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ON THE CRITICAL PHEHOMENA FOR PIECEWISE LINEAR TRARSFORMATIONS
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ABSTRACT
We will determine the decay rate of correlation
for piecewise linear transformations and as an
‘applicatioﬁ, we will consider two critical

phenomena of dynamical systems.

1.  INTRODUCTION

7e will determine the decay rate of correlation for a certain class
of piecewise linear transformations explicitly in terms of Fredﬁolm
determinant ( cf. (10], for more general cases, cf. [ 11} ,[ﬂ2] )s
and apply it to the critical phenomena in dynamical systems.

We will consider a power series & , called ihe Fredholm detefminant
associated with~a plecewise linear trapsformation F, whose definition
will be gi%eh in § 3; and welqall solutions of P(1/z)= 0 Fredholm
eigenvalues. By 1}, Té’ we:denotepthé greatéét and ﬂhe'second
greatest'in moduius (11q% the slope A, of F). Our main theofem

is stated as follows:
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Theorem 1-1.  Suppose that "{/?L{. 1. Then there exists an
inveriant measure M which is absolutely continuous with the
Lebesgue measure and the dynamical system. ( (0,10 , M,F) 1is mixing.
Moreover, fof any peir of a function f with bounded variation and v

an integrable function g, we get for any 2 >0

Lim ((7+8)/2)7{ (200 e(@) ap-fe ap (e apJ- o, (1.1)
nsw

where
m=1{n if 3'(1/2 )= 0, (1.2)

max { ]’(;‘2I, 1} | otherwise,
and F  is the n-fold iterate of F:
Flix= x n;O, | (1.3)
F(F %) n;1.

(on the Fredholm determinant, cf. [113) , [16). Some related topics

on the decay rate of correlation can be found in (21, C[61.)

£s an application of Theorem 1-1, we show two critical phenomena
in dynamical systems. One is the case of ﬁ-transformations when
A4 1. This is the phase transition from disordered motion to
ordered motion, The other is the unimodal linear transformations
vhen AJ J—. This is the phase transition from mixing st:zte to ergodic

but not mixing state. Our second theorem is stated as follows:



Theorem 1-2. 1) ( F—transformétions) Let N be the first

return time of point 1 to the interval (1/a ,1]:

F(1)& (1/ ,1]  for 1£i<N-,

(1.4)
J o
F(1)€ (1/2 517 -
Then the Fredholm eigenvalues around 1 have the T dllowing asymptotic
form:
ed+i@’
where
v = -i-{‘ioc' I + smrll oréﬁrl (1' 5)
1; _“ c r ol A ’ .
@::%einﬁ+smﬂlomkr§ n=0,%1%2,... (1.6)
as Ad1. The second greatest Fredhoim eigenvalue is the case n=%1,
and so wve mey s2y that the decsy rate of the correlation
N/ = exp {— - ( ——ZE——)2+ smﬁli order} | (1.7)
L 2% Tog b/~ T ’ _ ,
as Al1.
ii) (unimodel linear trensformstions) The srgument of the
second greztest Fredholm eigenvalue eguals T and the decay rate of
the correlstion
) :
- (1.8)

7/i;= 2 QA T+ smell orader,
es AL,

This theorem shows:



i) for ﬁ—transformation whose slope is sufficiently close

to 1, the series of the correlation

Sf(X) g(Fx) ap - Sf dp fg dV

~ for a pair of a function f with bounded variation and an integrable -
function g decreases approximately in the order exp {- .é%_(l_c:/_g__ﬁ)Z}
. with the frequency of modulation epproximately j/I\I s

ii) for unimodal linear transformation whose slope is sufficientl&
close to 42 (7L>J_2-), the series of the correlation decreases in the
order 2 1—2 with the frequency of the modulation %.

Those results are the generalization of [9) and [(15] .

Let us state the conditions imposed on thé mapping re. | et 7L
be a constant (A >1), which we call the slope of the mapping F,
and we denote subintervals (i)= [i/—,\‘ s (i41)/720) (04%i€k-1) end
(k)= [k/l ,1] s where k 1is the maximum infeger which does not exceed

A. On each subinterval (i) (04€ifk-1)

F'(x)= A  (we denote sgn i= +1), ‘ - (1.9)
or '

F'(x)= - (we denote sgn:i= -1), - ' (‘1 .10)
and 7

F((1))= Co,13 , C(1.11)

and on the subinterval (k)

FI(x)= X (that is, sgn k= +1), O (1.2)

and
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x€(k)
2. ALPH!BETS AND WORDS

Put A= {O,‘I,...,k} s and we call each element of the set A
an alphabet. We call a finite sequence of alphabets w= ayeeed

a word and we define
(w)= {xe[o,‘l] : Fl—l"(x)e(ai), 1§i§n}:

\wl= n,
and

sgn w= —ﬁ- sgn a; .
i=1 '

We consider a formal symbol 75 which we call an empty word and we

define
(¢)= [0’1] ’.
11 = o,

and

sgnjﬁ = +1.

For any word w, we define
W¢ = ¢W= We

For xe€ 0,1} , let (ai.f) be the subinterval which contains F1'1(

x)
and we call the infinite sequence of alphabets a?lt 332{... the
expansion of x. The expansion of 1 plays an essential role

~ throughout this paper. We call a wo:rfd . W admissible.if, (W)}‘;?g,

and an infinite sequence of alphabets 8y 8. ( a.€ A) admissible

(1.13)

(2.4)

(2.5)

(2.6)

(2.7)
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(a,'...an)éﬁ{> for any n.

3.  FREDHOIM DETERMINANT

Definition 3-1. Let

1 . 1 ’ 1 .
bn_. { a if sgn a = SEn &, ...a .= +1,
A . 1 1 1
-2 if sgna=+1 and sgn Ayeeed = -1, (%3.1)
‘I+aJI if s 31— -1 and a1 a1 = +1
n . gn a,= SEN 8qeeeqy =+
1 o 1 1 1
L —1-an if * sgn a = Sgn a,...a .= -1,
Then we define
v n ‘ '
F(z)=1- 2 b_d", (3.2)
n=1 ‘

and we call @(z) the Fredholm determinant sssociated with the mapping
F. Ye call 2z which satisfy $(1/z)= 0 & Fredholm eigenvalue

of the mapping F.

Definition 3-2. = For a point xe€(0,1] , we define:

i) w(n,x) is the number of words w such that I|wl=n and
w.«-;azc ayeee is admissible, and we denote its generating function
kit n
w(zyx)= >_ w(n,x) z . (3.3)
n=0 S ‘ ' T
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ii) Y (nyx)= ( 1 if sgn a}...ai: +1 and
a:: ..Tal a)f a}zr'...' is admissible,
-1 if sgn a1...a1= -1 and
1 n
a}...a; a? ;... is not admissible,
L 0 otherwise,

and we denote its generating function

s et n
A(z3x)= ZO X(n,x) z°,
Nn=

where

X(0,%)= 1.

Theorem 3-1.
w(zzx)= X(z3x)/B(z).
Proof. Let s(z3;x) be the generating function of

s(n,x)= the number of admissible words agee.d such that

a1= k-
Then by a renewal equation for s(z3;x) and by

g 1
w(zyx)= S (kz )" s(z3x)= (1-kz) ' s(z;x),
n=0

we get the proof.

(304)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



Theorem 3-2. T.= A .

Proof. Since

F(x)= ')v(x-a;{ 1—‘1) - if  sgn a?](_-. +1,
_Z(x—af 2 if sen af: -1,
we get

x= (aT+ %) X'+ sen &F F(x) A7,

where

Repeating this and taking x= 1, vwe get ®(1/7.)= 0. On the other
hand, the topdlogical entropy of the mapping F equals log ]’6‘1\

and it is not greater than log A, . This proves the theorem.,
4. THE DECAY OF CORRELATION
Theorem 4-1. Assume that " /3<1. Let

£ x)= - 23 /) XA 5x).

i) Then j-’ is the density of the invariant probability
measure for the mapping F. | o o

ii) The singular part of w(z3;x) at 2= 1/7\; " equals
Px)/(1-22).
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(3.10)

(3.11)

(3.12)

(3.13)

(4.1)



. Proof. The proof of 1) is almost the seme as in [4]‘; Thus
we omit this. By Theorem 3-1, 3-2 &nd by the sssumption thst ql/ﬁ_<.1,
z= 1/§b is the singularity of first ordér of w(z;x) and ‘
. . PR " |
lim  (1-2z) wlzzx)= lim (1= Az) @(z)  A(z;x)= £(x). (4.2)
zH1 zA1

This proves the theorem.

By J}) ve denote the probability measure with its density ? .

Now we will prove Theorem 1-1..

Lemma 4-2. Assume that "/3.< 1. Then the dynamical system

( o, , j);F) is mixing.

_Proof. By (w), we denote the indicator function of the

subinterval w. Then
= j<w>(x> (@0 @ - ()" et P ax (4.3)
nziwi v . :

=A@/ 'fg<x> S (/) T X (1, gwvx) ax
v
RN J(gm 6 (2) s(a/p, 3%) ax,

where

(z)= 3= A" sgnaj...a Z ( /1 vt | (4.4)

m=0

P

and Ei is the sum over 211 words v= 3 e such that

i) wv 1is admissible,

i) if a;=k, then

P ey ) R (ay) )



o e (] 1 |
iii) for any x€(wv) and  ye(ag je-eq i) V2% (4.6)

(wv) > (k). : S (4.7)

iv) F \wvl

On the other hand, substituting g=1 in (4.3), we get

S(W) dp= lim (1-z) o= 2" g(w)(x) qp

z41 nzijw!

- (@ (/207 &) (/). | (4.8)
Hence, we get

1im (1-2) =2 2% f(wj(x) g(_an) dj’

z41 nziwi. |
- g(w) ap (gap. I | (4.9)
Since the set of words is a generator, this proves the lemma.

Theorem 4~3.  Suppose thst ql/7L < 1. Then for any pair of
a function with bounded variation f and an integrable function g,

we get for any &30

lim ((V+2)/2)7 {ff(x) g(Fx) ap - d)ﬁ dj’} = 0. © (4.10)
n-w , .

Proof. Suppose that 2z="] 1is the zero point of first order
of $(1/z). Then ‘

lm (1= 12/3,) = 2" _{(w)(x) g(an) ap

z—-) "L - onglwl
- a3 /a0 /) fg‘<x)(1—k/-,b‘>"(‘-n< @ (/7))

X (1/7, 5x) ax. ’ | (4.11)

10



Hence there exists a constant K1 such that

1im 5(1—"12/1) > " g(w)(X) g(Fx) d}-’éé K, "L-lwl j{g[ dx.  (4.12)

Z \)Z/'rt n2tw!

On the other hand,

Tl “z/ﬁ)n ﬁwﬂx)ﬂ#&)éfi

n=0
\w) R RPN G
< (/2 )7 v Y (w)(x) { 1w (F=x)jay. (4.13)
M o (e el
Hence by Lemma 4-2, there exists a constant K2 such that
W 2 n g .y o e ( dx. | (4.
;%;J“o [ Y6 e ap|g 1,17 (e ax (4.14)

For a function f with bounded variation, there exists a decomposition
= / : N : ’ ' ' ’
£(x)=T  (w)(x) (4.15)
such that for any 0 <¥<1
'z‘b(wl’b—‘w‘ <o, : (4-16)

Combining (4.12), (4.14) and (4.16) with T = (7+€)/,

ve get the proof.
%. CRITICAL PHENOMENA

Among the mappings which we éonsideréd'in this: paper, there”are |
two critical states. One is the case when 7L~L1» for
p-transformstions and the other is the case when 1\1«»‘)—2— for unimodal

"linear transformations.

11



Theorem 5—1.‘ i) For a ‘B—transformation F, thet is,
F(x)= xx (mod. 1),

the greatest Fredholm eigenvalues are of the asymptotic form as 2d1:

15
eo( +1 ,
where
1 log log N
o = - (log N-log log N+ Toe Tt small order)

p = - (n+(-1) _log‘N + small order) n= 0,%1,%2,...

The greatest Fredholm eigenvalue(= the slope A ) is the case when
n= 0 and the second Fredholm eigenvalue are the case n=3*1. The

decay rate of correlation M/3 1is asymptotically of the form:
MN/r = e {-— 1— ( --T"——)2+ small order}
A = &XP 2N * log N ¢

Here,

N= min {ng1: F(1) e(1/1,13} .

and it is of the asympﬁotic form:

Ne - log logA [1+ 1 log(-log log A )}2 N
- log 2 log loga log log 7

small order] .

ii) For a unimodal linear transformation F, that is,
F(x)= { - A x+1 it xe€(0,1/2),
Ax-1 it xel1/a ,1],

12

97

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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there exists a constant g and the greatest Fredholm eigenvalue is

asymptotically of the form:
A= 2 exp ZN/2 (g+ small order), (5.9)
and the second Fredholm eigenvalue is asymptotically of the form:

N/2

-7 = -2 exp 2% (-g+ small order). - (5.10)

Hence

nlﬁh'= 2 7L—2+ small order. 4 (5.11)

The proof follows by the inverse function theorem.

13
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