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§1. Introduction and main results.

We consider the unique global existence of solutions in a
weaker class than the energy space; i.e., Hl(ﬁfﬁ for the Cauchy

problem of the nonlinear Schrddinger equation:

(1.1) ig—%=—Au+)\lu|p_lu, te R, x ¢ RY,

(1.2) ulty,x) = uy(x), xe R,

where t0 € R and A ¢ IR. By a(n) we denote » if n =1 or n = 2
and (n + 2)/(n - 2) if n > 3. There are many papers concerning

the global existence of solutions for Problem (1.1)-(1.2) (see,
e.g., [11-12]1, [4]1-[7], [9]1-[10] and [13]-[14]). 1In [1] Baillon,
Cazenave and Figueira show that if 1 < n'; 3, 1 < p < a(n) and
A > 0, Problem (1.1)-(1.2) has a unique global strong solution

u(t) e C(R;;EZ(RY) N cl(®r;L2(RP)) for any u, € BHE(RY) .

0
In [2] Ginibre and Velo show that if 1 < p < a(n) and A > 0 or
if 1 <p< 1+ % and A < 0, Problem (1.1)-(1.2) has a unique

global weak solution u(t) € C(E{;Hl(ﬂfﬁ) for any u, € Hl(]Rn).
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In [6] Strauss shows that if A > 0 and p >>l, Problem (1.1)
-(1.2) has at least one\global weak solution u(t) in

L (R ; Hl(IRn)f\Lp+l(Rn)) for any u; € Hl(]Rn)ﬂ Lp+l(IRn) (see
also [5]). 1In [10] M. Tsutsumi and N. Hayashi discuss the

unique global existence of classical solutions for (1.1)-(1.2)
(see also Pecher and von Wahl [4]). 1In [9] M. Tsutsumi discusses
the unique global solution in “g Cmn) or in the weighted Sobolev
space for (1.1)-(1.2). Recentlyv in [13, 14] N. Hayashi,

K. Nakamitsu and M. Tsutsumi have shown that the solution of
(1.1)-(1.2) has the smoothing property in some sense. In [13]
fhey also discuss the global existence of solutions of (1.1)
-(1:2) for the initial data u, € Lz(ﬂfﬁ with xuolx) € Lz(Egh '
when n = 1. 1In almost all of previous papers the solution of
(1.1)-(1.2) has been constructed in a space not larger than the
energy spacé, that is, Hl(HfH , because the proofs in almost

all of previous papers are based on the energy inequality.
However, in [7] Strauss constructs the wave operators from

Lz(ﬂfH to L2(E55 for the equation (1.1) with p =1 + % (see

[7, Theorem 5]). His results are almost equivalent to the
construction in Lz(ﬂfh of unique local solutions for (1.1)

-(1.2) with p'= 1+ % . In this paper we prove that when

1l <p< 1+ % , wWe can construct_the unique global solution

of (1.1)-(1.2) for any uo\in LZ(IJH (but possibly not in Hl(ﬂf5).
Such a solution is called an "Lz—solution". Furthermore, we

‘show that when 1 < p < 1 + % , the solution operator of the

evolution equation (l1.1) constitutes a'strongly continuous
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nonlinear operator group in L2(155 . Our ?roof is based on the
Lz-norm conservation law and the dispersive effect of solutions
(see, e.g., Lemma 2.2). |

We put U(t) = eiAt\and f(z) = A|zlp_lzb(z e €C). Our main
theorem in this paper is the following.

Theorem 1.1. Assume that 1 < p < 1 + % . Then, for any

u, € LZ(HJU and any t0 € IR there exists a unique global

solution u(t) of (1.1)-(1.2) such that

(1.3)  u(t) e c(R;L2(®Y) N L] (R;PH(®Y) ,
t

(1.4) u(t) = U(t-—to) - i S U(t-r1)f(u(t)) at , t e R,
t0

(1.5) Hu(t) ||L2(1Rn) = HuOHLZ(IRn) , te R,

where r = %%%—;—%% and the integral in (1.4) is the Bochner

integral in H 1(R®) . Furthermore, let gy j =1,2,+++, and

) 2,.n . 2 n
u, be such that qu' u, € L°(IR") and.uOj > ug in L\(ﬂ{)
(J » «). Let uj(t) and u(t) be the solutions of (1.1l) with
uj(to) = uOj and u(to) = Uy respectively. Then, for each T > 0

(1.6) uj(t) > u(t) in C([tO—T, t0+T];L2(JRn)) (3 » o).

Remark 1.1. Theorem 1.1 is almost the same as Theoreml.l

in [15] except that (1.6) is stronger than (l1.6) in [15].

Theorem 1.1 implies the well-posedness in LZ(H§5 of the Cauchy
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problem of the nonlinear Schrddinger equation (1.1) with

4
1 <p<l+—.

By Theorem 1.1 we can define the solution operator of the
evolution'equation (1.1) as a mapping from LZ(IJU to Lz(IRn),
when 1 < p.< 1 + % .. We denote it by S(t). The following

result is an immediate consequence of Theorem 1l.1.

Corollary 1.2. Assume that 1 < p < 1 + % . Then,

{ s(t) ; = » <t <+ o} is a strongly continuous nonlinear
operator group in LZ(HJH . That is, S(t) is a homeomorphism

from LZ(IJH to,Lz(HfH for each t € IR, and

(1.7) S(t + s) = S(t)s(s) , t, s e R,
(1.8) s(0) = 1,
(1.9)  s(h)v - v in LZ2(R™ (h » 0), v e LZ(RY) ,

where I is the identity operator from LZ(EJH to L2(EJH .

Our plan in this paper is as follows. 1In Section 2 we
summarize several lemmas needed for the pron of Theorem 1l.1.
In Section 3 we give a sketch of proof of Theorem 1l.1.

We conclude this section with several notations given.

We abbreviate Lp(155 and HY(R") to LP and e, respectively.
(<, *) denotes the scalar product in L2. For a closed interval

I in R and a Hilbert space H we denote the set of all weakly
jeg . ’ )
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continuous functions from I to H by Cw(I;H). Let h(x) be an
even and positive function in Cg(ﬂfﬂ' with lh]l;1 = 1. We put
hj(x) = jnh(jx) for each positive integer j. X denotes the
convolution with respect to spatial variables. In the course
of calculétions below various constants will be simply denoted
by C. 1In particular, C = C(*,+++,%*) will denbte a constant

depending only on the quantities appearing in parentheses.

§2. Lemmas.

In this section we summarize several results needed foi
the proof of Theorem 1.1.

For U(t) we have the following two lemmas.

Lemma 2.1. Let g and r be positive numbers such that

/g9 + 1/r = 1 and 2 < g < ». For any t + 0, U(t) is a bounded

operator from L to 1Y satisfying

N

n
(2.1)  Jlue)v]la < (am|t]) 9 lvilz . ve L, t+o0,

and for any t ¥ 0, the map t - U(t) is strongly continuous.

For q = 2, U(t) is unitary and strongly continuous for all te R.

Lemma 2.2. Let g and r be positive numbers such that

1<q-1c<a(n) and (3 - g-)r = 2. Then,

(2.2) l|u

A

(.)VHLr(]R,’Lq) C HV”L2 ’



where C = C(n, q).

Lemma 2.1 is well known (see, e.g., [2, Lemma 1.2]).

For
Lemma 2.2, see Strichartz [8, Corollary 1 in §3] and Ginibre

and Velo [3, Proposition 7].

Furthermore, we need the following two lemmas.

Lemma 2.3.

Let I be an open interval in R.
1 <q,

Let
r < » and a,

b > 0. We put

M= { v(t) e L(;L5)NF ;09 ;

HV”LOOA(I; 2 =

Then M is a closed subset in Lr(I;Lq).

Lemma 2.4. Let Tl and T2 be constants with T

1 < T2.
Assume that v(t) e C([T ,TZ];H_l) and for some K > 0

(2.3) lve)y ][ 2 < K,

a.ef t e [Tl ,T2].

2
Then, v(t) ¢ CW([Tl ,T2],L ) and (2.3) holds .for all t ¢ [Tl’TZ]'

Lemmas 2.3 and 2.4 are identical to Lemmas 2.3 and 2.4 in
[15], respectively.

For the proofs of Lemmas 2.3 and 2.4, see
(15, §2].

We conclude this section by giving the following lemma
~ concerning the'mollifier.hj(x).



Lemma 2.5. Let I be a bounded closed interval in R .

Let £(t) e C(I;L%). We put £,(£) = (hy X £)(£). Then,

(2.4) © f£.(t) ¢ N c(1;85), 35 =1,2,---,
o k=1

(2.5) Hfj(t)HHm < Cyp Hf(t)HLZ ;o te I, Jo=1,2,0,
for each positive integer m,

(2.6)  £,(£) > £(t) in c(I;L%) (5 » =,

where C. = C(j, m).

jm
Proof. (2.4) and (2.5) are clear. We prove only (2.6).
We note that f(t) is uniformly continuous on I. Since

A

||fj(t) - fj(s) ||L2 Al E(e) - f(s)||L2 , t, seI,

we conclude that fj(t), j=1,2,+++, are equi-continuous on I.
On the other hand, fj(t) > f£(t) in L2 (j » ) for each t ¢ I.
Therefore, we can .prove (2.6) by using the same argument as in

the proof of the Ascoli-Arzela theorem.

(2. E. D.)

§3. Sketch of the Proof of Theorem 1.1.

In this section we give a sketch of the proof of Theorem
1.1. By It and it we denote an open interval (to—t,t0+t)

and a closed interval [to—t,to+t],‘respectively, for t > 0.

4 (p+1)

Let r = HTE:TT

throughout this section.
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We have the following result concerning the unique local

existence of L2-solutions for (1.1)-(1.2).

Lemma 3.1. Assume that 1 < p < 1 + . Then, for any

(p, n, A, p) >0

t0 € R and any p > 0 there exists a T
such that for any u, € 12 with HuOHLZ < p Problem (1.1)-(1.2)

has a unique local solution u(t):

(3.1) u(t) € C(ET;Lz)f\Lr(IT;Lp+1),

. t ,
(3.2) u(t) = U(t--to)u0 - i S U(t-T1)f(u(t)) drt, t € IT ’
’ t 0 .

where the integral in (3.2) is thé‘Bochner integral in H .

Furthermore, the solution u(t) satisfies

te I, .

(3.3) ey [I;2 = luyllp2 » ot

Proof. We only give the outline of the proof of Lemma 3.1.
- For the detailes, see [15, §3].

We consider the following integral equation:

t

(3.4) uj(t) =U(t-—t0)hj)K Uy - i S . U(t-T)f(uj(T)) drt,

j:l,z,.b.'

t

From the result of Ginibre and Velo [2, Theorem 3.1] we
already know that for each j there exists a unique global

.solution uj(t) of (3.4) in C(I{;Hl) such that



(3.5 lluge iz = [y uyll2 < llugli2 + te®,
jo=1,2,0--.

Let p be a positive constant with [h%)HLZ < p. By 8 we denote

4 (p+1)

the constant appearing in (2.2) with g = p+l and r = alp-1)

' We note that & depends only on n and p. We put
(3.6) M= { v(t) e L7(1;LHNLT (1,12 ;

2

HVHLOO(IT;L y S0y ||v[|Lr(IT;Lp+1);2<Sp},

where T is a small positive constant to be determined later.
We note that by Lemma 2.3 M is closed in Lr(IT;Lp+l).

We first show that if T is suffiéiently,small, then
(3.7) uj(t) e M for all j.

For 0 < s < T we take the Lr(IS;Lp+l) norm of (3.4) and use

(2.1), (2.2) and the generalized Young inequality to obtain

p/dy P

r

(3.8) HujHLr(Is;Lpﬂ) < 8p + CoT HujHL (Is;Lp+l) ,

O;SéTl j=1121"'1

4p

mﬁand C

where qy = 0= Co(n, P, A). Now we choose T >0

so small that there exists a positive number y satisfying
P/9 o ‘
COT y> + 6p -y < 0and 0 <y < 28p. For that purpose,

it is sufficient to choose T > 0 so that

: _q —94/P
(3.9) T < (2c,(260)° 1, "1

Then we put
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p/q
o 1

(3.10) yy, =min{26p 2y > 0; C, vP + 8p -y =0 }.

Tf T is chosen so small that (3.9) holds, then by (3.8) and

{3.10) we obtain
(3.11) Huj||Lr(IT;Lp+l) ; yo _<__ 26@ ’ J = 1,2,--..

(3.5) and (3.11) give us (3.7), if T is chosen so small that
(3.9) holds.
We next consider the estimate of the difference between

uj and U for any j and k with j # k. For uj, uy € M we have

(3.12) Huj - ukHLr(IT;Lp+l) < 68K (j,k)

p/q ~ '
- 1 p-1 -
+ CyT *2(268p) Huj ukHIF(IT;LP+l) !
. —_— . = 4p
whgre K(J.'k) = thX up - b X U‘0HL2 » 91 T m¥d-mp and

50 = Eo(n, P, A\). If we choose T so small in (3.12) that

p/q

c,r te228mPt o 1

2 14
then we have by (3.12)

(3.14) lluj < 268K(3,k)

- uk”IF(IT;Lp+l)

for all j and k. Since k(j,k) - 0 (j, k > =), we obtain by

(3.14)

(3.15)  |lu; p+l, >0 (3, k » ®),

- u g,
kL (IT,L )

if T is chosen so small that (3.13) holds. In addition we have

by (3.15)

10
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(3.16) [ (uy(e) = u (), ] < k(3K V]2

) .

9, ‘p-1 :
+ CT lthHl-z(zsp) Huj - ukHLr(IT;Lp+l
+0 (j, k » ») uniformly on TT ,
1 4+(n+4)’o—no2
for ¥ € H, where q, = 4(p+1) = > 0. (3.16) implies that
{uj(t)};?=l is the Cauchy sequence in C(fT;H_l).
Therefore, by (3.7), (3.15), (3.16) and Lemma 2.3 we
obtain the solution u(t) of (1.1)-(1.2) such that
(3.1 u®) e L (1utHN L auPthNedgeh),
t ’ _
(3.18) u(t) = U(t-t,)u, - i U(t-t)f(u(t)) d1, t ¢ I, ,
0’-0 € T
: 0
(3.19)  lu®) |2 < llggll,2 ., a.e. te1,,

2

(3.20)  uy(t) > u(t) in L(I;TP™) and in c(IE

) (3 > ),

where T is a positive constant determined by (3.9) and (3.13)

and the integral in (3.18) is the Bochner integral in H T.

(3.17), (3.19) and Lemma 2.4 imply that
(3.21)  u(t) e C (I.;L2)
. w Tl

and that for all t € I, (3.19) holds. The uniqueness of.

T
solutions satisfying (3.17-18) follows from the estimate of

the type (3.14) and the standard argument.

Thus, for any s ¢ I, we can uniquely solve (1l.1l)-(1.2) in

T
the time interval [s-T, s+T] with the initial time t0 and the

11
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initial datum u, replaced by s and u(s), respectively, where

0
T is the same as in the case of the initial time to and the
initial datum ug - Therefore, reversing the roles of 0 and t,

we obtain the reverse inequality to (3.19) for all t ¢ ET'

which implies (3.3).  (3.3) and (3.21) give us
. = 2
(3.22) u(t) e C(IT;L ).

This completes the proof of Lemma 3.1.

(Q. E. D.)
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. The unique global existence of

L2—solutions for (1.1)-(1.2) follows directly from Lemma 3.1,
which shows the unique local solvability in L2 of (1.1)-(1.2)
and the a priori bound of the L2—norm of L2-solutions;

It remains only to prove the continuous dependence of
L2—solﬁtions on the initial data. Let uoj; j =1,2,*++, and
u, be such that uoj,‘uo-s inand qu > ug in L2 (3] »~ »). Let
uj(t) and u(t) be the global L2—solutions of (1.1) with
uj(to) ='u0j and u(to) = Uy, respectively. We put
p = sup {lldOIILZ,’ []uojIILZ , J =1,2,+++}. For this p, let
T > 0 be defined as in (3.9) and (3.13). Then, by using the

same argument as in the proof of Lemma 3.1 we have

p+l

(3.23)  uy(t) > ult) in LN(InIP™) (> =),

12
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A

(3.24)  |(ui(t) - u(t),g(t))] < Ksup _ |lg(t) ||l
J tel

Ir

X (HUOJ - uOHLz + ”uj - u!‘Lr(IT;Lp+l) ) ’

teI ‘jzllzl...rl

T 14
for g(t) € C(fT;Hl) (sée, e.g., (3.15) and (3.16)), where

K = K(n, p, A, p) > 0. We evaluate

2
.25 (t) - = (u.(t)- ,u.(t) -
(3 ) \ Huj(t) u(t)_HLZ (uj(t) u(t) uj(t) u(t))

2
< 1 lleg @ [lp2 = e ug(6)) |+ | (ug(e)-ule) ,uen |,

te Ty, 3o=1,2,00e,

We first evaluate the second term at the right hand side of
(3.25). Let € be an arbitrary positive constant. We put
Hk(t) = (hk)K u) (t) for each positive integer k. By Lemma 2.5

we can choose k so large that

(3.26) | (ug(€)-u(e) ,u(e) =Y (£)) | < 2ollu(e) =Y () ]];2 < e,

For such a k wé have by (3.23), (3.24) and Lemma 2.5
‘ N »
(3.27)  [(uy(E)-u(t),m(£) ]| < Ksup _ [[d (£) [|41

1
x (Huoj—uoHLZ + Huj-uHLr(IT;Lp+l)) < e

if j is sufficiently large. Therefore, we obtain by (3.26) and

(3.27)

13
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(3.28) l(uj(t) - u(t),u(t))]

n N
< I(uj(t)-u(t),uk(t)).l + Irl(uj(t)-u(t),u(t)-uk(t))I

N =

1 -

for sufficiently large j. (3.28) implies that

(3.29) I(hj(t)—u(t),u(t))[ + 0 (j > =) uniformly on I, .

We next evaluate the first term at the right hand side of

(3.25). Since [Iuj(t)I|L2 = [luojlle and |[lu(t) [|;2 = [lugll;2

for t ¢ ET , we have by (3.29)

: 2
(3.30) | ||uj<t)1LL2 - (u(t),uj(t))l
2 2
< 1 lhagyllg2 = Hlugllg2 |+ [ute) sy te)-ule) |
+0 (j » ) uniformly on ET .

Combining (3.25), (3.29) and (3.30), we obtain
(3.31) uj(t) + u(t) in c(fT;Lz) (3 + =) .

On the other .hand, the length of T is determined only by
n, p, A and p (see (3.9) and (3.13)). By the L2—norm

conservation law we see that sup {{[u(t)llLZ . ||uj(t)||L2 ’

j =1,2,+++} is constant for t € R. Accordingly, we use the

above argument with the initial time t, and the initial data

0
Uy qu’ jo=1,2,%°-, ?eplaced by t0+T and u(t0+T),Auj(to+T),
jo=1,2,00-, or by tO—T and u(tO—T), uj(to-T), j=1,2,+°-,

respeétively, to obtain (3.31) with I, replaced by fz

T T °

14
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Repeating this procedure, we obtain (1.6). This completes the
proof of Theorem 1.1.

(Q. E. D.)
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