ON THE CRITICAL PHENOMENA FOR PIECEWISE LINEAR TRANSFORMATIONS

Makoto Mori 4 1

ABSTRACT

We will determine the decay rate of correlation for piecewise linear transformations and as an application, we will consider two critical phenomena of dynamical systems.

1. INTRODUCTION

We will determine the decay rate of correlation for a certain class of piecewise linear transformations explicitly in terms of Fredholm determinant (cf.[10], for more general cases, cf. [11],[12]), and apply it to the critical phenomena in dynamical systems.

We will consider a power series $\overline{\Phi}$, called the Fredholm determinant associated with a piecewise linear transformation F, whose definition will be given in § 3, and we call solutions of $\overline{\Phi}(1/z)=0$ Fredholm eigenvalues. By τ_1 , τ_2 , we denote the greatest and the second greatest in modulus (τ_1 = the slope τ of τ). Our main theorem is stated as follows:

Theorem 1-1. Suppose that $1/\lambda < 1$. Then there exists an invariant measure $\mathcal P$ which is absolutely continuous with the Lebesgue measure and the dynamical system ([0,1], $\mathcal P$,F) is mixing. Moreover, for any pair of a function f with bounded variation and an integrable function g, we get for any $\epsilon > 0$

$$\lim_{n\to\infty} ((\eta + \varepsilon)/\pi)^{-n} \left\{ \int f(x) g(F^n x) dy - \int f dy \left\{ g dy \right\} = 0,$$
 (1.1)

where

$$\gamma = \begin{cases}
\gamma & \text{if } \overline{\Phi}'(1/\gamma) = 0, \\
\max \{|\gamma_2|, 1\} & \text{otherwise,}
\end{cases}$$
(1.2)

and F^n is the n-fold iterate of F:

$$F^{n}x = \begin{cases} x & n=0, \\ F(F^{n-1}x) & n \ge 1. \end{cases}$$
 (1.3)

(on the Fredholm determinant, cf. [13], [16]. Some related topics on the decay rate of correlation can be found in [2], [6].)

As an application of Theorem 1-1, we show two critical phenomena in dynamical systems. One is the case of β -transformations when $\lambda \downarrow 1$. This is the phase transition from disordered motion to ordered motion. The other is the unimodal linear transformations when $\lambda \downarrow \sqrt{2}$. This is the phase transition from mixing state to ergodic but not mixing state. Our second theorem is stated as follows:

Theorem 1-2. i) (β -transformations) Let N be the first return time of point 1 to the interval (1/ λ ,1]:

$$F^{i}(1) \notin (1/\lambda, 1]$$
 for $1 \le i \le N-1$,
$$F^{N}(1) \in (1/\lambda, 1]. \tag{1.4}$$

Then the Fredholm eigenvalues around 1 have the following asymptotic form:

where

$$\beta = \frac{1}{1} \{ n\pi + \text{small order} \} \quad n = 0, \pm 1 \pm 2, \dots$$
 (1.6)

as $\lambda\downarrow 1$. The second greatest Fredholm eigenvalue is the case $n=\pm 1$, and so we may say that the decay rate of the correlation

$$\mathcal{N}/_{\lambda} = \exp\left\{-\frac{1}{2N} \left(\frac{\pi}{\log N}\right)^2 + \text{ small order}\right\}, \tag{1.7}$$

as 211.

ii) (unimodal linear transformations) The argument of the second greatest Fredholm eigenvalue equals π and the decay rate of the correlation

$$\eta_{\lambda} = 2 \lambda^{-2} + \text{small order},$$
 (1.8)

25 21-12.

This theorem shows:

i) for β -transformation whose slope is sufficiently close to 1, the series of the correlation

$$\int f(x) g(F^{n}x) dy - \int f dy \int g dy$$

for a pair of a function f with bounded variation and an integrable function g decreases approximately in the order $\exp\left\{-\frac{1}{2N}\left(\frac{\pi}{\log N}\right)^2\right\}$ with the frequency of modulation approximately 1/N,

ii) for unimodal linear transformation whose slope is sufficiently close to $\sqrt{2}$ ($\lambda > \sqrt{2}$), the series of the correlation decreases in the order $2\lambda^{-2}$ with the frequency of the modulation $\frac{1}{2}$.

Those results are the generalization of [9] and [15].

Let us state the conditions imposed on the mapping \mathbb{F} . Let \mathbb{A} be a constant $(\mathbb{A} > 1)$, which we call the slope of the mapping \mathbb{F} , and we denote subintervals $(i) = [i/\lambda, (i+1)/\lambda)$ $(0 \le i \le k-1)$ and $(k) = [k/\lambda, 1]$, where k is the maximum integer which does not exceed λ . On each subinterval (i) $(0 \le i \le k-1)$

$$F'(x) = \lambda$$
 (we denote sgn $i = +1$), (1.9)

or

$$F'(x) = -\lambda$$
 (we denote $sgn i = -1$), (1.10)

and

$$F((i)) = (0,1],$$
 (1.11)

and on the subinterval (k)

$$F'(x)=\lambda$$
 (that is, sgn k= +1), (1.12)

$$\min_{\mathbf{x} \in (\mathbf{k})} F(\mathbf{x}) = 0. \tag{1.13}$$

2. ALPHABETS AND WORDS

Put $A = \{0,1,...,k\}$, and we call each element of the set A an alphabet. We call a finite sequence of alphabets $w = a_1...a_n$ a word and we define

$$(w) = \left\{ x \in [0,1] : F^{i-1}(x) \in (a_i), 1 \le i \le n \right\}, \tag{2.1}$$

$$|w| = n, \qquad (2.2)$$

and

$$\operatorname{sgn} W = \prod_{i=1}^{n} \operatorname{sgn} a_{i}. \tag{2.3}$$

We consider a formal symbol ϕ which we call an empty word and we define

$$(\phi) = [0,1]$$
, (2.4)

$$|\phi| = 0, \tag{2.5}$$

and

$$sgn \phi = +1. \tag{2.6}$$

For any word w, we define

$$w \phi = \phi w = w. \tag{2.7}$$

For $x \in [0,1]$, let (a_i^x) be the subinterval which contains $F^{i-1}(x)$ and we call the infinite sequence of alphabets $a_1^x a_2^x \dots$ the expansion of x. The expansion of 1 plays an essential role throughout this paper. We call a word w admissible if $(w) \neq \emptyset$ and an infinite sequence of alphabets $a_1 a_2 \dots (a_i \in A)$ admissible

$$(a_1...a_n) \neq \phi$$
 for any n.

3. FREDHOLM DETERMINANT

Definition 3-1. Let

$$b_{n} = \begin{cases} a_{n}^{1} & \text{if } sgn \ a_{n}^{1} = sgn \ a_{1}^{1} \dots a_{n-1}^{1} = +1, \\ -a_{n}^{1} & \text{if } sgn \ a_{n}^{1} = +1 \ and \ sgn \ a_{1}^{1} \dots a_{n-1}^{1} = -1, \end{cases}$$

$$1+a_{n}^{1} & \text{if } sgn \ a_{n}^{1} = -1 \ and \ sgn \ a_{1}^{1} \dots a_{n-1}^{1} = +1,$$

$$-1-a_{n}^{1} & \text{if } sgn \ a_{n}^{1} = sgn \ a_{1}^{1} \dots a_{n-1}^{1} = -1.$$

$$(3.1)$$

Then we define

$$\Phi(z) = 1 - \sum_{n=1}^{\infty} b_n z^n,$$
 (3.2)

and we call $\Phi(z)$ the Fredholm determinant associated with the mapping F. We call z which satisfy $\Phi(1/z)=0$ a Fredholm eigenvalue of the mapping F.

Definition 3-2. For a point $x \in [0,1]$, we define:

i) w(n,x) is the number of words w such that |w| = n and $w = a_1^x a_2^x \dots$ is admissible, and we denote its generating function

$$w(z;x) = \sum_{n=0}^{\infty} w(n,x) z^{n}$$
 (3.3)

ii)
$$\gamma(n,x) = \begin{cases} 1 & \text{if sgn } a_1^1 \dots a_n^1 = +1 \text{ and} \\ a_1^1 \dots a_n^1 a_1^x a_2^x \dots & \text{is admissible,} \end{cases}$$
 (3.4)

$$\begin{cases} -1 & \text{if sgn } a_1^1 \dots a_n^1 = -1 \text{ and} \\ a_1^1 \dots a_n^1 a_1^x a_2^x \dots & \text{is not admissible,} \end{cases}$$

$$0 & \text{otherwise,}$$

and we denote its generating function

$$\chi(z;x) = \sum_{n=0}^{\infty} \chi(n,x) z^n, \qquad (3.5)$$

where

$$\chi(0,x)=1. \tag{3.6}$$

Theorem 3-1.

$$\Psi(z;x) = \chi(z;x)/\Phi(z). \tag{3.7}$$

Proof. Let s(z;x) be the generating function of

$$s(n,x)=$$
 the number of admissible words $a_1...a_n$ such that $a_1=k$.

Then by a renewal equation for s(z;x) and by

$$w(z;x) = \sum_{n=0}^{1/2} (kz)^n s(z;x) = (1-kz)^{-1} s(z;x),$$
 (3.9)

we get the proof.

Theorem 3-2.
$$\gamma_1 = \lambda$$
. (3.10)

Proof. Since

$$F(x) = \begin{cases} \lambda(x - a_1^x \ \lambda^{-1}) & \text{if } sgn \ a_1^x = +1, \\ -\lambda(x - a_1^x \ \lambda^{-1}) & \text{if } sgn \ a_1^x = -1, \end{cases}$$
 (3.11)

we get

$$x = (a_1^x + \varepsilon^x) \lambda^{-1} + sgn a_1^x F(x) \lambda^{-1},$$
 (3.12)

where

$$\mathbf{E}^{\mathbf{X}} = \begin{cases} 0 & \text{if } \operatorname{sgn} a_{1}^{\mathbf{X}} = +1, \\ 1 & \text{if } \operatorname{sgn} a_{1}^{\mathbf{X}} = -1. \end{cases}$$
 (3.13)

Repeating this and taking x=1, we get $\Phi(1/\chi)=0$. On the other hand, the topological entropy of the mapping F equals $\log |\gamma_1|$ and it is not greater than $\log \chi$. This proves the theorem.

4. THE DECAY OF CORRELATION

Theorem 4-1. Assume that $\eta/\lambda < 1$. Let

$$f(x) = -\lambda (\Phi'(1/\lambda))^{-1} \chi(1/\lambda;x).$$
 (4.1)

- i) Then β is the density of the invariant probability measure for the mapping F.
- ii) The singular part of w(z;x) at $z=1/\lambda$ equals $\int f(x)/(1-\lambda z)$.

Proof. The proof of i) is almost the same as in [4]. Thus we omit this. By Theorem 3-1, 3-2 and by the assumption that $\eta/\chi < 1$, $z=1/\chi$ is the singularity of first order of w(z;x) and

$$\lim_{z \uparrow 1} (1 - \lambda z) w(z; x) = \lim_{z \uparrow 1} (1 - \lambda z) \underline{\Phi}(z)^{-1} \chi(z; x) = \beta(x). \tag{4.2}$$

This proves the theorem.

By $\mathcal P$ we denote the probability measure with its density $\mathcal P$. Now we will prove Theorem 1-1.

Lemma 4-2. Assume that $\eta/\lambda < 1$. Then the dynamical system ([0,1], ρ ,F) is mixing.

Proof. By (w), we denote the indicator function of the subinterval w. Then

$$\sum_{n \geq |w|} z^n \int (w)(x) g(F^n x) dy = \sum_{v} (z/\lambda)^{|wv|} \int g(x) f(wvx) dx \qquad (4.3)$$

$$= -\lambda (\Phi'(1/\lambda))^{-1} \int g(x) \sum_{v} (z/\lambda)^{|wv|} \chi(1/\lambda; wvx) dx$$

$$= -\lambda (\Phi'(1/\lambda))^{-1} \int g(x) G^w(z) s(z/\lambda; x) dx,$$

where

$$G^{W}(z) = \sum_{m=0}^{\infty} \lambda^{-m} \operatorname{sgn} a_{1}^{1} \cdots a_{m}^{1} \sum_{v}^{1} (z/\lambda)^{|wv|}, \qquad (4.4)$$

and $\sum_{v=0}^{\infty} a_1 + a_2 + a_3 + a_n$ is the sum over all words $v = a_1 \cdot a_n$ such that

- i) ww is admissible.
- ii) if $a_i = k$, then

$$F^{|w|+i-1}(w a_1...a_{i-1}) \gtrsim (a_i),$$
 (4.5)

iii) for any
$$x \in (wv)$$
 and $y \in (a_{m+1}^1 ... a_{m+|wv|}^1)$, $y > x$, (4.6)

$$iv) \qquad F^{\mathsf{lwv}\mathsf{l}}(\mathsf{wv}) \supset (\mathsf{k}). \tag{4.7}$$

On the other hand, substituting g=1 in (4.3), we get

$$\int_{(w)} dy = \lim_{z \uparrow 1} (1-z) \sum_{n \ge |w|} z^n \int_{(w)} (w)(x) dy$$

$$= -\lambda (\Phi'(1/\lambda))^{-1} G^{w}(1) (1-k/\lambda). \tag{4.8}$$

Hence, we get

$$\lim_{z \uparrow 1} (1-z) \sum_{n \ge |w|} z^n \int (w)(x) g(F^n x) dy$$

$$= \int (w) dy \int g dy. \qquad (4.9)$$

Since the set of words is a generator, this proves the lemma.

Theorem 4-3. Suppose that $\eta_{\lambda} < 1$. Then for any pair of a function with bounded variation f and an integrable function g, we get for any $\varepsilon > 0$

$$\lim_{n\to\infty} ((\gamma + \epsilon)/\chi)^{-n} \left\{ \int f(x) g(F^n x) dy - \int f dy \int g dy \right\} = 0. \tag{4.10}$$

Proof. Suppose that $z=\gamma$ is the zero point of first order of $\Phi(1/z)$. Then

$$\lim_{z \to \lambda/\eta} (1 - \eta z/\lambda) \sum_{n \ge |w|} z^n \int (w)(x) g(F^n x) dy$$

$$= -\lambda (\Phi'(1/\lambda))^{-1} G^w(1/\eta) \int g(x)(1-k/\lambda) (-\eta (\Phi'(1/\eta))^{-1})$$

$$/(1/\eta; x) dx. \tag{4.11}$$

Hence there exists a constant K₁ such that

$$\lim_{z \to \mathcal{N}_{\eta}} \left| (1 - \eta z/\chi) \sum_{n \ge |w|} z^n \right| \int (w)(x) g(F^n x) d\mathcal{P} \le K_1 \eta^{-|w|} \int |g| dx. \tag{4.12}$$

On the other hand,

$$\frac{|w|}{n=0} \left| (\lambda/\eta)^n \left| (w)(x) g(F^n x) dy \right| \\
\leq (\lambda/\eta)^{|w|} |w| \int (w)(x) \left\{ |w|^{-1} \frac{|w|}{n=0} |g(F^n x)| \right\} dy. \tag{4.13}$$

Hence by Lemma 4-2, there exists a constant K_2 such that

$$\sum_{n=0}^{|w|} |(\lambda/\eta)^n \quad \int (w)(x) g(F^n x) d\mu | \leq K_2 \eta^{-|w|} \int |g| dx. \tag{4.14}$$

For a function f with bounded variation, there exists a decomposition

$$f(x) = \sum_{w} \langle w \rangle(x)$$
 (4.15)

such that for any 0 < 5 < 1

$$\sum |\alpha| \gamma^{|w|} < \infty$$
. (4.16)

Combining (4.12), (4.14) and (4.16) with $\mathcal{T} = (\gamma + \xi)/\gamma$, we get the proof.

5. CRITICAL PHENOMENA

Among the mappings which we considered in this paper, there are two critical states. One is the case when $\lambda \sqrt{1}$ for β -transformations and the other is the case when $\lambda \sqrt{2}$ for unimodal linear transformations.

Theorem 5-1. i) For a β -transformation F, that is,

$$F(x) = \lambda x \quad (mod. 1), \tag{5.1}$$

the greatest Fredholm eigenvalues are of the asymptotic form as $\lambda \downarrow 1$:

$$e^{(3.2)}$$

where

$$\alpha' = \frac{1}{N} \left(\log N - \log \log N + \frac{\log \log N}{\log N} + \text{small order} \right)$$
(5.3)

$$\beta = \frac{1}{N} (n\pi + (-1)^{n-1} \frac{n\pi}{\log N} + \text{small order}) \quad n = 0, \pm 1, \pm 2, \dots$$
 (5.4)

The greatest Fredholm eigenvalue(= the slope λ) is the case when n=0 and the second Fredholm eigenvalue are the case $n=\pm 1$. The decay rate of correlation $1/\lambda$ is asymptotically of the form:

$$\gamma_{\lambda} = \exp\left\{-\frac{1}{2N} \left(\frac{\pi}{\log N}\right)^2 + \text{ small order}\right\}. \tag{5.5}$$

Here,

$$N=\min \{n \ge 1: F^n(1) \in (1/\chi, 1)\}$$
 (5.6)

and it is of the asymptotic form:

$$N = -\frac{\log \log \lambda}{\log} \left[1 + \frac{1}{2 \log \log \lambda} \left\{ \frac{\log(-\log \log \lambda)}{\log \log \lambda} \right\}^2 +$$
small order \right\}. (5.7)

ii) For a unimodal linear transformation F, that is,

$$F(x) = \begin{cases} -\lambda x + 1 & \text{if } x \in [0, 1/\lambda), \\ \lambda x - 1 & \text{if } x \in [1/\lambda, 1], \end{cases}$$
 (5.8)

there exists a constant g and the greatest Fredholm eigenvalue is asymptotically of the form:

$$\lambda = 2 \exp 2^{N/2} \text{ (g+ small order)}, \tag{5.9}$$

and the second Fredholm eigenvalue is asymptotically of the form:

$$-\gamma = -2 \exp 2^{N/2} (-g + small order).$$
 (5.10)

Hence

$$\eta/\chi = 2 \lambda^{-2} + \text{small order}.$$
 (5.11)

The proof follows by the inverse function theorem.

REFERENCES

- [1] Bowen, R.: Bernoulli maps of the interval, Israel J. Math., vol 28 (1977), 161-168.
- [2] Hofbauer, F. and Keller, G.: Zeta-functions and transferoperators for piecewise linear transformations, preprint.
- [3] Ionescu Tulcea, C.T. and Marinescu, G.: Théoreie ergodique pour des classes d'operations non completement contonues, Annals of Math., vol 47 (1946), 140-147.
- [4] Ito,Sh., Nakada,H. and Tanaka,S.: Unimodal linear transformations and chaos I,II, Tokyo J. Math., vol 2 (1979), 221-259.
- [5] Ito,Sh. and Takahashi,Y.: Markov subshifts and realization of β -transformations, J. Math. Soc. Japan, vol 26 (1974), 33-35.
- [6] Keller,G.: On the rate of convergence to equilibrium in one dimensional systems, preprint.
- [7] Lasota, A. and Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations, Trans.A.M.S., vol 186 (1973), 481-488.
- [8] Marinari, E., Parisi, G., Ruelle, D. and Windey, P.: On the interpretation of 1/f noise, CMP. 89 (1983), 1-12.
- [9] Mori, H.: Evolution of chaos and power spectra in one-dimensional maps, Nonlinear Phenomena in Chemical Dynamics, Springer Series in Synergetics, vol 12 (1981), 88-94.

- (10) Mori, M.: The extension of Sarkovskii's results and the topological entropy in unimodal transformations, Tokyo J. Math., vol 4 (1981), 133-152.
- [11] Mori, M.: On the decay of correlation for piecewise monotonic mappings I, II, to appear in Tokyo J. Math.
- [12] Mori, M.: Fredholm Determinant of Piecewise linear transformations, preparing.
- [13] Oono, Y. and Takahashi, Y.: Chaos, external noise and Fredholm theory, Prog. Theor. Physics 63, 1804-1907.
- [14] Rousseau-Egele, J.: Un théoreme dela limite locale pour une classe de transformations dilatantes et monotones par morceaux, preprint.
- (15) Shigematsu, H. Mori, H., Yoshida, T. and Okamoto, H.: Analytic study of power spectra of the tent maps near band-splitting transitions, J. Stat. Physics, vol 30 (1980), 649-679.
- [16] Takahashi, Y.: Fredholm determinant of unimodal linear maps,
 Sci. Paper Coll. Gen. Educ. Univ. Tokyo, vol 31 (1981), 61-87.
- [17] Takahashi, Y.: Shift orbit basis and realization of one dimensional maps, Osaka J. Math. vol 20 (1983), 599-629.
- [18] Takahashi, Y.: Phase transitions which exhibits 1/ω-spectrum: a rigorous results, IPPJ 689, Proc. Workshop of the US-Japan on Statistical Plasma Physics (1984), 96-103.
- [19] Takahashi,Y.: Gibbs variational principle and Fredholm theory for one dimensional maps, Chaos and statistical mechanics, Springer (1983),14-22.