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A Very High-dimensional Chaotic Attractor
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ABSTRACT
. The nature of a very high-dimensional chaotic
attractor is investigated for the purpose of
elucidating the relationships between the physical
‘processes of turbulent behavior occuring in the

real space and global characteristics of attractor
in the phase space.

1.  INTRODUCTION

The aim of the present study is to elucidate how very complicated
turbulent behaviors obsérved in physical space is related with
structure of attractors in the phase space by analyzing a simple
infinite dimensional dissipative system as an éxample. In particular,
we show that the qualitative differénce between in the "interior" and
in the "exterior" of the chaotic attractor is reflected in the proper-

ties of appropriately processed time series (or spatial pattern).

* Details of the présent article are to be submitted to J. Stat. Phys.
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~ The system we are to analyze is a model of optical turbulence

described by the delay-differential equation such that

x(t)

-x(t) + mf(x(t - t5)) , )

with

f(x) sin(x - xO) (2)

Eq.(1) is a simplified version of a space-time nonlinear partial=

1)

differential equation under an appropriate boundary condition™’, and
it can be interpreted as a mapping rule from a "spatial pattern"

xn(T) = x(t + ntR) (0 <tg tR) to a new pattern x (1) after a finite

+1

time interval tR:

) |
x (1) = x_(,)8" + nufoasé(T "M f(x (s))as . (3)

' >
Consider an infinite dimensional vector R whose component at T

(0 <12 tR) is given by Xn(T). Then eq.(3) defines a mapping rule
B LR

N .
. We call R the state vector.
n n+l n

To observe the chaotic behavior in the phase space we introduce
two kinds of fundamental bases; one is the Lyapunov basis composed of
> > . -> :
the Lyapunov vectors {ei(R')} defined at an arbitrary point R' in the

~

attractor A, and another is the Fourier basis composed of the Fourier

> .
modes f, , the component of which is expressed as V27tR cosw, T (k: even)
or Y27t  sinw_ T (k: odd) at 1(0 < 1 < tR) where w = kﬂ/tR. The

Lyapunov vector is numbered in order of the magnitude of :the cor-

responding Lyapunov exponent Ai i.e., Al > Ag > eee,

2. LYAPUNOV EXPONENTS AND LYAPUNOV COMPONENTS

Consider the linear fluctuation around the stationary solution of



eq.(1). The linear fluctuation mode is very similar to- the Fourier
mode introduced above. The smallér frequency modes are unstable, con-
tributing the chaotic behavior, however, the higher frequency modes
are stabilized and specified by negative decay rate asymptotically:
o, -+ -log i + const , (4)
i»>o
where i indicates the mode number., An interesting fact is that the

Lyapunov exponent is closely related with ai: as the order i exceeds

some characteristic order 1 the i-th Lyapunov exponent Xi coincides

LE?

with ai. Moreover, 1 is closely related with the Lyapunov dimension

LE
D of Kapian and York

ILE = aED s (5)

where ag is estimated to be 0.65 of so.

The averaged Lyapunov component defined by

> > \2 O aql/2
8P g ) (6)

>

= | << .

Cy [<<(R

characterizes the global size of attractor measured along the i-th
Lyapunov vector. Results of numerical simulation reveal that Ci

exhibits quite similar behavior as the quantity eki characterizing

the local width of attractor:
Ci = exp nxi , , : (7)

where the éxponent n weakly dependerit upon i for i < D takes a
constant value for i > D. “Therefore, there 'is a characteristic order

i=1 corresponding to‘I

Lo above whlgh

LE

— 2N
Ci,+ exp no, =1 o ) B | (8)



Thus the Lyapunov component decays algebraically. ILC'iS slightly

Jlarger than IL
I..=aD+b R
c c

where ac ~ ,70 and bc

3. PROJECTION ONTO EXTERIORS

£’ empirically we have

(9)

; N | .
In our system the order of Lyapunov vectors {gi(R')} are almost

~

conserved as R' is moved over the attractor A. This implies that the

L,> > >
subspace EXQ(R') spanned by the vectors el(R')

the attractor if the order % is chosen to be larger than D.

subspaces EXE
L,> .
EXQ(R') the exterior of the f%-th

projection of the chaotic motion
% is increased from far below to

component at T of the projection

Then the correlation between the

> > .
' es e
R e2+l(R ), excludes

Such

N )
(R'") form the "exterior" of attractor. Thus we call

order. Our concern is how the

. L,>
onto the exterior EXQ(R') changes as
>,
far above D: Let WQ(T,RlR ) be the
> L,>
of the state vector R onto EXQ(R').

two time series wi(T,ﬁlﬁ') and

wi(T,Elﬁ') changes drastically in such a way that the number of Wi

correlated with wzﬂ(m»¢ %) increases drastically as & exceeds the

characteristic order ILC

introduced in 1. and eventually the exterior

EXE goes out of the attractor. The principal origin of such a be-

havior is the transition to the algebraic decay of eq.(8) which occurs

when the order exceeds ILC'

the time series wz(T,ﬁlﬁ}) which

-An another origin is the localization of

is enhanced as £ increases.

L, LYAPUNOV-FOURIER CORRESPONDENCE

A remarkable feature of our

attractor is that each of the



Lyapunov vector have one to one correspondence with each of. the
Fourier vector in the following sense: The Fourier vector %k is
constructed by the Lyapunov vectors gi(ﬁ') whose order i is in the
viecinity of k for almost all ﬁ" ovér the attractor (and vice versa).
Thus we can. expect that a similar phendmenon as has been observed for
the projection onto the exterior subspace EXE(%') defined for the

Lyapunov basis will be seen also on the Fourier basis. Let us define

F A > -> -+
the subspace EXk spanned by the Fourier vectors f. ., fk+l"fk+2’ s
>
~which we denote by EXE .Then the projection' of R onto EXE(R') cor-

respohds to the projection of ﬁ onto EXF. We may conjecture that the

k
order k corresponds to the order & in the following manner: - Consider
3 = 2 .-)- +' + 2 ”~N 0 . .
PLF(llk) = Ci<<(ei(R )'fk)'>>§'65 A Let us denote i that maximizes

*
P o(i]k) for a given k by i (k). Then

k=i (8) . (10)

The projection of ﬁ onto EXF has a clear physical meaning. It is

k
nothing but the high-pass filtered time series of the lower cutoff

frequency w_ = (ﬂ/tR)k.

5. HIGH-PASS FILTERED TIME SERIES

It is known that the high-pass filtered time series

N :
¢k(R,T) = ) F_ expiwT , : (11)
a3k ¢ q
S S o . i . . : . ]
where Fp = T, -R, in general becomes localized into several "active'
time domains as the cutoff frequency increases (intermittency). In

the active domain the time series ¢§(§,T) looks like bursts of random
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fluctuation. In Fig.l we show-how fhe active time domains indicated
by lines are distributed over the two dimensional plane of T énd w.
The distribution of active domains has quite a different pattern in
the high frequency regime from the one in the low frequency regime;

in the former regime active domains at different frequencies are
connected with each other, whereas in the latter regime such con-
nectivity disappears and the disﬁribution of active domains forms an
irregular pattern. - The above property éan be quantitatively described
by the correlation between the two high-pass filtered time series.

Let AF(w) be the width of frequency range in which ¢§,(§,T) is sig-
nificantly correlated with ¢§(§,I) (k = th/%). Fig.2 shows an
example of AF(w), which divergently increases for w beyond a charac-
teristic wc. The frequency“wc is the boundary of -the two different
patterns mentioned above, and it should be the counterpart of ILC in
the Fourier basis. Indeed we have ascertained that KFC = wctR/ﬂ is
related with I, through the correspondence rule of eq.(9) for various
sets of parametefs (tR,u).

In conclusion we have shown that various quantities characteriz-
ing the attractor exhibit notable changes as we go from the interior
into the exterior of attractor. Such‘behaviors are clearly reflected
in the statistical properties of the high-pass filtered time series
through the Lyapunov-Fourier correspondence. It is strongly desired

to examine whether these observations are valid also for other classes

of high-dimensional attractors.
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