L²-Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups

広島大総合 堤 誉志 雄 (Yoshio Tsutsumi)

Faculty of Integrated Arts and Sciences, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, Japan

§1. Introduction and main results.

We consider the unique global existence of solutions in a weaker class than the energy space, i.e., $\operatorname{H}^1(\mathbb{R}^n)$ for the Cauchy problem of the nonlinear Schrödinger equation:

(1.1)
$$i \frac{\partial u}{\partial t} = -\Delta u + \lambda |u|^{p-1} u, \quad t \in \mathbb{R}, \quad x \in \mathbb{R}^n,$$

(1.2)
$$u(t_0,x) = u_0(x), x \in \mathbb{R}^n,$$

where $t_0 \in \mathbb{R}$ and $\lambda \in \mathbb{R}$. By $\alpha(n)$ we denote ∞ if n=1 or n=2 and (n+2)/(n-2) if $n \geq 3$. There are many papers concerning the global existence of solutions for Problem (1.1)-(1.2) (see, e.g., [1]-[2], [4]-[7], [9]-[10] and [13]-[14]). In [1] Baillon, Cazenave and Figueira show that if $1 \leq n \leq 3$, $1 and <math>\lambda > 0$, Problem (1.1)-(1.2) has a unique global strong solution $u(t) \in C(\mathbb{R}; H^2(\mathbb{R}^n)) \cap C^1(\mathbb{R}; L^2(\mathbb{R}^n))$ for any $u_0 \in H^2(\mathbb{R}^n)$. In [2] Ginibre and Velo show that if $1 and <math>\lambda > 0$ or if $1 and <math>\lambda < 0$, Problem (1.1)-(1.2) has a unique global weak solution $u(t) \in C(\mathbb{R}; H^1(\mathbb{R}^n))$ for any $u_0 \in H^1(\mathbb{R}^n)$.

In [6] Strauss shows that if $\lambda > 0$ and p > 1, Problem (1.1) -(1.2) has at least one global weak solution u(t) in $\mathtt{L}^{\infty}(\mathbb{R}\,;\,\,\mathtt{H}^{1}(\mathbb{R}^{n})\,\bigcap\,\mathtt{L}^{p+1}(\mathbb{R}^{n})\,)\quad\text{for any }\mathtt{u}_{0}\,\,\epsilon\,\,\mathtt{H}^{1}(\mathbb{R}^{n})\,\bigcap\,\mathtt{L}^{p+1}(\mathbb{R}^{n})$ also [5]). In [10] M. Tsutsumi and N. Hayashi discuss the unique global existence of classical solutions for (1.1)-(1.2) (see also Pecher and von Wahl [4]). In [9] M. Tsutsumi discusses the unique global solution in \mathcal{A} (\mathbb{R}^n) or in the weighted Sobolev space for (1.1)-(1.2). Recently in [13, 14] N. Hayashi, K. Nakamitsu and M. Tsutsumi have shown that the solution of (1.1)-(1.2) has the smoothing property in some sense. they also discuss the global existence of solutions of (1.1) -(1.2) for the initial data $u_0 \in L^2({\rm I\!R}^n)$ with $xu_0(x) \in L^2({\rm I\!R}^n)$, when n = 1. In almost all of previous papers the solution of (1.1)-(1.2) has been constructed in a space not larger than the energy space, that is, $H^1(\mathbb{R}^n)$, because the proofs in almost all of previous papers are based on the energy inequality. However, in [7] Strauss constructs the wave operators from $L^{2}(\mathbb{R}^{n})$ to $L^{2}(\mathbb{R}^{n})$ for the equation (1.1) with $p = 1 + \frac{4}{n}$ (see [7, Theorem 5]). His results are almost equivalent to the construction in $L^{2}(\mathbb{R}^{n})$ of unique local solutions for (1.1) -(1.2) with $p = 1 + \frac{4}{n}$. In this paper we prove that when 1 , we can construct the unique global solutionof (1.1)-(1.2) for any u_0 in $L^2(\mathbb{R}^n)$ (but possibly not in $H^1(\mathbb{R}^n)$). Such a solution is called an "L2-solution". Furthermore, we show that when 1 \frac{4}{n} , the solution operator of the evolution equation (1.1) constitutes a strongly continuous

nonlinear operator group in $L^2(\mathbb{R}^n)$. Our proof is based on the L^2 -norm conservation law and the dispersive effect of solutions (see, e.g., Lemma 2.2).

We put $U(t)=e^{i\Delta t}$ and $f(z)=\lambda |z|^{p-1}z$ ($z\in \mathbb{C}$). Our main theorem in this paper is the following.

Theorem 1.1. Assume that 1 \frac{4}{n}. Then, for any $u_0 \in L^2(\mathbb{R}^n)$ and any $t_0 \in \mathbb{R}$ there exists a unique global solution u(t) of (1.1)-(1.2) such that

(1.3)
$$u(t) \in C(\mathbb{R}; L^2(\mathbb{R}^n)) \cap L^r_{loc}(\mathbb{R}; L^{p+1}(\mathbb{R}^n))$$
,

(1.4)
$$u(t) = U(t-t_0) - i \int_{t_0}^{t} U(t-\tau) f(u(\tau)) d\tau$$
, $t \in \mathbb{R}$,

(1.5)
$$||u(t)||_{L^{2}(\mathbb{R}^{n})} = ||u_{0}||_{L^{2}(\mathbb{R}^{n})}$$
, term,

where $r=\frac{4(p+1)}{n(p-1)}$ and the integral in (1.4) is the Bochner integral in $H^{-1}(\mathbb{R}^n)$. Furthermore, let u_{0j} , $j=1,2,\cdots$, and u_0 be such that u_{0j} , $u_0 \in L^2(\mathbb{R}^n)$ and $u_{0j} \to u_0$ in $L^2(\mathbb{R}^n)$ ($j \to \infty$). Let u_j (t) and u(t) be the solutions of (1.1) with $u_j(t_0)=u_{0j}$ and $u(t_0)=u_0$, respectively. Then, for each T>0

(1.6)
$$u_{j}(t) \rightarrow u(t) \text{ in } C([t_{0}-T, t_{0}+T]; L^{2}(\mathbb{R}^{n})) \quad (j \rightarrow \infty).$$

Remark 1.1. Theorem 1.1 is almost the same as Theorem1.1 in [15] except that (1.6) is stronger than (1.6) in [15]. Theorem 1.1 implies the well-posedness in $L^2(\mathbb{R}^n)$ of the Cauchy

problem of the nonlinear Schrödinger equation (1.1) with 1 .

By Theorem 1.1 we can define the solution operator of the evolution equation (1.1) as a mapping from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$, when 1 \frac{4}{n}. We denote it by S(t). The following result is an immediate consequence of Theorem 1.1.

Corollary 1.2. Assume that $1 . Then, <math display="block"> \{ \ S(t) \ ; \ -\infty < t < +\infty \ \} \ \text{is a strongly continuous nonlinear operator group in $L^2(\mathbb{R}^n)$. That is, $S(t)$ is a homeomorphism from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$ for each $t \in \mathbb{R}$, and }$

$$(1.7) S(t+s) = S(t)S(s) , t, s \in \mathbb{R},$$

$$(1.8)$$
 $S(0) = I,$

(1.9)
$$S(h)v \rightarrow v \text{ in } L^2(\mathbb{R}^n) \quad (h \rightarrow 0), \quad v \in L^2(\mathbb{R}^n),$$
 where I is the identity operator from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$.

Our plan in this paper is as follows. In Section 2 we summarize several lemmas needed for the proof of Theorem 1.1. In Section 3 we give a sketch of proof of Theorem 1.1.

We abbreviate $L^p(\mathbb{R}^n)$ and $H^m(\mathbb{R}^n)$ to L^p and H^m , respectively. (•,•) denotes the scalar product in L^2 . For a closed interval I in \mathbb{R} and a Hilbert space H we denote the set of all weakly continuous functions from I to H by $C_w(I;H)$. Let h(x) be an even and positive function in $C_0^\infty(\mathbb{R}^n)$ with $\|h\|_L 1 = 1$. We put $h_j(x) = j^n h(jx)$ for each positive integer j. \bigstar denotes the convolution with respect to spatial variables. In the course of calculations below various constants will be simply denoted by C. In particular, $C = C(*, \dots, *)$ will denote a constant depending only on the quantities appearing in parentheses.

§2. Lemmas.

In this section we summarize several results needed for the proof of Theorem 1.1.

For U(t) we have the following two lemmas.

Lemma 2.1. Let q and r be positive numbers such that 1/q + 1/r = 1 and $2 \le q \le \infty$. For any t $\neq 0$, U(t) is a bounded operator from L^r to L^q satisfying

(2.1)
$$||U(t)v||_{L^{q}} \le (4\pi|t|)^{\frac{n}{q} - \frac{n}{2}} ||v||_{L^{r}}, v \in L^{r}, t \neq 0,$$

and for any t \neq 0, the map t \rightarrow U(t) is strongly continuous. For q = 2, U(t) is unitary and strongly continuous for all t ϵ IR.

Lemma 2.2. Let q and r be positive numbers such that $1 \leq q-1 < \alpha(n) \text{ and } (\frac{n}{2}-\frac{n}{q})\, r = 2. \quad \text{Then,}$

(2.2)
$$||U(\cdot)v||_{L^{r}(\mathbb{R};L^{q})} \leq C ||v||_{L^{2}}$$
,

where C = C(n, q).

Lemma 2.1 is well known (see, e.g., [2, Lemma 1.2]). For Lemma 2.2, see Strichartz [8, Corollary 1 in §3] and Ginibre and Velo [3, Proposition 7].

Furthermore, we need the following two lemmas.

Lemma 2.3. Let I be an open interval in IR. Let $1 < q, r < \infty$ and a, b > 0. We put

$$M = \{ v(t) \in L^{\infty}(I;L^{2}) \cap L^{r}(I;L^{q}); \}$$

$$\|v\|_{L^{\infty}(I;L^{2})} \leq a$$
, $\|v\|_{L^{r}(I;L^{q})} \leq b$.

Then M is a closed subset in $L^r(I;L^q)$.

Lemma 2.4. Let T_1 and T_2 be constants with $T_1 < T_2$. Assume that v(t) ϵ C([T_1 , T_2]; H^{-1}) and for some K > 0

(2.3)
$$\|v(t)\|_{L^{2}} \le K$$
, a.e. $t \in [T_{1}, T_{2}]$.

Then, v(t) ϵ C_w([T₁, T₂];L²) and (2.3) holds for all t ϵ [T₁,T₂].

Lemmas 2.3 and 2.4 are identical to Lemmas 2.3 and 2.4 in [15], respectively. For the proofs of Lemmas 2.3 and 2.4, see [15, §2].

We conclude this section by giving the following lemma concerning the mollifier $h_{\dot{i}}(x)$.

Let $f(t) \in C(I;L^2)$. We put $f_j(t) = (h_j \times f)(t)$. Then,

(2.4)
$$f_{j}(t) \in \bigcap_{k=1}^{\infty} C(I;H^{k}), j = 1,2,\dots,$$

(2.5)
$$\|f_{j}(t)\|_{H^{m}} \leq C_{jm} \|f(t)\|_{L^{2}}$$
, tel, j = 1,2,..., for each positive integer m,

(2.6)
$$f_j(t) \rightarrow f(t)$$
 in $C(I;L^2)$ $(j \rightarrow \infty)$, where $C_{jm} = C(j, m)$.

<u>Proof.</u> (2.4) and (2.5) are clear. We prove only (2.6). We note that f(t) is uniformly continuous on I. Since

$$\left\|f_{j}(t) - f_{j}(s)\right\|_{L^{2}} \le \left\|f(t) - f(s)\right\|_{L^{2}}$$
, t, s ϵ I,

we conclude that $f_j(t)$, $j=1,2,\cdots$, are equi-continuous on I. On the other hand, $f_j(t) \to f(t)$ in L^2 $(j \to \infty)$ for each $t \in I$. Therefore, we can prove (2.6) by using the same argument as in the proof of the Ascoli-Arzela theorem.

(Q. E. D.)

§3. Sketch of the Proof of Theorem 1.1.

In this section we give a sketch of the proof of Theorem 1.1. By I_t and \overline{I}_t we denote an open interval (t_0^-t,t_0^+t) and a closed interval $[t_0^-t,t_0^+t]$, respectively, for $t \ge 0$. Let $r = \frac{4(p+1)}{n(p-1)}$ throughout this section.

We have the following result concerning the unique local existence of L^2 -solutions for (1.1)-(1.2).

Lemma 3.1. Assume that $1 . Then, for any <math>t_0 \in \mathbb{R}$ and any $\rho > 0$ there exists a $T = T(p, n, \lambda, \rho) > 0$ such that for any $u_0 \in L^2$ with $||u_0||_{L^2} \leq \rho$ Problem (1.1)-(1.2) has a unique local solution u(t):

(3.1)
$$u(t) \in C(\overline{I}_T; L^2) \cap L^r(I_T; L^{p+1})$$
,

(3.2)
$$u(t) = U(t-t_0)u_0 - i \int_{t_0}^t U(t-\tau)f(u(\tau)) d\tau$$
, $t \in \overline{I}_T$,

where the integral in (3.2) is the Bochner integral in H^{-1} . Furthermore, the solution u(t) satisfies

(3.3)
$$\|\mathbf{u}(t)\|_{T}^{2} = \|\mathbf{u}_{0}\|_{T}^{2}$$
, $t \in \overline{I}_{m}$.

<u>Proof.</u> We only give the outline of the proof of Lemma 3.1. For the detailes, see [15, §3].

We consider the following integral equation:

(3.4)
$$u_{j}(t) = U(t-t_{0})h_{j} \times u_{0} - i \int_{t_{0}}^{t} U(t-\tau)f(u_{j}(\tau)) d\tau,$$

$$j = 1, 2, \cdots.$$

From the result of Ginibre and Velo [2, Theorem 3.1] we already know that for each j there exists a unique global solution $u_j(t)$ of (3.4) in $C(\mathbb{R};H^1)$ such that

(3.5)
$$\|\mathbf{u}_{j}(t)\|_{L^{2}} = \|\mathbf{h}_{j} * \mathbf{u}_{0}\|_{L^{2}} \le \|\mathbf{u}_{0}\|_{L^{2}}$$
, $t \in \mathbb{R}$, $j = 1, 2, \cdots$.

Let ρ be a positive constant with $\|u_0\|_L 2 \le \rho$. By δ we denote the constant appearing in (2.2) with q=p+1 and $r=\frac{4(p+1)}{n(p-1)}$. We note that δ depends only on n and p. We put

(3.6)
$$M = \{ v(t) \in L^{\infty}(I_{T}; L^{2}) \cap L^{r}(I_{T}; L^{p+1}) ;$$

$$\|v\|_{L^{\infty}(I_{\mathfrak{p}};L^{2})} \leq \rho, \|v\|_{L^{r}(I_{\mathfrak{p}};L^{p+1})} \leq 2\delta\rho\},$$

where T is a small positive constant to be determined later. We note that by Lemma 2.3 M is closed in $L^r(I_m;L^{p+1})$.

We first show that if T is sufficiently small, then

(3.7)
$$u_{j}(t) \in M$$
 for all j.

For $0 \le s \le T$ we take the $L^r(I_s; L^{p+1})$ norm of (3.4) and use (2.1), (2.2) and the generalized Young inequality to obtain

(3.8)
$$\|\mathbf{u}_{j}\|_{\mathbf{L}^{r}(\mathbf{I}_{s};\mathbf{L}^{p+1})} \leq \delta \rho + C_{0}^{p/q_{1}} \|\mathbf{u}_{j}\|_{\mathbf{L}^{r}(\mathbf{I}_{s};\mathbf{L}^{p+1})}^{p}$$
, $0 \leq s \leq T$, $j = 1, 2, \cdots$,

where $q_1=\frac{4p}{n+4-np}$ and $C_0=C_0(n,\,p,\,\lambda)$. Now we choose T>0 so small that there exists a positive number y satisfying C_0T $y^p+\delta\rho-y<0$ and $0< y\le 2\delta\rho$. For that purpose, it is sufficient to choose T>0 so that

(3.9)
$$T < (2C_0(2\delta\rho)^{p-1})^{-q_1/p}$$
.

Then we put

(3.10)
$$y_0 = \min \{ 2\delta \rho \ge y > 0; C_0 T^{p/q_1} y^p + \delta \rho - y = 0 \}.$$

If T is chosen so small that (3.9) holds, then by (3.8) and (3.10) we obtain

(3.11)
$$\|u_{j}\|_{L^{r}(I_{T};L^{p+1})} \leq y_{0} \leq 2\delta\rho$$
, $j = 1,2,\cdots$

(3.5) and (3.11) give us (3.7), if T is chosen so small that (3.9) holds.

We next consider the estimate of the difference between u_j and u_k for any j and k with j \ddagger k. For u_j , u_k ϵ M we have

$$\begin{aligned} (3.12) \quad & ||\mathbf{u}_{j} - \mathbf{u}_{k}||_{\mathbf{L}^{r}(\mathbf{I}_{T}; \mathbf{L}^{p+1})} \leq \delta K(j, k) \\ & + \bar{\mathbf{c}}_{0}^{p/q_{1}} \cdot 2(2\delta \rho)^{p-1} ||\mathbf{u}_{j} - \mathbf{u}_{k}||_{\mathbf{L}^{r}(\mathbf{I}_{T}; \mathbf{L}^{p+1})} , \end{aligned}$$

where K(j,k) = $\|\mathbf{h}_{j} \times \mathbf{u}_{0} - \mathbf{h}_{k} \times \mathbf{u}_{0}\|_{\mathbf{L}^{2}}$, $\mathbf{q}_{1} = \frac{4\mathbf{p}}{\mathbf{n}+4-\mathbf{n}\mathbf{p}}$ and $\bar{\mathbf{C}}_{0} = \bar{\mathbf{C}}_{0}(\mathbf{n}, \mathbf{p}, \lambda)$. If we choose T so small in (3.12) that

(3.13)
$$\bar{c}_0 T^{p/q_1} \cdot 2(2\delta\rho)^{p-1} \leq \frac{1}{2}$$
,

then we have by (3.12)

(3.14)
$$\|u_{j} - u_{k}\|_{L^{r}(I_{m};L^{p+1})} \leq 2\delta K(j,k)$$

for all j and k. Since $k(j,k) \rightarrow 0$ (j, $k \rightarrow \infty$), we obtain by (3.14)

(3.15)
$$\|u_{j} - u_{k}\|_{L^{r}(I_{T}; L^{p+1})} \rightarrow 0 \quad (j, k \rightarrow \infty),$$

if T is chosen so small that (3.13) holds. In addition we have by (3.15)

for $\psi \in H^1$, where $q_2 = \frac{4 + (n+4)p - np^2}{4(p+1)} > 0$. (3.16) implies that $\{u_j(t)\}_{j=1}^{\infty}$ is the Cauchy sequence in $C(\overline{I}_T; H^{-1})$.

Therefore, by (3.7), (3.15), (3.16) and Lemma 2.3 we obtain the solution u(t) of (1.1)-(1.2) such that

(3.17)
$$u(t) \in L (I_{\pi}; L^{2}) \cap L^{r}(I_{\pi}; L^{p+1}) \cap C(\overline{I}_{\pi}; H^{-1}),$$

(3.18)
$$u(t) = U(t-t_0)u_0 - i \int_{t_0}^t U(t-\tau)f(u(\tau)) d\tau, t \epsilon \bar{I}_T$$
,

(3.19)
$$\|\mathbf{u}(t)\|_{L^{2}} \leq \|\mathbf{u}_{0}\|_{L^{2}}$$
, a.e. $t \in I_{\mathbf{T}}$,

(3.20)
$$u_j(t) \rightarrow u(t) \text{ in } L^r(I_T; L^{p+1}) \text{ and in } C(\overline{I}_T; H^{-1}) \quad (j \rightarrow \infty),$$

where T is a positive constant determined by (3.9) and (3.13) and the integral in (3.18) is the Bochner integral in H^{-1} . (3.17), (3.19) and Lemma 2.4 imply that

(3.21)
$$u(t) \in C_w(\overline{I}_m; L^2)$$

and that for all t ϵ \bar{I}_T (3.19) holds. The uniqueness of solutions satisfying (3.17-18) follows from the estimate of the type (3.14) and the standard argument.

Thus, for any s $_{\rm E}$ ${f \bar{I}}_{\rm T}$ we can uniquely solve (1.1)-(1.2) in the time interval [s-T , s+T] with the initial time t $_{\rm 0}$ and the

initial datum u_0 replaced by s and u(s), respectively, where T is the same as in the case of the initial time t_0 and the initial datum u_0 . Therefore, reversing the roles of 0 and t, we obtain the reverse inequality to (3.19) for all t ϵ \overline{I}_T , which implies (3.3). (3.3) and (3.21) give us

(3.22)
$$u(t) \in C(\overline{I}_T; L^2)$$
.

This completes the proof of Lemma 3.1.

(Q. E. D.)

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. The unique global existence of L^2 -solutions for (1.1)-(1.2) follows directly from Lemma 3.1, which shows the unique local solvability in L^2 of (1.1)-(1.2) and the a priori bound of the L^2 -norm of L^2 -solutions.

It remains only to prove the continuous dependence of L^2 -solutions on the initial data. Let u_{0j} , $j=1,2,\cdots$, and u_0 be such that u_{0j} , $u_0 \in L^2$ and $u_{0j} \to u_0$ in L^2 $(j \to \infty)$. Let u_j (t) and u(t) be the global L^2 -solutions of (1.1) with u_j (t₀) = u_{0j} and $u(t_0)$ = u_0 , respectively. We put $\rho = \sup \{||u_0||_{L^2}, ||u_{0j}||_{L^2}, j=1,2,\cdots\}$. For this ρ , let T > 0 be defined as in (3.9) and (3.13). Then, by using the same argument as in the proof of Lemma 3.1 we have

$$(3.23) \quad u_{j}(t) \rightarrow u(t) \quad \text{in } L^{r}(I_{T}; L^{p+1}) \quad (j \rightarrow \infty),$$

(3.24)
$$|(u_{j}(t) - u(t), g(t))| \leq K \sup_{t \in \overline{I}_{T}} ||g(t)||_{H^{1}}$$

$$\times (||u_{0j} - u_{0}||_{L^{2}} + ||u_{j} - u||_{L^{r}(I_{T}; L^{p+1})}),$$

$$t \in \overline{I}_{T}, j = 1, 2, \dots,$$

for g(t) ϵ C(\overline{I}_T ; H¹) (see, e.g., (3.15) and (3.16)), where $K = K(n, p, \lambda, \rho) > 0$. We evaluate

(3.25)
$$\|u_{j}(t) - u(t)\|_{L^{2}}^{2} = (u_{j}(t) - u(t), u_{j}(t) - u(t))$$

 $\leq \|u_{j}(t)\|_{L^{2}}^{2} - (u(t), u_{j}(t))\| + \|(u_{j}(t) - u(t), u(t))\|,$
 $t \in \overline{I}_{m}, j = 1, 2, \cdots.$

We first evaluate the second term at the right hand side of (3.25). Let ϵ be an arbitrary positive constant. We put $\tilde{u}_k(t) = (h_k \times u)(t)$ for each positive integer k. By Lemma 2.5 we can choose k so large that

(3.26)
$$|(u_{j}(t)-u(t),u(t)-\tilde{u}_{k}(t))| \leq 2\rho ||u(t)-\tilde{u}_{k}(t)||_{L}^{2} < \frac{1}{2}\epsilon$$
, $t \in \overline{I}_{T}$.

For such a k we have by (3.23), (3.24) and Lemma 2.5

$$| (u_{j}(t) - u(t), \tilde{u}_{k}(t)) | \leq K \sup_{t \in \overline{I}_{T}} || \tilde{u}_{k}(t) ||_{H} 1$$

$$\times (||u_{0j} - u_{0}||_{L}^{2} + ||u_{j} - u||_{L^{r}(I_{T}; L^{p+1})}) < \frac{1}{2} \varepsilon ,$$

$$t \in \overline{I}_{T} ,$$

if j is sufficiently large. Therefore, we obtain by (3.26) and (3.27)

(3.28)
$$|(u_{j}(t) - u(t), u(t))|$$

 $\leq |(u_{j}(t) - u(t), \tilde{u}_{k}(t))| + |(u_{j}(t) - u(t), u(t) - \tilde{u}_{k}(t))|$
 $< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon , t \varepsilon \bar{I}_{m},$

for sufficiently large j. (3.28) implies that

(3.29)
$$|(u_j(t)-u(t),u(t))| \rightarrow 0$$
 $(j \rightarrow \infty)$ uniformly on \overline{I}_T .

We next evaluate the first term at the right hand side of (3.25). Since $\|\mathbf{u_j}(t)\|_{\mathbf{L}^2} = \|\mathbf{u_0_j}\|_{\mathbf{L}^2}$ and $\|\mathbf{u(t)}\|_{\mathbf{L}^2} = \|\mathbf{u_0}\|_{\mathbf{L}^2}$ for t ϵ $\bar{\mathbf{I}}_{\mathbf{T}}$, we have by (3.29)

$$(3.30) \quad | \quad ||u_{j}(t)||_{L^{2}}^{2} - (u(t), u_{j}(t))|$$

$$\leq | \quad ||u_{0j}||_{L^{2}}^{2} - ||u_{0}||_{L^{2}}^{2} | + |(u(t), u_{j}(t) - u(t))|$$

$$+ 0 \quad (j \to \infty) \quad \text{uniformly on } \overline{I}_{T}.$$

Combining (3.25), (3.29) and (3.30), we obtain

(3.31)
$$u_{j}(t) \rightarrow u(t) \text{ in } C(\overline{I}_{T}; L^{2}) \quad (j \rightarrow \infty).$$

On the other hand, the length of T is determined only by n, p, λ and ρ (see (3.9) and (3.13)). By the L²-norm conservation law we see that $\sup\{\|\mathbf{u}(t)\|_{\mathbf{L}^2}, \|\mathbf{u}_{\mathbf{j}}(t)\|_{\mathbf{L}^2}, \|\mathbf{u}_{\mathbf{j}}(t$

Repeating this procedure, we obtain (1.6). This completes the proof of Theorem 1.1.

(Q. E. D.)

REFERENCES

- [1] J. B. Baillon, T. Cazenave and M. Figueira, Équation de Schrödinger nonlinéaire, C. R. Acad. Sci., Paris, 284 (1977), 867-872.
- [2] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I: The Cauchy problem, J. Funct. Anal., 32 (1979), 1-32.
- [3] J. Ginibre and G. Velo, Theorie de la diffusion dans l'espace d'energie pour une classe d'équations de Schrödinger non linéaire, C. R. Acad. Sci., Paris, 298 (1984), 137-140.
- [4] H. Pecher and W. von Wahl, Time dependent nonlinear Schrödinger equations, Manuscripta Math., 27 (1979), 125-157.
- [5] W. A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brasil. Cienc., 42 (1970), 645-651.
- [6] W. A. Strauss, The nonlinear Schrödinger equation, in "Contemporary Developments in Continuum Mechanics and Partial Differential Equations," North-Holland,

 Amsterdam-New York-Oxford, 1978.
- [7] W. A. Strauss, Everywhere defined wave operators, in

- "Nonlinear Evolution Equations," pp. 85-102, Academic Press, New York, 1978.
- [8] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
- [9] M. Tsutsumi, Weighted Sobolev spaces and rapid decreasing solutions of some nonlinear dispersive wave equations, J. Diff. Eqs., 42 (1981), 260-281.
- [10] M. Tsutsumi and N. Hayashi, Classical solutions of nonlinear Schrödinger equations in higher dimensions, Math. Z., 177 (1981), 217-234.
- [11] Y. Tsutsumi, Global existence and asymptotic behavior of solutions for nonlinear Schrödinger equations, Doctor thesis, University of Tokyo, 1985.
- [12] M. Reed and B. Simon, Methods of Modern Mathematical
 Physics, Vol. II: Fourier Analysis and Self-adjointness,
 Academic Press, New York, 1975.
- [13] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, to appear.
- [14] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, preprint.
- [15] Y. Tsutsumi, L²-solutions for nonlinear Schrödinger equations and nonlinear groups, to appear in Funk. Ekva.