group, and let ¢ : X =+ X be

a group automorphism. Then the following (1) and (2) are equivalent;
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n (X, 0) is persistent,

(2) (X, o) is topologically stable.

In [1] Aoki proveé that (X, 0) is topologically stable if and
only if (X, 0) ‘has thezpseudo—orbit tracing property. Further,
there exist solenoidal aﬁtomorphisms with the pseudo-orbit tracing
property such that one of the following conditioﬁs holds:

(a)/ (X, 0) is not expansive,

(b) (X, 0) is not densely periodic.

Since every finite-dimensional torus is a solenoidal group, we

havekthe following corollary.

Corollary. Let T" bé the r—diménsional torus, and let O be
a group automorphism of T~ Then the following conditions are

mutually equivalent;

(i) 0 1is persistent,

(ii) 0 1is topologically stable,

(iﬁj 0 has the pseudo-orbit tracing property,
(iv) O 1is expansive, ‘ | |

(v) 0 is hyperbolic,

(vi) 0 is structﬁrally stable.

. . : : r .
The statement is true for a group automorphism of If; where R is

the r—dimensionalrvector space (cf. [4]).

§ 1. Definitions and Examples.




Let f : X > X be a homeomorphism of a compact metric space
X, d). We denote by 2%”(X): the,$6t,0f all homeomorphisms of X
with metric d(f, g) = max{d(f(x), g(x)) : x € X} (f, g € FX)).
We say that an f-invariant §ubsetr K(:_X is persistent if for each
€ > 0 there is §=? 0 with the;o;operty that for every g € H (X)
with d(f, g) <_5‘ and for every x € K, there is y € X such that
d(fn(x); gn(y)) <€ for every n € Z. When K = X we say that f
is persistent. We remark thaf.this,notion is independent of the

metric for X. We call f to be topologically stable if for each

€ >0 there is 0 > 0 with the property that for every g € # (X)
with d(f, g) < ¢ thore is a continuous map h : X + X such that

f oh ; hog and d(h, id) <e. If X ‘is a compact manifold and
e>0 .is small enough, then d(h, id) < € implies that h maps X
onto itself. Therefore it is easy to see that every topologically
stable homeomorphism of‘avcompaot manifold is persistent. In general

case there is an example that is not true.

Example 1. The finite set X = {0, 1} is fixed with the

discrete topology for i € Z. Consider -X = Hi:—:Xi’ equipped with
the product topology, aod the shift homeomorphism 0 : X + X defined
by (O(x))j = xj+1 for all j e Z. Le; d be. the metric on X
defined by d(x, y) = 27" 4f n ‘is the largest natural number with
xj ='yj for all |j| < n, aod d(x, y) =1 if Xq £ Yo- It is well
known that o is topologically stable. Now we show that ¢ is not

persistent. Put € = 1/4 and fix any 6 > 0. Then there is n > 0

such that 1/2n < §. Define ge F(X) by (g(x))j = Xy if j < -n
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or j>m, (8(x)); =x; if -n s i<n, and (g(x)) = x.
2n+] :
)

Obviously, d(g,.0) <8 and g y for all :y € X. Consider

e + . . . E
x' = (."v 05 0, 19 Os 0, ]-, 09 1, O’ 1"0’ Oa 19 0’ 0’ "‘) G X.
Then for all y € X with d(x', y) <€, it is easy to see that

d(02n+1(x'),.gzn+l(y))uz €. Therefore ¢ is not persistent.

Let (X, d) and f .be as above. Given ¢ > 0, a sequence

{Xj}j=2 (-» 2a <b s® is called a G&-pseudo-orbit of 'f if

d(f(xj), xj+1)v< § for asjsb-1.  Given € > 0, a sequence

{Xj}j=z is said to be e€-traced by a point y in X if
d(fJ(y), xj) <eg for a s jsb. Wesay that f has the pseudo-

orbit tracing property (POTP) if for each € > 0 there is’ § > 0- such

that every O0-pseudo-orbit of f. can be €-traced by seme point in X.
We say that ‘X is solenoidal if X is a compact connected |
finite~dimensional metric abelian-group.
Fipnally, we give two examples of persistent homeomorphisms of

compact totally disconnected metric spaces.

Example 2. Let X be the Cantor set inv [0, 1] : i. e. X is

the set of the numbers x € [0, 1] with x = 3—1ai + 3_2a2 4+ oo (ai

=0 or 2 for iz1). ‘For r z 1, we call the set' X/ (3774,

3—r(i+1)] (0 =1 = 3r-1) a Cantor subinterval with rank r if

XN (3774, 37T(i+1)) # ¢ (see [5]). - We denote by I(i, r) (i.=1,
2, 3, see 2r), the i-th Cantor subinterval with rank r from the

left. We show that if f'e #(X) is an isometry, then - £ is
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persistent. To do this, for any € >0, fix r > 0 with 37F <e.
Choose 0 < & < 3% such that if d(f, g) <8 (ge #X)), then

ace!

, gwl) < 37", For every x € X and every j € Z, define

ij € {1, 2, 3, eee | 2r}' by fj(x) € I(ij, r). | Obviously,’

g(x) G,I(il, r). Since f is an isometry, d(fz(x), fg(x)) < 37°
and so fg(x) G-I(iz,~r). On the other hand, we have that

d(fg(x), gz(x)) < 377 (since d(f, g) < ¢8), and so gz(x) € I(iz, r):
i. e. -d(fz(x), gz(x)) <3 T <e, . Continuing in this fashion, we can

see that Ax), X < g for al n 2z 0. similar way shows
hat d(£7(x), g (x)) for all 0. A simil h

that d(fn(x), gn(x)) < e for all n 0. Thus f  is persistent.

‘Example 3. Let (X, d) be a compact totally disconnected
metric group, and let 0 : X - X be a group automorphism. The group
operation is written by multiplicative form. - We show that if (X, O)‘
has zero-topological entropy, then (X, 0) is persistent. It is
known that every group automorphism of X has the POTP (see
Application 2 of [2]). Since (X, 0) -has zero-topological entropy,
X contains a sequence X = X0 > XlD X2 - *°+ of completely
O-invariant normal subgroups such that | Xn is trivial and for every
nz0, X/Xk is a finite group (cf. Lemma 14 of [2]). For each
€ > 0, there is k > 0 such that diam(Xk) < €/5. : Since X/Xk‘ is
finite, there is an integer Qk >0 such that” X = | &kll.Xk ‘(hi e X)

i=1 i
and h X N thk'= & for 1 si# js Qk. Thus we have that

A

d(hyX, hX) = inf{d(a, b) : a € h.X , b e thk] >0 if 1 Si# j

lk (since each hixk is open and closed in X). Let us put Gk

]

\%
o

min{€/s, min{d(hiXk, thk) :1si#3s Rk}}. Choose  6 = G(Sk)
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as in the definition of the POTP of 0 and fix f € #(X) with

n © .
d(o, f) < 8. Then for every x € X, {f (x)}n=_oo is a O-pseudo-orbit
of 0. Since 0 has the POTP, there is a point y € X such that
d(On(y), fn(x)) < Gk for ne€Z. -~ Putting n'=0 gives d(x, y)
< 6k and so xy_1 € Xk (the metric d is translation invariant).

Hence, we get that d(a™(x), o"(y)) < €/ for n € Z since O(Xk) =

Xk' Therefore we have that
d(£7(x), 0"(x)) s d(£7(x), d"(y)) + d(d"(y), 0"(x)) <€

for all ne€ Z, and so 0 : X » X is persistent.

§ 2. Proof of Theorem.

Hereafter X 1is an r-dimensional solenoidal group with the
invariant metric d and O is a group automorphism of X. We write
the group operation by additive form. First of all we prepafe lemmas

that we need. The following lemmas 1 and 2 are known (see § 1, [1]).

Lemma 1.  There exist the‘r—dimensional vector space ZR{ a
group automorphism Y :'Rr->iR2 a group homomorphiém ¥ : R*"> X and a
totally disconnected subgroup of X such that

() Voy=00o1,

() X =WR)+F ‘and $(R") = X,

@) VR NF = ZT

(iv) there is a closed neighbourhood U of 0 in R' so that

Y:U>X is an‘into homeomorphism, Y(U) N F = {0} and y(U) + F is
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a closed neighbourhood of O in X (we shall write ¥(U) @ F such a

neighbourhood Y(U) + F).

We call (]Rr, Y)_ the lifting system of (X, 0).

Lemma 2. Let> F be as in Lemma 1. Then F contains
subgroup;s f’+, F an& .H ~such that

(1) o(H) = H,

(ii) FFoofto .o n.ﬂ;go“(F*) = {0},

({i) F Do lF DeesD N n=°(;o"n(F') = {0},

(iv). OF—/F—- and F+/0i:-+ are finite,

(v) F=F oF oH.
The following lemma is well known.

Lemma 3. Let h : R'+ R be a continuous map, and let € > 0

be any real number. 1f ||h(v) - v||]Rr < € for all v e€ ]Rr, then h

is a surjection. Here |

|]Rr denotes a usual norm of R

Proof. Assuming that R'\ h(R') # ¢, we derive a
contradiction. | If we take ‘vu e RT\ h(Rr), then u ¢ h(RY). Hence
we may assume that O '3 h(]Rr).. For, put h'(y) = h(v+u) - u for
veR. Then h' : R'» R' is a Jcontinuous map such that O ¢ h'(]Rr)
and Hh'(v) - vH]Rr < g for 'V;E R~ Let Ht(v) = (1-t)v + t;h(v)
for 0=t <1l and v e ]Rr. Then Ht : ]Rr—*-]Rr is a homotopy from

h to id]Rr. Define

P ) = B g | o



for m >0, 0=t =1 and .v e R" with Ht(mv) # 0, then for a
1)

sufficiently large m' > O, Fém ),; Sr—1-+ S.r_1 (0=t 1) is a

1]
homotopy from F%m ) to idgr-1 (since ||h(v) - V|LRI < & for
\ EﬁRr). Since degree is homotopy iﬁ?ariént, we have fhat
. v
deg(F(m )) =1, On the other hand, since h(0) # 0, if we choose -
1

1" _ ”

m" > 0 small enough, then Fim )(Sr—l)iz sT1 and so deg(Fgm )) = 0.

| (m")

This is contfadictory to the fact that Fl is hdmo£dbic to F§m").
Now we give a proof of Theorem. Tt was showed in [1] that
(X, 0) is topologically stable if and only if the lifting system
(ﬂf; Y) of (X, 0) is hyperbolic (see Theorems 1 and 2 of [1]).
Hence, to see that (1) » (2), assuming that (If; Y) is not
hyperbolic, we pfove that (X, 0) is not persisteﬁﬁ.
As usual R'=E° @ E€ @ E'  where ES, E¢ and EY are the -

subspaces corresponding to the eigenvalues of Yy with modulus less

than one, equal to one and greater than one respectively. Let s

and be some norms on E° and Eg respectively. Since
E€ # {0}, by using Jordan's normal form in the real field for (ES, v),
we get a finite direct sum EC = E0 g .evs @ Ek  of the subspaces ECi

satisfying the following conditions; for O £ i £ k, the dimension of

E1 is 1 or 2, and

Ci . pCi ;o _ cs
where Y; E'1 > E"1 is an isometry under -some norm l‘lc of . E"1
’ i



and each Ii : E¢1 » g1-1 is either a zero map or a map corresponding

to the identity matrix. Define a norm I'Ic of E~ by
|V|C = maX{|V?_|Ci :0siskl (v= W© 4 ee 4 W e ei=15E‘,:i).’
Clearly"
vl = maX{lVSIS, |VC|«C.. 1vu|u} (v=v"+vi+veRH

is equivalent to the usual norm of R If B(a) = {v e R* : ||v]] s o}

for a > O, then theré is a, > 0 such that w(B(al)) @ F is a closed

1
neighbourhood of 0 in X (by Lemma 1 (iv)). For x = X; + X%, with

X; € w(B(al)) and Xy e'F, put
o(x) = maxtay, max{ [V 7Gx, dxy, OO}

for X by

and define a metric d1
p(x, y) if x -y € U(B(a,)) © F
d(x, y) = { » 1
al otherwise.

The metric d1 is compatible with the original topology of X and in
particular d,(¥(v), 0) = vl for v e B(a;). For a € (0, o), we

define F(a) = {x € F : dl(x, 0) s a}. Since
F'= N EHe N 1PFE) en
n=-1 "' n=-1

is an opén subgroup of F (by Lemma 2), there is B > 0 (B < %1/y)
such that F(B) C F'. Here we may assume that the number B is
chosen so that B(B) C r]n=_iyn(B(a1)). Put E = E0O and E' = ¢!

® *++ o E°k ¢ E° o E. For any v e R'=E e E', let v = (vl, Vos *

-9
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oo vr) be: the representation by components with respect to the
fundamental vector of R'=EeE'. Put €= 6/8 and fix any § > 0O
(8 < g). Let ¢ : Rf» RY be the time-one map for the vector field

(*¥) given by

A

i=sr,

(*) | Gi = G'X(vl) cee X(vr)vi for 1

where X : R +R is a function of class ¢’ such that 0 < x(t) <1
(B/2 < |t| < 25/3), x(t) =1 (Jt] <B/y) and x(t) =0 (2B/3 = |t]),
‘and 68' > 0 is a real number chosen such that || &(v) —<v|l < ¢ for
veR. Let d be a map from W(B(al)) @& F onto itself defined by
W) + £ if £ ¢ F

$(x) = : |
Y(d(v)) + £ if f e F'
for x =yY(v) + f e w(B(al)) ® F. We shall denote again by ¢ the
extension on X as $(x) = x for x ¢ w(B(ul))’e F. Define a map
g:X>X by g(x)=0¢o00(x) (xe€X). Obviously,.dl(c, g) < & and
g€ #(X). Consider x' = ¥(u) where u= (B/4, 0, 0, +¢s , 0) €

EeE' = R'. Then we get

4,(0"(x"), 0) = ;WY (), 0) = [V (W] = B/4

for all n.z 0., For any

yeW(x') = (z€X: d)(z, x') 5 €) = U(BE)) @ F(e) + X',

there are w € B(e) and f € F(e) such that y = ¢(w + u) + £, It is

clear that B/8 < IIWE(W +u)| < 38/8, where  m_ : R'+ E denotes a

E

projection along complementary subspace E': ~Hence there is the
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smallest integer “ng 2.0  such that 36/8 < || (¢y)"O(w +u)]] < a, or
d;(c"0(£), . 0) > 38/g (6"0(f) € F) holds. Since. wB(a'l) is-an’
isometry, we can‘eagily‘obtain that :dl(gno(y), 0 > 33/8, and so
dl(ono(x'), gno(y)) > B/8 = €. Therefore (X, o) is not persistent.

To see that (2) - (1), we show that if (Bf; Y) is hyperbolic,
then (X, 0) iS'topolggically stable and a,continuoﬁs map h : X > X
is onto. To get the' conclusion, it is enough to check' that a
continuous map h constructed in the proof of the statement (B) - (A)
of [1] (see pp. 133-135 and Correction) is onto. = This is sketched
as follows (see [1] for details).

There is a 1-to-1 group homomorphism w* ::Rr/Ker¢,+vaRr). In
[1]’:Rr/Ker¢’ is denoted By the symbol V1 ) V2. Remark that Ker
c z' by Lemma 1 (tﬁ). Let 30 -denoﬁe fhe metric induced on V1 ® V2
by the metric- d0 of 'R'. We note that d0 is equivalent to the
Euclidean metric on' R’ (see [1, p. 123]). Let ¥ : VyeV, > vy eV,
denote the map induced by y. Obviously, w* oYy =0c¢ w*. Since Y
is hyperbolic, Y is tdpologically stable (see [1, pp. 131-132] or [4]).
For any € > 0 (very small), iet 8§ > 0 be the number with the
property of topological stability. Take and fix any f € #(X) with
dl(f, o) < 8. Then there is a seqﬁence tfn}n=g<222%”(X) such that
fn(wCRr))= wCRr) (n 2 0), dl(fn, o) < § for nr large enough and
fn + f (p +> @), Fixvgn integer n such that dl(fn’ 0) < §, and put

o %1 : :
fn(v) =1 e V,. Then fn : V1 ® V2 >

1 2
2“ is a homeomorphism and 30(fﬁ(v), Y(v)) <8 for v e V, e v,.

, s
° fn oY (v) for velV
VleV
So there is a continuous map En-: V1 eV, >V, @V, such that

Hn ° fh =Y o Hh and>‘ao(ﬁn(v), v) <e (v'e V1 ® V2). Since the
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natural projectiong_p»:ﬁR?f+ V1 e-V2 is a covering projection, there
is a lifting E : R' > R of Hn such that do(ﬁn(v), v) <€ for

v € R. Hence by Lemma 3, h » maps-flRr onto itself, and so

h(V ev)-V1$V2 (31nce h Op—pohn),' - Put

~ e
h =90 oh oy 1. Then for an arbltrarlly large n, we get that

h o fn =0 o hn on wcm ), -d (h (x), x) <e (x € W(RY)),
hn(WCRr))= wﬁkr), and hn 1squn1form1y continuous (see [1,

Correction]). Thus, hh is extended to -a surjective continuous map of

X since w(]Rr) = X by Lemma 1 (ii). We shall denote it by the same
symbol. Since {hn} converges uniformly to some continuous map h
of X (see;[l, Correction]), it follows that h.e £ =0 o h on X,

dl(h’ id) £ € and h(X) = X. The proof is complete.
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