A Remark on Finite Groups Having a Split BN-pair

of Rank One with Characteristic Two

鈴木 通夫
Michio Suzuki

1. Introduction

A BN-pair of rank one in a group G is a pair of subgroups (B, N) of G which satisfy the following two conditions:

(BN 1) The subgroup H defined by

$$H = B \cap N$$

is a normal subgroup of index 2 in N;

(BN 2) The group G is the union of B and BNB.

In order to define a split BN-pair, we need to introduce further notations. By (BN 1), there is an element t of N such that

$$t^2 \in H \quad \text{and} \quad N = \langle H, t \rangle = H \langle t \rangle .$$

A BN-pair (B, N) is said to be split if the following additional condition is satisfied:

(BN 3) There is a normal subgroup U of B such that B is a split extension of U by H and such that we have

$$B \cap tUt^{-1} = \{1\} .$$

If the split BN-pair (B, N) of a finite group G satisfies a further condition:

(BN 4) The subgroup U contains a Sylow 2-subgroup of G, then G is called a group with a split BN-pair of rank one with characteristic two.
The class of finite groups having split BN-pairs of rank one was studied during the 1960's. The complete determination of the simple groups which belong to this class was achieved in Suzuki [7] for the characteristic two case and in Hering-Kantor-Seitz [3] and Shult [5] for the other cases, and this was the first step in the eventual classification of simple groups of finite order. (For more information, consult Suzuki [8] where a complete list of references can be found.)

In studying the structure of a finite group G with a split BN-pair of rank one and characteristic two, one of the most important ideas is the concept of the associated prime number $\chi(G)$ for G. (See Suzuki [7], §10.) The number $\chi(G)$ is defined as the order of the product of two involutions which are uniquely determined (up to conjugation) by the properties of the group G. It is not at all obvious why this order should be a prime number. In [7], the proof of the fact that $\chi(G)$ is indeed a prime number depends, among other things, on the classification of the Zassenhaus groups of characteristic two (cf. Suzuki [6]) and is indirect.

The purpose of this paper is to prove, by a direct method, that the integer $\chi(G)$ is prime. In order to make this paper reasonably self-contained, we have added a few elementary discussions on the structure of G and on the definition of $\chi(G)$. It is hoped that the method of this paper, or some ramification of it, might simplify the long argument of [7] which leads to the determination of the structure of G.
2. **Preliminaries** Let G be a finite group having a split BN-pair of rank one with characteristic two. We will use the notation introduced in §1 throughout this paper. Thus, we have

$$H = B \cap N, \quad N = H \langle t \rangle, \quad \text{and} \quad B = U H = H U \triangleright U.$$

It is clear that $BNB = BtB$ in (BN 2). So, we have

$$G = B \cup BtB.$$

Therefore, as a permutation group on the cosets of B, G is doubly transitive. The normal subgroup U of B in (BN 3) acts regularly on the cosets different from B. (Thus, the group G is really an (L)-group as defined in §8 of [7].) The above representation of G as a permutation group is quite useful. For example, B is the only coset fixed by an arbitrary nonidentity element of U. This fact leads to the following proposition ([Suzuki [7], Lemma 10(ii)].

(A) If u is any nonidentity element of U, then its centralizer $C_G(u)$ is contained in B.

In the condition (BN 3), the conjugate subgroup $tU t^{-1}$ does not depend on the particular choice of t as long as we choose $t \in N - H$. By (BN 3) and (BN 4), the group H is isomorphic to B/U and, hence, has odd order. It follows that the element t can be chosen to be an involution. We will henceforth assume that we have done so. Thus, we have $t^2 = 1$. Since $H \vartriangleleft N$, the element t induces an automorphism of order 2 in the group H of odd order. A simple counting argument proves the following lemma (Gorenstein–Herstein [2]).
(B) There are exactly \(| H : C_H(t) |\) elements of \(H\) that satisfy \(x^t = x^{-1}\). Any such element \(x\) can be written in the form
\[x = y^{-1}y^t \]
with \(y \in H\).

We have \(tH = Ht\). So,
\[BtB = BtHU = BtU = UHtU. \]

(C) Every element \(x \in G - B\) can be expressed uniquely in the form
\[x = f g t h \quad (f, h \in U, g \in H). \]

The uniqueness of the expression comes from the condition that we have \(B \cap tU t^{-1} = \{1\}\). The above expression for \(x\) is called the canonical form of the element \(x\) of \(G - B\).

By the condition (BN4), the group \(U\) contains an involution. For any involution \(u\) of \(U\), the conjugate \(u t u^{-1}\) is in \(G - B\) (by (BN 3)). So, let
\[u t u^{-1} = f g t h \]
be its canonical form. Since \(u = u^{-1}\), we get
\[f = h^{-1} \quad \text{and} \quad g^t = g^{-1}. \]

By (B), we can write \(g = k^{-1}k^t\) for some \(k \in H\). Then, for the involution \(s = k^t u k^{-t}\), we have
\[t s t = r^{-1} t r \]
where \(r = k h k^{-1} \in U\). Thus, we have proved the following proposition ([7], Lemma 16).
(D) Let \(u \) be any involution of \(U \). Then, there is a conjugate \(s \) of \(u \) such that

\[\text{tst} = r^{-1}tr \]

for some \(r \in U \).

An identity of the above form is called a structure identity for \(G \) ([7], p.522). An important property of the structure identity is the following.

(E) Let \(s \) be an involution such that the pair \((s, t)\) satisfies the above structure identity for \(G \). If \((s_1, t_1)\) is a pair of involutions such that

\[s_1 \in U, \quad t_1 \in N, \quad \text{and} \quad t_1s_1t_1 = r_1^{-1}t_1r_1 \]

for some \(r_1 \in U \), then there is an element \(k \) of \(H \) such that

\[t_1 = t^k, \quad s_1 = s^k, \quad \text{and} \quad r_1 = r^k. \]

Proof Since \(\langle t \rangle \) and \(\langle t_1 \rangle \) are \(S_2 \)-subgroups of \(N \), they are conjugate in \(N \). So, there is an element \(k \) of \(H \) such that \(t_1 = t^k \). We replace the original structure identity for \(G \) by its conjugate and we assume that \(t_1 = t \). Then, for \(u = tr_1^{-1}rt^{-1} \), we have \(u^{-1}s_1u = s \). This implies that the element \(s_1 \) fixes the coset \(uB \). Hence, we get \(u \in B \). On the other hand, the definition of \(u \) shows that \(u \) is an element of \(tUt^{-1} \). So, it follows from (BN 3) that \(u = 1 \). Thus, we have \(s_1 = s \) and \(r_1 = r \). \(\square \)

In fact, we have proved the stronger property that we have \(s_1 = s^k \) (and \(r_1 = r^k \)) whenever \(t_1 = t^k \). Thus, for a fixed involution \(t \) of \(N \), there is a unique involution \(s \) of \(U \) which satisfies \(\text{tst} = r^{-1}sr \).
for some \(r \in U \).

From now on, let \((s, t)\) be the pair of involutions which satisfies the structure identity for \(G\) given in (D).

(F) If \(s_1\) is any involution of \(U\), then \(s_1\) is conjugate to \(s\) by an element of \(H\); i.e. there is an element \(k\) of \(H\) such that \(s_1 = s^k\).

Proof By (D), some conjugate of \(s_1\) satisfies the structure identity. So, we have \(s_1 = s^k\) for some \(k \in H\) by (E).

(G) We have \(C_H(s) = C_H(t)\).

Proof Proposition (E) implies that \(C_H(t) \subseteq C_H(s)\). Conversely, if \(k \in C_H(s)\), then we have \(tkst = tskt\). Thus,

\[
k^tr^{-1}tr = r^{-1}trk^t = r^{-1}ktk^{-1}tk.
\]

The uniqueness of the canonical form implies that we have \(k^t = k\). So, \(C_H(s) \subseteq C_H(t)\).

(H) If \(k\) is a nonidentity element of \(H\) such that \(k^t = k^{-1}\), then we have \(C_G(k) \subseteq H\).

Proof Suppose \(k^t = k^{-1}\) and \(ku = uk\) for some element \(u \in G - B\). Let \(u = fgh\) be the canonical form of the element \(u\). Then, we have

\[kfgth = fghk.\]

The canonical form of the left side is \(kg^{-1}kgth\), while that of the right side is \(fgk^t\). The uniqueness of the canonical form implies that

\[kg = gk^t = gk^{-1}, \text{ or } g^{-1}kg = k^{-1}.\]

Since \(g\) and \(k\) are elements of the group \(H\) which has odd order, we
must have $k = 1$. Thus, if $k^t = k^{-1} \neq 1$, then $C_G(k) \subseteq B$.

Therefore,

$$C_G(k) = C_G(k^{-1}) \subseteq B^t.$$

Hence, we have $C_G(k) \subseteq B \cap B^t = H$.

(I) The involution s of U lies in the center of U.

Proof If s is the unique involution of U, then clearly s is contained in the center of U. If U contains more than one involution, U contains exactly $|H : C_H(s)|$ involutions by (F). It follows from (G) and (B) that there is a nonidentity element k of H satisfying $k^t = k^{-1}$. We can choose k to be an element of prime order. The conjugation by such an element k induces an automorphism of U of prime order which is fixed point free. So, by a theorem of Thompson [9], U is nilpotent. Thus, some involution belongs to the center of U. Then, by (F), all involutions of U are in the center.

3. **Definition of $\chi(G)$ and the statement of the theorem**

Let (s, t) be the pair of involutions which satisfies the structure identity for G. Let $\chi(G)$ be the order of the element st which is the product of the involutions s and t.

Theorem The integer $\chi(G)$ is a prime number.

We will prove that for any positive integer $n < \chi(G)$, the n-th power $(st)^n$ of st is conjugate to st. If this is proved, the theorem clearly follows.
4. **Proof of the Theorem** We will prove that for any positive integer \(n < \chi(G) \), there is an element \(u_n \) of \(U \) such that
\[
(st)^n = u_n^{-1}(st)u_n.
\]

First, we remark that the element \(u_n \), if it exists at all, is the unique element of \(U \) which satisfies \((st)^n = u_n^{-1}(st)u_n\). This is seen by noting that the right side is, as written, the canonical form of \((st)^n\) and by recalling the uniqueness of that form.

In order to prove the existence of an element \(u_n \), we proceed by induction on \(n \). If \(n = 1 \), the statement is obvious. Consider the case when \(n = 2 \). We have the structure identity \(tst = r^{-1}tr \). Hence, we get
\[
stst = (st)^2 = s r^{-1}tr = r^{-1}(st)r
\]
because \(s \) is in the center \(Z(U) \) of \(U \) by (I). Thus, we have
\[
u_2 = r.
\]
Suppose that \(n = 2m \) is even. Then, we have
\[
u_{m}^{-1}(st)u_{m} = (st)^m
\]
by the inductive hypothesis. Taking the conjugate of the above equation by the element \(r \), we get
\[
r^{-1}u_{m}^{-1}(st)u_{m}r = r^{-1}(st)^{m}r = (r^{-1}(st)r)^{m} = (st)^{2m}.
\]
Thus, with \(u_{2m} = u_{m}r \), we have \((st)^{2m} = u_{2m}^{-1}(st)u_{2m}\).

Finally, assume that \(n = 2m + 1 \) is odd. By the inductive hypothesis, we have (with \(u = u_{2m} \))
\[
(st)^{2m} = u^{-1}(st)u.
\]
We can write \((st)^n = (st)^{2m}st = st(st)^{2m}\). So, we get
(1) \((st)^n = u^{-1}stu = stu^{-1}stu\).

The element \(s\) is an involution in \(Z(U)\), so the terms between the two \(t\)'s in the middle and last expressions of (1) are inverse of each other:
\[(us)^{-1} = s^{-1}u^{-1} = u^{-1}s.\]

Since \(n < \chi(G)\), we have \((st)^n \neq 1\). Thus, \(us \neq 1\) and \(t(us)t\) is an element of \(G - B\). Let
\[(2) \quad t(us)t = fgth\]
be the canonical form. Since we have
\[t(u^{-1}s)t = t(us)^{-1}t^{-1} = [t(us)t^{-1}]^{-1},\]
the equation (1) gives us
\[u^{-1}sfgh = sh^{-1}tg^{-1}f^{-1}u.\]

So, the uniqueness of the canonical form implies
\[u^{-1}sf = sh^{-1}, \quad g^{-1} = g^t, \quad \text{and} \quad h = f^{-1}u.\]

Thus, we have
\[(3) \quad (st)^n = sh^{-1}gth = h^{-1}sgth\]
where \(g \in H\) and \(g^t = g^{-1}\). The last equality follows from the fact that \(s \in Z(U)\).

We need to show that \(g = 1\). By (B), we can write \(g = f^{-1}f^t\).

Then, \(gt = f^{-1}tf\) and (3) implies (by cancelling one \(s\) from the left)
\[t(st)^{2m} = h^{-1}f^{-1}tfh.\]

The left side is also a conjugate of \(t:\)
\[t(st)^{2m} = (st)^{-m}t(st)^m\]
because \((st)^{-1} = ts\). Therefore, we get
\[(st)^{-m}t(st)^m = h^{-1}f^{-1}tfh.\]

This will give us the information that a certain element commutes with
the involution t. It is more convenient to replace the middle t by

$$t = rtst^{-1}r^{-1},$$

which is obtained from the structure identity. We get

$$\text{(st)}^{-m}rtst^{-1}r^{-1}(\text{st})^m = h^{-1}f^{-1}rtst^{-1}r^{-1}fh.$$

Set

$$\text{(st)}^{-m}rt = h^{-1}f^{-1}rt w.$$

Then, the equation (4) is equivalent to saying that

$$w \in C_G(s).$$

By (A), (I), and (G), we have

$$C_G(s) = C_B(s) = C_H(s)U = C_H(t)U.$$

So, we can write

$$w = kv \quad (k \in C_H(t), \ v \in U).$$

It follows from the inductive hypothesis that

$$(\text{st})^m = u_m^{-1}(\text{st})u_m.$$

Then, the defining equation (5) of w gives us

$$u_m^{-1}tsu_mrt = h^{-1}f^{-1}rtkv.$$

We have shown that $u_m^r = u_{2m} = u$. Thus, we get

$$tsut = u_m h^{-1}f^{-1}rtkv.$$

The canonical form of this element is

$$\text{(6)} \quad tsut = u_m h^{-1}f^{-1}rt \cdot f^{-1}k \cdot tv$$

where $u_m h^{-1}f^{-1}rt \in U$, $f^{-1}k \in H$, and $v \in U$. Since $s \in Z(U)$, the left side of (6) coincides with the left side of (2). The uniqueness of the canonical form implies, in particular, that

$$\text{(7)} \quad g = f^{-1}k.$$
On the other hand, the element \(f \) was defined by \(g = f^{-1}f^t \). So, the equation (7) gives us
\[
f^t = k.
\]
But, \(k \in C_H(t) \) and hence \(f = k^t = k \). This proves that
\[
g = f^{-1}k = 1.
\]
Therefore, the equation (3) can now be written as
\[
(st)^n = h^{-1}(st)h.
\]
This completes the inductive proof of the proposition.

5. Remarks For each odd prime number \(p \), there is a group \(G \) with a split BN-pair of rank one and characteristic two such that \(\chi(G) = p \).

Let \(G \) be the linear group \(L(F_p) \) of linear transformations
\[
x' = ax + b
\]
where \(a \neq 0 \) and \(a, b \) are elements of the finite field of \(p \) elements.

This group \(G \) has a split BN-pair \((B, N) \) of rank one and characteristic two where
\[
B = U = \{ x' = ax \mid (a \neq 0) \},
\]
\[
N = \langle t \rangle, \quad t : x' = 1 - x, \text{ and}
\]
\[
H = \{ 1 \}.
\]
Similar groups can be constructed over any finite near-fields of odd characteristic. See [7], §5.

Let \(G \) be, as before, a finite group having a split BN-pair of rank one with characteristic two, and let \(p = \chi(G) \). The proof of §4 shows that the subgroup \(U \) contains a cyclic group of order \(p - 1 \).

In fact, the set of elements \(u_1, u_2, \ldots, u_{p-1} \) forms a subgroup which
is isomorphic to the group of automorphisms of the cyclic group $<st>$ of order p. We have

$$u_1 = 1, \quad u_2 = r, \quad \text{and} \quad u_{p-1} = s.$$

If the group U contains only one involution, then G is essentially a linear group over a near-field. See [7], Theorem 1. So, the interesting case is when G is simple and U contains more than one involution. In this case, U is nilpotent (cf. the proof of (I)). It can be proved by using character theory that the group U is indeed a 2-group. Then, the associated prime number $p = \chi(G)$ is a Fermat prime because $p - 1$ is a power of 2.

If the group U is abelian, it is not hard to show that G is the special linear group $SL(2,F)$ over a finite field F of characteristic two. If U is nonabelian, the property (F) together with the solvability of the group H of odd order (cf. Feit-Thompson [1]) imposes a strong restriction on the 2-group U. This class of 2-groups was investigated by G. Higman [4]. Among others, Higman proved that the exponent of U is at most 4. Since U must contain a cyclic group of order $p - 1$, we must have $\chi(G) = p = 3$ or 5.

It still requires a long argument to get the final conclusion that G is either the 3-dimensional unitary group of characteristic two or the Suzuki group depending on whether $\chi(G) = 3$ or $\chi(G) = 5$. But, the above brief discussion explains the role of Higman's theorem on the special class of 2-groups in the classification of simple groups having a split BN-pair of rank one.
References

